Spatial variation of limestone soil minerals in a karst area of northwestern Guangxi
-
摘要: 基于整个桂西北喀斯特地区石灰土的网格取样分析,采用经典统计分析和地统计学方法,研究桂西北喀斯特大尺度区域下表层(0~15 cm)石灰土矿物质(SiO2、Fe2O3、CaO、MgO、Al2O3、MnO) 的空间变异特征及影响因素。结果表明:SiO2含量高达55.72%,其次为Al2O3,二者占了土壤矿物质含量的85. 22%;变异系数在37.50%~71.67%之间。SiO2空间自相关中等,Al2O3和MnO空间自相关弱,三者变程长,空间连续性好;CaO、Fe2O3、MgO空间自相关显著,变程短。Al2O3、Fe2O3的空间变异特征主要受海拔影响,裸岩率是影响SiO2、MnO和MgO空间变异性的主要地质因子,坡度则是影响CaO空间分布的主要因素。主成分分析表明土壤矿物质是影响桂西北喀斯特区石灰土空间变异的重要因子,特别是SiO2。区域大尺度下,各地质地形因子通过影响石灰土矿物质空间变异特征,从而影响石灰土的空间分布。Abstract: As extremely important components of soil and constitutors of soil skeleton, soil minerals account for over 95% of the solid mass of soil. They directly participate in the entire process of soil weathering, soil formation, and plant growth and development, impacting significantly on the internal structure, exchange capacity, and fertility status of soil. Studying the spatial distribution of soil mineral elements is of great significance for understanding and mastering soil development, physical and chemical properties, and the supply status of plant nutrients. Because of the special formation matrix and ecological environment conditions of carbonate rock—the parent material of limestone soil in karst areas, soil in karst areas presents a high degree of spatial heterogeneity. At the same time, the shortage of mineral nutrients may be an important limiting factor for the growth and restoration of vegetation in mountainous areas of carbonate rock in southwestern China. However, the spatial distribution characteristics of soil minerals on a large scale in the karst area of northwestern Guangxi are currently unclear. Clarifying the spatial variation characteristics of limestone minerals in the karst area of northwestern Guangxi can provide reference for the effective utilization of mineral resources and ecological restoration and reconstruction. In order to explore the distribution pattern of the main soil mineral components in the karst area of northwestern Guangxi and to guide vegetation restoration and ecological reconstruction in the relevant area, the spatial heterogeneity of mineral components (SiO2, Fe2O3, CaO, MgO, Al2O3, and MnO) in surface soil (0-15 cm) and its influencing factors were studied by the methods of classical statistics and geostatistics. The soil samples were collected by the grid method based on the whole karst regional scale in northwestern Guangxi. The results show that the content differences and variance coefficients of six mineral components in limestone soil of karst area in northwestern Guangxi are large. The average content of SiO2 is up to 55.72%, while the variance coefficient is the smallest (37.50%). The sum of SiO2 and Al2O3 accounts for 85.22% of the total six mineral components. The spatial patterns of the six mineral components are quite different from each other, and fit different models of mineral components. The spatial autocorrelation of SiO2 is medium, but the autocorrelations of Al2O3 and MnO are weak, and their ranges are long in good spatial continuum. CaO, Fe2O3 and MgO are characterized by strong spatial autocorrelations with short ranges. The spatial distribution of minerals is closely related to the main nutrients and topographic characteristics. The spatial variation of Al2O3 and Fe2O3 is mainly affected by the altitude. The bare rock rate is the main topographic factor affecting the spatial variation of SiO2, MnO and MgO, and the gradient is the main factor affecting the spatial distribution of CaO. A principal component analysis show that the soil mineral is an important factor affecting the spatial variation of limestone soil, especially SiO2. On a large regional scale, various topographic factors affect the spatial variation limestone soil minerals, and hence impacting the spatial distribution of limestone soil.
-
Key words:
- minerals /
- karst /
- spatial variation /
- limestone soil
-
图 2 石灰土矿物质与主要养分、地形及植被类型的相关性分析
Si-二氧化硅 Ca-氧化钙 Fe-三氧化二铁 Al-三氧化二铝 Mn-氧化锰 Mg-氧化镁 SOC-土壤有机碳 AN-速效氮 AK-速效钾 AP-速效磷 TN-全氮 TP-全磷 TK-全钾 H-海拔 L-裸岩率 PD-坡度 ZB -植被类型
Figure 2. Correlation analysis of minerals, main nutrients, topographic factors and vegetation type in limestone soil
Si-SiO2, Ca-CaO, Fe-Fe2O3, Al-Al2O3, Mn-MnO, Mg-MgO, SOC-soil organic carbon, AN-available nitrogen, AK-available potassium, AP-available phosphorus, TN-total nitrogen, TP-total phosphorus, TK-total potassium, H-height, L-bare rock ratio, PD-gradient, ZB –vegetation type
表 1 石灰土矿物质描述性统计特征
Table 1. Descriptive statistics of limestone soil minerals
指标 最大值 最小值 均值 标准差
S.D.变异系数
CV/%偏度 峰度 K-S检验 SiO2 98.14 21.50 55.72 20.90 37.50 0.45 −1.07 0.070 CaO 4.59 0.14 1.52 1.09 71.67 0.98 0.07 0.000 Fe2O3 23.09 0.63 8.89 4.89 55.20 0.62 −0.14 0.169 Al2O3 29.24 2.11 14.60 6.90 47.26 0.26 −0.95 0.134 MgO 2.75 0.08 1.04 0.61 58.72 0.67 −0.06 0.330 MnO 0.68 0.04 0.24 0.14 58.42 0.63 −0.14 0.145 表 2 石灰土矿物质的半方差函数模型参数
Table 2. Parameters of the semi-variogram models for limestone soil minerals
指标 模型 Model C0 C0+C C0/(C0+C) 变程A/km R2 RSS SiO2 指数模型 0.091 0.227 0.401 317.9 0.956 9.00E-05 CaO 指数模型 0.069 1.160 0.059 19.2 0.779 1.05E-02 Fe2O3 指数模型 0.012 0.054 0.219 20.7 0.608 3.94E-05 Al2O3 线性模型 0.332 0.332 1.000 216.2 0.502 6.81E-03 MgO 指数模型 0.038 0.380 0.100 12.9 0.340 1.62E-03 MnO 线性模型 0.019 0.019 1.000 216.2 0.467 1.779E-06 表 3 桂西北喀斯特地区石灰土空间变异特征的主成分分析
Table 3. Principal component analysis of spatial variation characteristics of limestone soil
项目 PC1 PC2 PC3 PC4 PC5 pH 0.664 0.169 −0.157 −0.308 0.179 有机碳 0.574 −0.581 0.042 −0.029 −0.067 速效氮 0.569 −0.403 −0.030 −0.235 −0.259 速效钾 0.536 0.129 0.395 −0.262 0.040 速效磷 0.133 0.182 0.780 0.103 −0.256 全氮 0.750 −0.403 0.073 0.074 −0.146 全磷 0.728 0.011 0.404 0.267 −0.232 全钾 0.341 0.221 0.057 0.383 0.577 海拔 0.229 −0.548 0.198 0.416 0.300 裸岩率 0.478 −0.388 −0.389 0.082 0.071 坡度 0.081 −0.243 −0.602 0.332 0.103 植被类型 −0.367 0.459 0.412 0.207 0.254 SiO2 −0.733 −0.268 0.092 0.042 −0.222 CaO 0.356 −0.038 0.336 −0.564 0.381 Fe2O3 0.442 0.694 −0.324 0.108 −0.211 Al2O3 0.431 0.622 −0.417 −0.041 −0.227 MnO 0.646 0.274 0.175 0.448 −0.144 MgO 0.522 0.274 −0.168 −0.139 0.248 特征值 4.766 2.601 2.144 1.339 1.124 累积贡献率/% 26.479 40.928 52.842 60.281 66.524 -
[1] 王炜明. 基于GIS 的地统计学方法在土壤科学中的应用[J]. 中国农学通报, 2007, 23(5):404-408.WANG Weiming. Utilization of geo-statistic with GIS in soil sciences[J]. Chinese Agricultural Science Bulletin, 2007, 23(5):404-408. [2] Powers J S. Changes in soil carbon and nitrogen after contrasting land-use transitions in Northeastern Costa Rica[J]. Ecosystems, 2004, 7(2):134-146. [3] Dunjo G, Pardini G, Gispert M. Land use change effects on abandoned terraced soils in a Mediterranean catchment, NE Spain[J]. Catena, 2003, 52(16):23-37. [4] Descroix L, Viramontes D, Vauclin M, Gonzalez Barrios J L, Esteves M. Influence of soil surface features and vegetation on runoff and erosion in the Western Sierra Madre (Durango, Northwest Mexico)[J]. Catena, 2001, 43(2):115-135. doi: 10.1016/S0341-8162(00)00124-7 [5] 黄昌勇. 土壤学[M]. 北京: 中国农业出版社, 2000 . [6] 李莎莎, 范夫静, 宋同清, 黄国勤, 曾馥平, 彭晚霞, 杜虎. 西南峡谷型喀斯特区坡地土壤矿物质的空间分布特征[J]. 生态学报, 2014, 34(18):5320-5327.LI Shasha, FAN Fujing, SONG Tongqing, HUANG Guoqin, ZENG Fuping, PENG Wanxia, DU Hu. Spatial variation of soil minerals in the gorge karst region, Southwest China[J]. Acta Ecologica Sinica, 2014, 34(18):5320-5327. [7] 朱祖祥. 土壤学[M]. 北京: 农业出版社, 1983. [8] 王世杰, 卢红梅, 周运超, 谢丽萍, 肖德安. 茂兰喀斯特原始森林土壤有机碳的空间变异性与代表性土样采集方法[J]. 土壤学报, 2007, 44(3):475-483.WANG Shijie, LU Hongmei, ZHOU Yunchao, XIE Liping, XIAO De'an. Spatial variability of soil organic carbon and representative soil sampling method in Maolan karst virgin forest[J]. Acta Pedologica Sinica, 2007, 44(3):475-483. [9] 张伟, 陈洪松, 王克林, 张继光, 侯娅. 典型喀斯特峰丛洼地坡面土壤养分空间变异性研究[J]. 农业工程学报, 2008, 24(1):68-73.ZHANG Wei, CHEN Hongsong, WANG Kelin, ZHANG Jiguang, HOU Ya. Spatial variability of soil nutrients on hillslope in typical karst peak-cluster depression areas[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(1):68-73. [10] 张信宝, 王克林. 西南碳酸盐岩石质山地土壤-植被系统中矿质养分不足问题的思考[J]. 地球与环境, 2009, 37(4):337-341.ZHANG Xinbao, WANG Kelin. Ponderation on the shortage of mineral nutrients in the soilvege tation ecosystem in carbonate rock-distributed mountain regions in Southwest China[J]. Earth and Environment, 2009, 37(4):337-341. [11] 喻阳华, 杨丹丽, 钟欣平. 黔中喀斯特区典型土地利用类型的土壤亲合性元素特征[J]. 地球与环境, 2019, 47(4):429-435.YU Yanghua, YANG Danli, ZHONG Xinping. Characteristics of soil affinity elements of typical land use types in the rocky desertification area of central Guizhou[J]. Earth and Environment, 2019, 47(4):429-435. [12] 韩美荣, 宋同清, 彭晚霞, 黄国勤, 杜 虎, 鹿士杨, 时伟伟. 喀斯特峰丛洼地土壤矿物质的组成特征与作用[J]. 应用生态学报, 2012, 23(3):685-693.HAN Meirong, SONG Tongqing, PENG Wanxia, HUANG Guoqin, DU Hu, LU Shiyang, SHI Weiwei. Compositional characteristics and roles of soil mineral substances in depressions between hills in karst region[J]. Chinese Journal of Applied Ecology, 2012, 23(3):685-693. [13] 杜虎, 宋同清, 彭晚霞, 王克林, 刘璐, 鹿士杨, 曾馥平. 木论喀斯特自然保护区表层土壤矿物质的空间异质性[J]. 农业工程学报, 2011, 27(6):79-84, 400.DU Hu, SONG Tongqing, PENG Wanxia, WANG Kelin, LIU Lu, LU Shiyang, ZENG Fuping. Spatial heterogeneity of mineral compositions in surface soil in Mulun National Natural Reserve karst areas[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(6):79-84, 400. [14] 李龙, 姚云峰, 秦富仓, 高玉寒, 张美丽. 黄花甸子流域土壤全氮含量空间分布及其影响因素[J]. 应用生态学报, 2015, 26(5):1306-1312.LI Long, YAO Yunfeng, QIN Fucang, GAO Yuhan, ZHANG Meili. Spatial distribution pattern of soil nitrogen in Huanghuadianzi watershed and related affecting factors[J]. Chinese Journal of Applied Ecology, 2015, 26(5):1306-1312. [15] 俞月凤, 何铁光, 宋同清, 李丽娟, 韦彩会, 蒙炎成, 唐红琴, 李忠义, 李婷婷, 胡芳. 桂西北喀斯特地区石灰土养分空间变异特征[J]. 生态学报, 2018, 38(8):2906-2914.YU Yuefeng, HE Tieguang, SONG Tongqing, LI Lijuan, WEI Caihui, MENG Yancheng, TANG Hongqin, LI Zhongyi, LI Tingting, HU Fang. Spatial variability of limestone soil nutrients in a karst area of northwestern Guangxi[J]. Acta Ecologica Sinica, 2018, 38(8):2906-2914. [16] 刘光崧. 土壤理化分析与剖面描述[M]. 北京: 中国标准出版社, 1996.LIU Guangsong. Soil physical and chemical analysis and description of soil profile[M]. Beijing: China Standards Press, 1996. [17] 王强, 戴九兰, 付合才, 申天琳, 吴大千, 王仁卿. 空间分析方法在微生物生态学研究中的应用[J]. 生态学报, 2010, 30(2):439-446.WANG Qiang, DAI Jiulan, FU Hecai, SHEN Tianlin, WU Daqian, WANG Renqing. The application of spatial analysis methods to microbial ecology[J]. Acta Ecologica Sinica, 2010, 30(2):439-446. [18] Cambardella C A, Moorman T B, Parkin T B, Karlen D L, Novak J M, Turco R F, Konopka A E. Field-scale variability of soil properties in central Iowa soils[J]. Soil Science Society of America Journal, 1994, 58(5):1501-1511. doi: 10.2136/sssaj1994.03615995005800050033x [19] 王改改, 傅瓦利, 魏朝富, 袁红. 消落带土壤铁的形态变化及其对有效磷的影响[J]. 土壤通报, 2008, 39(1):66-70.WANG Gaigai, FU Wali, WEI Chaofu, YUAN Hong. Iron transformation and phosphorus availability in a drawdown area of Three Gorges Reservoir[J]. Chinese Journal of Soil Science, 2008, 39(1):66-70. [20] 金发会, 李世清, 卢红玲, 李生秀. 石灰性土壤微生物量碳、氮与土壤颗粒组成和氮矿化势的关系[J]. 应用生态学报, 2007, 18(12):2739-2746.JIN Fahui, LI Shiqing, LU Hongling, LI Shengxiu. Relationships of microbial biomass carbon and nitrogen with particle composition and nitrogen mineralization potential in calcareous soil[J]. Chinese Journal of Applied Ecology, 2007, 18(12):2739-2746. [21] 郭杏妹, 吴宏海, 罗媚, 何广平. 红壤酸化过程中铁铝氧化物矿物形态变化及其环境意义[J]. 岩石矿物学杂志, 2007, 26(6):515-521.GUO Xingmei, WU Honghai, LUO Mei, HE Guangping. The morphological change of Fe/Al-oxide minerals in red soils in the process of acidification and its environmental significance[J]. Acta Petrologica Et Mineralogica, 2007, 26(6):515-521. [22] 中国科学院南京土壤研究所. 中国土壤系统分类土壤物理和化学分析方法[M]. 北京: 中国农业科技出版社, 1992. [23] Enoki T, Kawaguchi H, Iwatsubo G. Topographic variations of soil properties and stand structure in a Pinus thunbergii plantation[J]. Ecological Research, 1996, 11(3):299-309. doi: 10.1007/BF02347787 [24] Tateno R, Takeda H. Forest structure and tree species distribution in relation to topography-mediated heterogeneity of soil nitrogen and light at the forest floor[J]. Ecological Research, 2003, 18(5):559-571. doi: 10.1046/j.1440-1703.2003.00578.x