Water chemistry and tufa deposition on the restored dam of Huohua Lake in the Jiuzhai Valley
-
摘要: 钙华的主要成分是以方解石为主的碳酸钙(CaCO3)。2017年九寨沟7.0级地震导致火花海下游钙华堤坝溃堤,火花海干涸。火花海上下游的钙华堤坝和内部的钙华丘暴露在空气中,因物理与化学风化作用,钙华堤坝持续坍塌;虽然在有水的情况下,钙华也可能受到侵蚀,但因地表水会不断析出新的钙华,使钙华景观不断地进行“自我修复”。火花海钙华堤坝决口修复后,对其开展相关监测,结果表明:(1)地表水的方解石饱和指数大于0,表明地表水倾向于析出CaCO3,利于涵养现有钙华堤坝;(2)堤坝表面上有新的钙华沉积:基于碳氧同位素、矿物和元素分析,新沉积的钙华可能主要来自地表水;(3)新沉积钙华的成分受流域水土流失的一定影响;(4)与天然堤坝上原有的钙华相比,修复堤坝上新沉积的钙华在物理结构、痕量元素组成和有机质含量上具有一定差异,且细菌多样性相对较低,这主要是由于修复堤坝上植被以自然恢复为主,植被和钙华中微生物的自然恢复是一个缓慢的过程。相关水化学和钙华监测应持续开展,以更好掌握钙华堤坝的未来演变趋势。Abstract:
In 2017, an Ms 7.0 earthquake breached the tufa dam of Huohua Lake in the Jiuzhai Valley, resulting in the lake drainage. Exposed to the atmosphere, the tufa dam collapsed due to continued physical and chemical weathering. To prevent further collapse, the dam of Huohua Lake was restored by using the modified glutinous rice mortar and local limestone rocks. After the restoration, we monitored the chemical and isotopic compositions of surface water and tufa to answer the following questions.Does the surface water after the earthquake tend to conserve the tufa dam and precipitate tufa? Does the modified glutinous rice mortar have a significant impact on the surface water in the lower part of Huohua Lake? Does new tufa deposit on the restored dam? What are the characteristics and main sources of newly-deposited tufa? Are there any differences between the old tufa on the natural tufa dam and the newly-formed tufa on the restored dam? The characteristics of surface water and tufa samples were investigated. First, from September 2020 to September 2021, the surface water of Huohua Lake was monitored once a month. The parameters included pH, conductivity, temperature, alkalinity, turbidity, DO, K+, Ca2+, Na+, Mg2+, ${\rm{SO}}_4^{2-}$, ${\rm{NO}}_3^{-}$, NH$_4^{+}$, dissolved organic carbon (DOC), and calcite saturation index (SIC). We also compared these parameters between the values before and after the earthquake. Second, to examine the physical and chemical characteristics of tufa, we used the scanning electron microscope (SEM) and X-Ray Diffractomer (XRD) for tufa samples and analyzed the elemental compositions (Ca, Mg, Al, Si, P, S, K, Fe and Ba), organic matter, and carbon and oxygen isotopes in the modified glutinous rice mortar, tufa samples, and surface water. Third, the characteristics of microorganisms in the tufa samples were quantified by using the high-throughput sequencing technology. The SIc values of surface water after Huohua Lake restoration were 0.77 ± 0.11, indicating that the surface water tended to precipitate CaCO3. From the upstream to downstream of Huohua Lake, there were no significant changes in Ca2+, ${\rm{SO}}_4^{2-}$, NH$_4^{+}$, ${\rm{NO}}_3^{-}$, PO$_4^{3-}$, DOC, and other water chemistry parameters (P>0.05), indicating that the dam restoration materials had no significant influence on the surface water. The concentrations of ${\rm{HCO}}_3^{-}$ were 94-291 mg·L−1 before the earthquake, 189-338 mg·L−1 after the earthquake but before the restoration, and 157-212 mg·L−1 after the restoration. The concentrations of ${\rm{NO}}_3^{-}$ increased after the earthquake, and the DOC concentrations after the earthquake were 0.8-2.05 mg·L−1. At the same time, the lake turbidity generally increased after the earthquake. The changes of these hydrochemical indicators were most likely due to the vegetation damage caused by the earthquake, which further intensified soil erosion. After the dam restoration, newly-deposited tufa was observed on the top of dam, and the brown color generally reflected the high content of organic matter, Si, Al, K, Fe, and Ba from enhanced soil erosion. On the side surface of the repaired dam, tufa was white and contained much lower amount of organic matter compared to that of the tufa collected on the top of dam. The main mineral composition of tufa from both the restored dam and the natural dam is calcite, but was quite different from the modified glutinous rice mortar. The δ13C values of newly-deposited tufa on the restored dam were between those of surface water and the tufa of natural dam, but were much lower than those of modified glutinous rice mortar. These results suggest that CaCO3 of newly-deposited tufa was likely mainly from surface water. The bacteria biodiversity indices (Chao1, PD, Shannon, and Simpson) were higher in the tufa of natural dam than in the newly-deposited tufa. Compared with the newly-deposited tufa on the top of repaired dam, the old natural tufa was richer in organic matter and more porous. Our results show that the SIc values of surface water were larger than zero, indicating that the water tended to precipitate CaCO3 and was beneficial for tufa dam conservation. The newly-formed tufa on the top of dam was likely from surface water according to the mineralogical characteristics, carbon and oxygen isotopes, and elemental compositions. The composition of newly-deposited tufa was affected by soil erosion. The old tufa of natural dam and the new tufa of restored dam showed differences in the physical structure and the trace elemental content. In addition, the organic matter content and the bacterial biodiversity were relatively lower in the new tufa, probably due to the fact that the natural restoration of vegetation and microorganism community may require a relatively longer time. Continuous monitoring is required to better understand the future evolution of the restored dam. -
Key words:
- tufa landscape /
- mineral composition /
- microorganisms /
- organic matter /
- carbon and oxygen isotopes
-
图 1 (a)地震破坏的火花海;(b)决口堤坝修复后的火花海;(c)修复堤坝全景图以及钙华和水样的采集点;(d-f)火花海堤坝上钙华样品采集点
N-修复堤坝上新沉积的钙华; O-天然堤坝上的老钙华
Figure 1. (a) Huohua Lake damaged by the earthquake; (b) Huohua Lake after the dam restoration; (c) Restored dam and sampling sites for tufa and surface water; (d-f) Tufa sampling sites on the Huohua Lake dam
N.newly deposited tufa on the restored dam, O.old tufa on the natural dam
表 1 钙华、改性糯米灰浆和地表水的样品信息及分析指标
Table 1. Analysis items of tufa, modified glutinous rice mortar, and surface water samples
样品类型及编号 SEM XRD 无机元素* 有机质 δ13C δ18O 细菌 决口堤坝上新沉积的钙华$\$ N-1 √ √ √ √ √ √ √ N-2 √ √ √ √ √ √ √ N-3 √ √ √ N-4 √ √ √ √ √ √ N-5 √ √ √ √ √ √ N-6~N-16 √ √ 天然堤坝上沉积的老钙华 O-1 √ √ √ √ √ √ √ O-2 √ √ √ √ √ √ √ O-3 √ √ √ 地表水样品# W-1~W-5 √ 堤坝修复材料 改性糯米灰浆 √ √ √ √ √ 注:@√ -样品测试项;*无机元素分析包括Ca 、Mg、Al、Si、P、S、K、Ca、Fe、Sr、Ba;$\$A型包括N-1、N-2、N-10、N-11;B型包括N-3~N-9、N-12;#每月在火花海两点监测一次 pH、温度、电导率、浊度、离子、SIc等。
Note: @√ -sample test item; *Inorganic element analysis includes Ca 、Mg、Al、Si、P、S、K、Ca、Fe、Sr、Ba;$\$A type includes N-1、N-2、N-10、N-11;B type includes N-3~N-9、N-12;#Monitor pH, temperature, conductivity, turbidity, ion, Sic, etc. at two sites of Huohua Lake once every month.表 2 2020年9月-2021年9月火花海堤坝上两个监测点的水化学*
Table 2. Water chemistry at two sites on the restored dam of Huohua Lake from September 2020 to September 2021*
单位 平均值 最小值 中值 最大值 标准差 样品数/n pH 无量纲 8.40 8.27 8.38 8.72 0.11 24 温度 ℃ 10.96 4.30 11.45 17.40 4.16 24 电导率 μS·cm−1 348.00 338.00 348.00 360.00 5.00 24 碱度 mg·L−1 150.00 129.00 150.00 174.00 10.00 24 浊度$\$ NTU 1.66 0.01 0.89 8.46 2.32 24 浊度& NTU 41.40 0.90 8.12 161.41 51.51 318 DOC mg·L−1 1.18 0.80 1.11 2.05 0.28 24 DO mg·L−1 8.87 7.51 8.67 10.50 0.97 24 SIC 无量纲 0.77 0.52 0.79 0.94 0.11 24 HCO$_3^{-}$ mg·L−1 183.77 157.38 183.00 212.28 12.55 24 ${\rm{SO}}_4^{2-}$ mg·L−1 28.21 16.38 28.44 32.56 3.37 24 NO$_3^{-}$ mg·L−1 1.82 0.98 1.84 2.89 0.33 24 NO$_2^{-}$ mg·L−1 0.00 0.00 0.00 0.03 0.01 24 Cl− mg·L−1 0.64 0.39 0.65 1.34 0.19 24 PO$_4^{3-}$ mg·L−1 0.01 0.00 0.00 0.12 0.02 24 Ca2+ mg·L−1 60.18 49.10 58.36 73.98 6.97 24 Mg2+ mg·L−1 13.57 8.65 14.03 15.89 1.96 24 Na+ mg·L−1 1.89 0.92 1.71 2.97 0.66 24 K+ mg·L−1 1.00 0.36 0.80 2.78 0.64 24 NH$_4^{+}$ mg·L−1 0.07 0.00 0.00 0.55 0.16 24 注:*因新冠疫情,2021年2月未能进行监测;$\$为火花海每月一次的监测,&为上游犀牛海的在线监测日均值。
Note: *Due to COVID-19 pandemic, there is no monitoring data in February, 2021;$\$ is the monitoring data in Huohua lake once per month, & indicates daily mean value of online monitoring for the upstream of Xiniu Sea.表 3 改性糯米灰浆和钙华样品的无机元素含量
Table 3. Inorganic element content of modified glutinous rice mortar and tufa
元素 单位 改性糯米
灰浆天然堤坝
钙华修复堤坝钙华 A型 B型 O-1 O-2 平均值 N-1 N-2 平均值 N-4 N-5 平均值 Ca % 26.6 36.1 36.4 36.3 34.9 35.9 35.4 36.3 36.1 36.2 Mg % 2.39 0.27 0.47 0.37 0.31 0.51 0.41 0.82 0.68 0.75 Mg/Ca − 0.090 0.007 0.013 0.010 0.009 0.014 0.012 0.023 0.019 0.021 Si % 2.03 0.01 0.82 0.42 2.13 1.69 1.91 0.65 0.40 0.52 Al % 0.38 0.16 0.20 0.18 0.55 0.34 0.44 0.14 0.06 0.10 Fe % 0.48 0.10 0.09 0.10 0.26 0.19 0.23 0.07 0.03 0.05 K % 0.22 0.18 0.08 0.13 0.16 0.12 0.14 0.06 0.03 0.05 S % 6.99 0.14 0.06 0.10 0.17 0.18 0.17 0.08 0.14 0.11 Ba ×10−6 53.9 28.0 39.2 33.6 71.9 60.5 66.2 46.7 42.4 44.5 Sr ×10−6 1 241 457 522 489 1 377 1 437 1 407 1 364 1 530 1 447 P ×10−6 99.1 14.5 58.2 36.4 79.1 45.5 62.3 54.5 36.4 45.5 表 4 天然堤坝和修复堤坝上钙华样品的细菌OTUs和多样性指数
Table 4. Bacterial OTUs and diversity indices of tufa samples collected from the natural and restored dams
样品编号 OTUs* Chao1 PD Shannon Simpson 钙华类型A 451 414.5 25.86 3.68 0.92 钙华类型B 427 505.5 32.49 3.78 0.90 天然堤坝钙华 1 099 763.3 45.24 5.09 0.98 注:*A、B型一共有607个OTUs,在天然与修复堤坝都存在的OTUs有514个。
Note:*There are total 607 OTUs in A and B types and 514 OTUs in both natural and restored dams. -
[1] 李华举, 廖长君, 姜殿强, 姜光辉. 钙华沉积机制的研究现状及展望[J]. 中国岩溶, 2006, 25(1):57-62. doi: 10.3969/j.issn.1001-4810.2006.01.011LI Huaju, LIAO Changjun, JIANG Dianqiang, JIANG Guanghui. The status quo and prospect of research on travertine precipitation mechanism[J]. Carsologica Sinica, 2006, 25(1):57-62. doi: 10.3969/j.issn.1001-4810.2006.01.011 [2] 杨俊义. 九寨沟黄龙地区景观钙华的特征与成因探讨[D]. 成都: 成都理工大学, 2004YANG Junyi. Characteristics and formation of the travertine in Jiuzhai-Huanglong Area[D]. Chengdu: Chengdu University of Technology, 2004. [3] 刘再华, 袁道先, 何师意, 曹建华, 游省易, W Dreybrodt, U Svensson, K Yoshimura, R Drysdale. 四川黄龙沟景区钙华的起源和形成机理研究[J]. 地球化学, 2003(1): 1-10LIU Zaihua, YUAN Daoxian, HE Shiyi, CAO Jianhua, YOU Shengyi, W.Dreybrodt, U.Svensson, K.Yoshimura, R.Drysdale. Origin and forming mechanisms of travertine at Huanglong Ravine of Sichuan[J]. Geochimica, 2003(1): 1-10. [4] 晏浩, 刘再华, 邓贵平, 孙海龙, 张金流. 四川九寨沟景区钙华起源初探[J]. 中国岩溶, 2013, 32(1):15-22. doi: 10.3969/j.issn.1001-4810.2013.01.003YAN Hao, LIU Zaihua, DENG Guiping, SUN Hailong, ZHANG Jinliu. Origin of the tufa at Jiuzhaigou scenic spot of Sichuan[J]. Carsologica Sinica, 2013, 32(1):15-22. doi: 10.3969/j.issn.1001-4810.2013.01.003 [5] 刘再华. 表生和内生钙华的气候环境指代意义研究进展[J]. 科学通报, 2014, 59(23):2229-2239. doi: 10.1360/N972013-00037LIU Zaihua. Research progress in paleoclimatic interpretations of tufa and travertine[J]. Chinese Science Bulletin, 2014, 59(23):2229-2239. doi: 10.1360/N972013-00037 [6] Ford T D, Pedley H M. A review of tufa and travertine deposits of the world[J]. Earth-Science Reviews, 1996, 41(3-4). [7] Pentecost A. Travertine[M]. Dordrecht: Springer, 2005. [8] 四川省地质矿产勘查开发局区域地质调查队. 九寨沟−黄龙核心景区地质环境调查专题报告[R]. 2006Regional Geological Survey Brigade of Sichuan Bureau of Geology and Mineral Resources. Special report on geological environment survey of Jiuzhaigou-Huanglong Core Scenic Spot[R]. 2006. [9] 乔雪, 肖瑶, 杜杰, 唐亚, 肖维阳, 郑歆蕾, 张梦. 九寨沟世界自然遗产核心景区钙华景观的研究进展与展望[J]. 地球与环境, 2022, 50(2): 202-218.QIAO Xue, XIAO Yao, DU Jie, TANG Ya, XIAO Weiyang, ZHENG Xinlei, ZHANG Meng. Tufa landscapes in the key scenic areas of the Jiuzhaigou Natural World Heritage Site: A critical review and future research needs[J]. Earth and Environment, 2022, 50(2): 202-218. [10] 乔雪, 江丽君, 唐亚, 熊峰, 杜杰, 肖维阳. 九寨沟大气氮、磷和硫沉降的通量及水环境意义[J]. 山地学报, 2014, 32(5):633-640.QIAO Xue, JIANG Lijun, TANG Ya, XIONG Feng, DU Jie, XIAO Weiyang. The fluxes and possible aquatic impacts of atomospheric nitrogen, sulfur and phosphorous deposition in Jiuzhaigou[J]. Mountain Research, 2014, 32(5):633-640. [11] 谢瑶, 杜杰, 裴向军, 邹瓒, 唐亚, 王燕, 王霞, 杨青霞, 乔雪. 基于突出普遍价值的世界自然遗产地生态恢复探索: 九寨沟火花海实践[J]. 自然与文化遗产研究, 2021, 6(6):107-117.XIE Yao, DU Jie, PEI Xiangjun, ZOU Zan, TANG Ya, WANG Yan, WANG Xia, YANG Qingxia, QIAO Xue. Ecological rehabilitation of Natural World Heritage based on outstanding universal value: A case study on Jiuzhaigou's Sparkling lake[J]. Study on Natural and Cultural Heritage, 2021, 6(6):107-117. [12] 范明明, 裴向军, 杜杰, 肖维阳, 周立宏, 杨华阳. 改性糯米灰浆的室内研究及在九寨沟钙华地质裂缝修复中的应用[J]. 水文地质工程地质, 2020, 47(4):183-190.FAN Mingming, PEI Xiangjun, DU Jie, XIAO Weiyang, ZHOU Lihong, YANG Huayang. A laboratory study of modified glutinous rice mortar and its application to repair travertine geological cracks in Jiuzhaigou[J]. Hydrogeology & Engineering Geology, 2020, 47(4):183-190. [13] 范明明, 裴向军, 杜杰, 肖维阳, 周立宏. 改性糯米灰浆基本物理力学特性及微观结构试验研究[J]. 硅酸盐通报, 2020, 39(5):1559-1565. doi: 10.16552/j.cnki.issn1001-1625.2020.05.029FAN Mingming, PEI Xiangjun, DU Jie, XIAO Weiyang, ZHOU Lihong. Experimental study on basic physical and mechanical properties and microstructure of modified glutinous rice mortar[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(5):1559-1565. doi: 10.16552/j.cnki.issn1001-1625.2020.05.029 [14] 杨富巍, 张秉坚, 曾余瑶, 潘昌初, 贺翔. 传统糯米灰浆科学原理及其现代应用的探索性研究[J]. 故宫博物院院刊, 2008, 139(5): 105-114, 159.YANG Fuwei, ZHANG Bingjian, ZENG Yuyao, PAN Changchu, HE Xiang. Exploratory research on the scientific nature and application of traditional sticky rice mortar[J]. Palace Museum Journal, 2008, 139(5): 105-114, 159. [15] 张金流, 刘再华. 世界遗产—四川黄龙钙华景观研究进展与展望[J]. 地球与环境, 2010, 38:79-84.ZHANG Jinliu, LIU Zaihua. Progress and future prospect in research on the travertine landscape at Huanglong, Sichuan—A World's Heritage Site[J]. Earth and Environment, 2010, 38:79-84. [16] Liu Lixia. Factors affecting tufa degradation in Jiuzhaigou National Nature Reserve, Sichuan, China[J]. Water, 2017, 9: 702. [17] Qiao Xue, Du Jie, Lugli Stefano, Ren Jinhai, Xiao Weiyang, Chen Pan, Tang Ya. Are climate warming and enhanced atmospheric deposition of sulfur and nitrogen threatening tufa landscapes in Jiuzhaigou National Nature Reserve, Sichuan, China?[J]. Science of the Total Environment, 2016, 562:724-731. doi: 10.1016/j.scitotenv.2016.04.073 [18] 党政, 任锦海, 安超, 代群威, 董发勤, 邓远明, 杨青霞, 卓曼他. 7.0级地震对九寨沟核心景观和水化学影响[J]. 中国岩溶, 2019, 38(2):186-192.DANG Zheng, REN Jinhai, AN Chao, DAI Qunwei, DONG Faqin, DENG Yuanming, YANG Qingxia, ZHUO Manta. Effect of Ms 7.0 earthquake on travertine landscapes and hydrochemistry of Jiuzhaigou core scenic spots[J]. Carsologica Sinica, 2019, 38(2):186-192. [19] 林秀丽. 九寨沟湖泊成因及动态特征研究[D]. 成都: 成都理工大学, 2002LIN Xiuli. Study on the origin and dynamic characteristics of Jiuzhaigou Valley Scenic and Historic Interest Area Lake[D]. Chengdu: Chengdu University of Technology, 2002 [20] 苏君博. 九寨沟水文地球化学特征及对景观演化影响研究[D]. 成都: 成都理工大学, 2005SU Junbo. Hydrogeochemistry and its influence on evolution at Jiuzhaigou Valley[D]. Chengdu: Chengdu University of Technology, 2005. [21] Parkhurst D L, Appelo C A J. "User's guide to phreeqc (version 2)—A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations" US geological survey water-resources investigation report[R]. 1999. [22] Stumm W. Aquatic chemistry: Chemical equilibria and rates in natural waters[M]. New York: Wiley, 1995. [23] 李刚, 董发勤, 代群威, 党政, 赵玉连. 黄龙钙华有机碳测定方法的对比研究[J]. 岩石矿物学杂志, 2018, 37(1):152-160. doi: 10.3969/j.issn.1000-6524.2018.01.013LI Gang, DONG Faqin, DAI Qunwei, DANG Zheng, ZHAO Yulian. A comparative study of the method for determining organic carbon of travertine in Huanglong[J]. Acta Petrologica et Mineralogica, 2018, 37(1):152-160. doi: 10.3969/j.issn.1000-6524.2018.01.013 [24] Beraldi-Campesi H, Arenas-Abad C, Garcia-Pichel F, Arellano-Aguilar O, Auque L, Vazquez-Urbez M, Sancho C, Osacar C, Ruiz-Velasco S. Benthic bacterial diversity from freshwater tufas of the Iberian Range (Spain)[J]. FEMS Microbiology Ecology, 2012, 80(2):363-379. doi: 10.1111/j.1574-6941.2012.01303.x [25] DeMott L M, Napieralski S A, Junium C K, Teece M, Scholz C A. Microbially influenced lacustrine carbonates: A comparison of Late Quaternary Lahontan tufa and modern thrombolite from Fayetteville Green Lake, Ny[J]. Geobiology, 2020, 18(1):93-112. doi: 10.1111/gbi.12367 [26] 董发勤, 代群威, 饶瀚云, 王富东, 赵学钦, 蒋忠诚, 张强, 李博文, Alexander I Malov, Enrico Capezzuoli, Augusto Auler. 黄龙与黄石钙华微生物沉积作用比较研究[J]. 中国岩溶, 2021, 40(2):264-272.DONG Faqin, DAI Qunwei, RAO Hanyun, WANG Fudong, ZHAO Xueqin, JIANG Zhongcheng, ZHANG Qiang, LI Bowen, Alexander I. Malov, Enrico Capezzuoli, Augusto Auler. Comparative study on microbial deposition of travertine in Huanglong Scenic Area and Yellowstone National Park[J]. Carsologica Sinica, 2021, 40(2):264-272. [27] Liu Zaihua, Sun Hailong, Lu Baoying, Liu Xiangling, Ye Wenbing, Zeng Cheng. Wet-dry seasonal variations of hydrochemistry and carbonate precipitation rates in a travertine-depositing canal at Baishuitai, Yunnan, SW China: Implications for the formation of biannual laminae in travertine and for climatic reconstruction[J]. Chemical Geology, 2010, 273(3-4):258-266. doi: 10.1016/j.chemgeo.2010.02.027 [28] Berner R A. The role of magnesium in the crystal growth of calcite and aragonite from sea water[J]. Geochimica et Cosmochimica Acta, 1975, 39(4):489-504. doi: 10.1016/0016-7037(75)90102-7 [29] Lebron I, Suarez D L. Calcite nucleation and precipitation kinetics as affected by dissolved organic matter at 25 degrees C and pH >7.5[J]. Geochimica et Cosmochimica Acta, 1996, 60(15):2765-2776. doi: 10.1016/0016-7037(96)00137-8 [30] Reddy M M. Crystallization of calcium-carbonate in presence of trace concentrations of phosphorus-containing anions: 1. Inhibition by phosphate and glycerophosphate ions at pH 8.8 and 25 ℃[J]. Journal of Crystal Growth, 1977, 41(2):287-295. doi: 10.1016/0022-0248(77)90057-4 [31] Chen J A, Zhang D D, Wang S J, Xiao T F, Huang R G. Factors controlling tufa deposition in natural waters at waterfall sites[J]. Sedimentary Geology, 2004, 166(3-4):353-366. doi: 10.1016/j.sedgeo.2004.02.003 [32] Wang Dongpo, Zhou Ye, Pei Xiangjun, Ouyang Chaojun, Du Jie, Gianvito Scaringi. Dam-break dynamics at Huohua lake following the 2017 Mw 6.5 Jiuzhaigou earthquake in Sichuan, China[J]. Engineering Geology, 2021, 289: 106145-106156. [33] 周绪伦. 地质环境恶化对九寨沟景观的影响[J]. 中国岩溶, 1998, 17(3): 301-310ZHOU Xulun. Influence of geological environmental deterioration on Jiuzhaigou Ravine Landscape[J]. Carsologica Sinica, 1998, 17(3): 301-310. [34] 党政. 九寨沟核心遗产点震后应急监测及修复可行性研究[D]. 绵阳: 西南科技大学, 2019DANG Zheng. Study on emergency monitoring and restoration of Jiuzhaigou Core Heritage sites after earthquake[D]. Mianyang: Southwest University of Science and Technology, 2019. [35] 刘再华, 张美良, 游省易, 李强, 孙海龙, 汪进良, 吴孔运. 碳酸钙沉积溪流中地球化学指标的空间分布和日变化特征: 以云南白水台为例[J]. 地球化学, 2004, 33(3): 269-278LIU Zaihua, ZHANG Meiliang, YOU Shengyi, LI Qiang, SUN Hailong, WANG Jinliang, WU Kongyun. Spatial and diurnal variations of geochemical indicators in a calcite-precipitating stream: Case study of Baishuitai, Yunnan[J]. Geochimica, 2004, 33(3): 269-278. [36] 乔雪. 世界自然遗产地九寨沟对区域大气污染的响应研究[D]. 成都: 四川大学, 2012QIAO Xue. The impacts of regional air pollution on the World Natural Heritage site, Jiuzhaigou National Nature Reserve, Southwestern China[D]. Chengdu: Sichuan University, 2012. [37] 曹俊, 郑小敏, 宋伟, 刘明, 袁茂珂. 8·8地震后九寨沟景区地质灾害分布及其对九寨沟核心景观影响[J]. 四川地质学报, 2021, 41(Supp.1):148-153. doi: 10.3969/j.issn.1006-0995.2021.S1.025CAO Jun, ZHENG Xiaomin, SONG Wei, LIU Ming, YUAN Maoke. Distribution of geohazards in the Jiuzhaigou Valley Scenic Spots and its impact on core landscape of scenic spots after Jiuzhaigou earthquake on August 8, 2017[J]. Acta Geologica Sichuan, 2021, 41(Supp.1):148-153. doi: 10.3969/j.issn.1006-0995.2021.S1.025 [38] 张梦. 山地灾害对四川休闲旅游可持续发展的影响研究[D]. 成都: 四川大学, 2019ZHANG Meng. Research on the impact of mountain disasters on the sustainable development of leisure tourism in Sichuan[D]. Chengdu: Sichuan University, 2019 [39] 四川省人民政府. “8.8”九寨沟地震有关情况汇报[R]. 2017 [40] Vitousek P M, Gosz J R, Grier C C, Melillo J M, Reiners W A. A comparative analysis of potential nitrification and nitrate mobility in forest ecosystems[J]. Ecological Monographs, 1982, 52(2):155-177. doi: 10.2307/1942609 [41] Sajdak M, Siwek J P, Wasak-Sek K, Kosmowska A, Stanczyk T, Malek S, Zelazny M, Wozniak G, Jelonkiewicz L, Zelazny M. Stream water chemistry changes in response to deforestation of variable origin (case study from the Carpathians, Southern Poland)[J]. Catena, 2021, 202:105237. [42] 杨磊, 代群威, 邓远明, 郭军, 陈玉婷, 王岩. 九-黄景区钙华碳氮磷沉积特征[J]. 化工矿物与加工, 2022, 51(2):47-50.YANG Lei, DAI Qunwei, DENG Yuanming, GUO Jun, CHEN Yuting, WANG Yan. Sedimentary characteristics of elements-carbon, nitrogen and phosphorus in travertine in Jiu-Huang Scenic Area[J]. Industrial Minerals & Processing, 2022, 51(2):47-50. [43] Kano A, Kawai T, Matsuoka J, Ihara T. High-resolution records of rainfall events from clay bands in tufa[J]. Geology, 2004, 32(9): 793-796. [44] 陈盼. 九寨沟流域水化学分析及N、S来源辨别[D]. 成都: 四川大学, 2013CHEN Pan. Water chemical analysis and identification of N and S sources in Jiuzhaigou Valley[D]. Chengdu: Sichuan University, 2013. [45] 孟昊, 刘绍从, 孙书军. 石膏及石膏制品中锶含量测定方法的研究[J]. 无机盐工业, 2010, 42(1):60-62. doi: 10.3969/j.issn.1006-4990.2010.04.020MENG Hao, LIU Shaocong, SUN Shujun. Study on determination of strontium content in gypsum and gypsum products[J]. Inorganic Chemicals Industry, 2010, 42(1):60-62. doi: 10.3969/j.issn.1006-4990.2010.04.020 [46] 许伟生, 姚志健, 韩蔚田. 沉积硬石膏岩中铜、铅、锌、锶、钡的含量特征及其活化、迁移的实验研究[J]. 现代地质, 1991(1): 79-90XU Weisheng, YAO Zhijian, HAN Weitian. A study of the content characterstic of copper, lead, zinc, strotium and barium in sedimentary anhydrite and their activation and migration[J]. Geoscience, 1991(1): 79-90. [47] Huang Y M, Fairchild I J. Partitioning of Sr2+ and Mg2+ into calcite under karst-analogue experimental conditions[J]. Geochimica et Cosmochimica Acta, 2001, 65(1):47-62. doi: 10.1016/S0016-7037(00)00513-5 [48] Lorens R B. Sr, Cd, Mn and Co distribution coefficients in calcite as a function of calcite precipitation rate[J]. Geochimica et Cosmochimica Acta, 1981, 45(4):553-61. doi: 10.1016/0016-7037(81)90188-5 [49] 杜磊, 文华国, 罗连超, 董俊玲, 温龙斌, 游雅贤, 王启宇. 陆地热泉钙华: 重建古气候历史信息重要载体[J]. 中国地质, 2022, 49(3): 802-821DU Lei, WEN Huaguo, LUO Lianchao, DONG Junling, WEN Longbin, YOU Yaxian, WANG Qiyu. Terrestrial hot-spring travertine: An important window into paleoclimate reconstruction[J]. Geology in China, 2022, 49(3): 802-821.