Changes and driving factors of psychrophilic diatom community structure of algal mats in Huanglong Scenic Area
-
摘要: 硅藻群落对环境变化十分敏感,是自然河流水质变化的指示生物。为了解黄龙风景区藻席及藻席嗜冷硅藻群落结构与环境变量的关系,对景区内8个典型景点进行水样和藻席的采集并分析。结果表明,黄龙风景区藻席是以钙华作为基底,丝状藻作为骨架,栖息着大量硅藻的高寒岩溶微生态系统,共鉴定出25属72种硅藻,其中优势种13种,以桥弯藻属(Cymbella)为主。通过冗余分析发现,水温(F = 2.8,P = 0.02)和溶解硅(F = 2.3,P = 0.04)是影响黄龙风景区藻席嗜冷硅藻群落结构特征的主要驱动因子,TN是潜在驱动因子。硅藻可以为高寒岩溶区地表水监测提供重要的补充信息,建立完整的硅藻物种数据库,有利于区域水质监测。Abstract: Huanglong Scenic Area, located in Songpan county, Sichuan Province, China, is listed as the World Natural Heritage, and is covered with travertine landscape at an altitude of about 3,145-3,588 m. With the plateau temperate sub-frigid monsoon climate, the melt water from snow mountains, the atmospheric precipitation and the underground karst water are the main water sources of Huanglong Scenic Area. In addition, covered by ice and snow at extremely low temperatures, Huanglong Scenic Area has a half-year-long freezing period with an annual average temperature of only 1.1℃. A large number of algae, mainly psychrophilic diatoms, grow in the water coverage of the travertine deposition area in the scenic area. The diatom community, an indicator of water quality change, is very sensitive to environmental changes in natural rivers. At present, there are still few studies related to this alpine karst area. In order to explore the structure of algal mats as well as the relationship between the community structure of psychrophilic diatoms in algal mats and environmental variables in Huanglong Scenic Area, we analyzed water samples and algae mats from 8 typical scenic spots in October 2021. The water temperature (T), pH and conductivity (Ec) as well as the concentrations of ${\rm{HCO}}_3^{-}$ and ${\rm{CO}}_3^{2-}$ of the sampling points were measured on site. At the same time, the geographic data of the sampling points were recorded. The concentrations of dissolved silicon (Dsi), cations (Ca2+, Mg2+, Al3+, K+), anions (Cl−, ${\rm{NO}}_3^{-}$, ${\rm{SO}}_4^{2-}$), TN and TP were determined in the laboratory. The structural compositions of the algal mats and the characteristics of the diatom community structure were analyzed. The main driving factors affecting the water of Huanglong Scenic Area were judged by Principal Component Analysis (PCA), and one of the two environmental variables with greater correlation was eliminated by Spearman Correlation Analysis. After Detrend Correspondence Analysis (DCA) of diatom species abundance in algal mats, Redundancy Analysis (RDA) was selected to analyze the relationship between environmental variables and diatom communities. The results show that the concentrations of Ca2+ and ${\rm{HCO}}_3^{-}$ in the waterbody is high, and water mainly belongs to the HCO3-Ca type, followed by the HCO3-Ca-Mg type. The algal mats are mainly composed of travertine particles, filamentous algae and diatoms. The study area is an alpine karst micro-ecosystem with travertine as the base and filamentous algae as the skeleton, inhabiting a large number of diatoms. 72 species of diatoms from 25 genera are identified from algal mats, among which 16 species have a total relative abundance greater than 2%. The genus Cymbella (14 species), Diatoma. (8 species), Cymbopleura (7 species), Caloneis (4 species) and Synedra (4 species) contribute the most. There are 13 dominant species of diatoms in Huanglong Scenic Area. 4 species from the genus Cymbella have absolute advantage (Ytotal = 0.132) at the genus level. At the species level, there is little difference in the dominance index of each dominant species (0.023≤Y≤0.053), among which the dominance index of Diatoma vulgaris is the largest, and that of Cymbopleura linearis is the smallest. In terms of the diversity index, there are some differences in the Shannon-Weiner index, Simpson diversity index and Pielou index at various sampling points. As the altitude decreases, the diversity index from #1 to #8 fluctuates, rising and then falling repeatedly. This may be related to the water circulation system of Huanglong Scenic Area. The analyses of the relationship between environmental variables and diatom communities by RDA show that the eigenvalues of the first two axes are 0.43 and 0.24, respectively, explaining 67.68% of the cumulative variance of data about diatom community species. The correlation between environmental variables and diatom community structure in algal mats is T>DSi>pCO2>TN> Mg2+>Ca2+>altitude, and the three environmental variables of Cl−, ${\rm{NO}}_3^{-}$ and ${\rm{SO}}_4^{2-}$ are excluded because of the low correlations. The significance test of the influence degree of each factor by Monte Carlo test finds that T (F=2.8, P=0.02) and DSi (F=2.3, P=0.04) are environmental variables that significantly affect the algae community structure of the algal mats. In addition, although TN is not the most significant driving factor affecting diatoms of the algal mats in Huanglong Scenic Area, there is a trend of eutrophication in the waterbody of the scenic spot, which will affect the algal community structure, so TN may be a potential driving factor. The above conclusions can provide a basis for the establishment of the diatom species bank in Huanglong Scenic Area and the monitoring and management of the river water environment in the plateau karst area.
-
Key words:
- Huanglong Scenic Area /
- algal mats /
- diatoms /
- community structure /
- driving factors /
- environmental variables
-
图 2 藻席结构和组成解析
a-b. 使用SEM-EDS分析藻席微观结构; c. 使用元素分析仪分析不同颜色藻席的C,H,N,S元素含量; d. 使用FTIR分析不同颜色藻席的官能团或化学键; e. 使用XRD分析藻席中的矿相成分。
Figure 2. Structure and composition analysis of algal mats
a-b. the analysis of the microstructure of algal mats by SEM-EDS; c. the analysis of the content of C, H, N and S elements of different colors of algal mats by elemental analyzer; d. the analysis of the functional groups or chemical bonds of different colors of algal mats by FTIR; e. the analysis of the mineral phase components of algal mats by XRD
表 1 黄龙风景区采样点地理信息和水样物理化学参数
Table 1. Geographic information of sampling points and physicochemical parameters of water samples
编号 #1 #2 #3 #4 #5 #6 #7 #8 变异系数/% 采样点 转花泉 五彩池 争艳彩池 盆景池 潋滟湖 金沙铺地 飞瀑流辉 迎宾池 n.a. 海拔/m 3 588.00 3 574.00 3 432.00 3 328.00 3 297.00 3 239.00 3 226.00 3 220.00 n.a. 经度 103°49′28″E 103°49′58″E 103°49′51″E 103°49′44″E 103°49′37″E 103°49′29″E 103°49′36″E 103°49′25″E n.a. 纬度 32°43′28″N 32°43′30″N 32°44′23″N 32°44′47″N 32°44′50″N 32°45′1″N 32°45′2″N 32°45′4″N n.a. T/ ℃ 7.20 6.50 7.70 7.60 7.30 9.60 7.60 8.30 11.82 pH 6.78 7.50 8.10 8.44 8.57 8.40 8.49 8.50 7.87 Ec/us 1 116.00 1 075.00 627.00 523.00 507.00 515.00 510.00 501.00 39.43 pCO2/Pa 0.15 0.01 0.00 0.00 0.00 0.00 0.00 0.00 249.54 ${\rm{CO}}_3^{2-}$/mg·L−1 0.00 0.00 0.00 15.005 0.00 0.00 0.00 30.01 198.41 ${\rm{HCO}}_3^{-}$/mg·L−1 1 006.83 732.24 366.12 274.59 335.61 282.22 320.36 221.20 62.63 TN/mg·L−1 0.02 0.04 0.19 0.11 0.15 0.14 0.12 0.26 59.94 TP/mg·L−1 0.05 0.05 0.13 0.05 0.04 0.04 0.04 0.03 58.78 Ca2+ /mg·L−1 227.80 190.60 122.30 100.90 94.30 135.30 84.90 107.80 38.03 Al3+ /mg·L−1 0.06 0.06 0.04 0.03 0.03 0.01 0.03 0.03 46.48 K+/mg·L−1 0.56 0.92 0.37 0.37 0.42 0.35 0.40 0.37 41.19 Mg2+/mg·L−1 23.10 22.39 15.16 15.33 15.63 15.57 15.96 15.76 19.22 DSi/mg·L−1 2.69 2.74 2.00 1.96 1.97 1.99 1.93 1.92 16.28 Cl−/mg·L−1 0.74 1.08 0.90 0.78 0.91 0.98 0.70 0.83 14.75 ${\rm{NO}}_3^{-}$/mg·L−1 0.27 0.39 0.88 1.26 1.26 1.45 1.21 1.29 44.43 ${\rm{SO}}_4^{2-}$/mg·L−1 57.44 41.14 53.94 48.52 47.96 54.75 46.93 47.24 10.61 表 2 黄龙风景区藻席硅藻种类名录
Table 2. List of diatom species in the algal mats of Huanglong Scenic and Historic Interest Area
属 种 属 种 曲壳藻属(Achnanthes) 线型曲壳藻 A. orenulata 等片藻属(Diatoma) 念珠等片藻 D. moniliformis 披针形曲壳藻 A. lanceolata 冬生等片藻 D. hiemale 毛利曲壳藻 A. mauiensis 巨大等片藻 D. maximum 曲丝藻属(Achnanthidium) *极小曲丝藻 A. minutissimum 普通等片藻 D. vulgare 美壁藻属(Caloneis) 高山美壁藻 C. alpestris 中型等片藻 D. mesodon 偏肿美壁藻 C. ventricosa 纤细等片藻 D. tenue 舒曼美壁藻 C. schumanniana 双壁藻属(Diploneis) 椭圆双壁藻 D. elliptica 美丽美壁藻 C. pulchra 卵圆双壁藻长圆变种
D. ovalis var. oblongella卵形藻属(Cocconeis) 弯曲卵形藻 C. flexella 眼斑双壁藻 D. oculata 扁圆卵形藻 C. placentula 内丝藻属(Encyonema) 西里西亚内丝藻 E. silesiacum 小环藻属(Cyclotella) 可辨小环藻 C. distinguenda 簇生内丝藻 E. cespitosum 梅尼小环藻 C. meneghiniana 纤细内丝藻 E. gracile 波缘藻属(Cymatopleura) *草鞋形波缘藻 C. solea 内丝藻属(Encyonopsis) 斯托特拟内丝藻 E. stodderi 桥弯藻属(Cymbella) 新箱型桥弯藻 C. neocistula 赛萨特拟内丝藻 E. cesatii 背弯桥弯藻 C. dorsenotata 脆杆藻属(Fragilaria) 两头脆杆藻 F. biceps 近轴桥弯藻 C. proxima 狭辐节脆杆藻 F. leptostauron 桥弯藻属(Cymbella) 近淡黄桥弯藻 C. subhelvetica 异极藻属(Gomphonema) 短纹异极藻 G. abbreniatum 近平截桥弯藻 C. subtruncata *窄异极藻 G. productum *新月形桥弯藻 C. cymbiformis 直链藻属(Melosira) 变异直链藻 M. varians *箱型桥弯藻 C. cistula 颗粒直链藻极狭变种
M. granulate var.angutissima斯图施拜桥弯藻 C. stuxbergii 舟型藻属(Navicula) 隐头舟形藻 N. cryptocephala 膨胀桥弯藻 C. tumida 簇生舟形藻 N. gregaria 平滑桥弯藻 C. laevis 长篦藻属(Neidium) *二哇长篦藻 N. bisulcatum 微细桥弯藻 C. parva 优美长篦藻 N. mirabile *纤细桥弯藻 C. gracillis 菱形藻属(Nitzschia) 细长菱形藻 N. gracilis *近北极桥弯藻 C. subarctica 细端菱形藻 N. dissipata 近缘桥弯藻 C. affinis 羽纹藻属(Pinnularia) 中型羽纹藻 P. intermedia 弯肋藻属(Cymbopleura) *奥地利弯肋藻 C. austriaca 弯楔藻属(Rhoicosphenia) 弯形弯楔藻 R. curvata 库尔伯斯弯肋藻 C. kuelbsii 辐节藻属(Stauroneis) *沼泽辐节藻 S. palustris 矩圆弯肋藻 C. oblongata 十字脆杆藻属(Staurosira) 凸腹十字脆杆藻 S. venter 杂种弯肋藻 C. hybrida 针杆藻属(Synedra) 肘状针杆藻 S. ulna *窄弯肋藻 C. angustata 双头针杆藻 S. amphicephala 双头弯肋藻 C. amphicephala 尖针杆藻 S. acus *线形弯肋藻 C. linearis 平片针杆藻 S. tabulata 等片藻属(Diatoma) D. hyemalis 平板藻属(Tabellaria) 窗格平板藻 T. fenestrata *D. vulgaris 四环藻属(Tetracyclus) 湖沼四环藻 T. lacustris 注:*代表优势种。Note: * represents dominant species. 表 3 黄龙风景区藻席硅藻优势种
Table 3. Dominant species of diatom in Huanglong Scenic and Historic Interest Area
属 种 优势度(Y) 曲丝藻属(Achnanthidium) 极小曲丝藻 A. minutissimum 0.039 波缘藻属(Cymatopleura) 草鞋形波缘藻 C. solea 0.045 桥弯藻属(Cymbella) 箱型桥弯藻 C. cistula 0.027 新月形桥弯藻 C. cymbiformis 0.030 近北极桥弯藻 C. subarctica 0.032 纤细桥弯藻 C. gracillis 0.043 弯肋藻属(Cymbopleura) 线形弯肋藻 C. linearis 0.023 窄弯肋藻 C. angustata 0.025 奥地利弯肋藻 C. austriaca 0.028 等片藻属(Diatoma) D. vulgaris 0.053 异极藻属(Gomphonema) 窄异极藻 G. productum 0.035 长篦藻属(Neidium) 二哇长篦藻 N. bisulcatum 0.048 辐节藻属(Stauroneis) 沼泽辐节藻 S. palustris 0.026 -
[1] 傅华龙, 韩福山, 周绪纶, 刘子福. 四川黄龙钙华景观中的藻类植物[J]. 资源开发与保护, 1989(3):40-41, 44.FU Hualong, HAN Fushan, ZHOU Xulun, LIU Zifu. Algae in the travertine landscape of Huanglong, Sichuan[J]. Resource Development and Protection, 1989(3):40-41, 44. [2] 汪智军, 殷建军, 郝秀东, 王培, 张强, 蓝高勇, 张清明. 基于微岩相分析的藻类在钙华沉积中的作用研究: 以四川黄龙为例[J]. 中国岩溶, 2021, 40(1):44-54.WANG Zhijun, YIN Jianjun, HAO Xiudong, WANG Pei, ZHANG Qiang, LAN Gaoyong, ZHANG Qingming. Role of algae in travertine deposition revealed by microscale observations: A case study of Huanglong, Sichuan, China[J]. Carsologica Sinica, 2021, 40(1):44-54. [3] Lavoie I, Campeau S, Zugic-Drakulic N, Winter J G, Fortin C. Using diatoms to monitor stream biological integrity in Eastern Canada: An overview of 10 years of index development and ongoing challenges[J]. Science of the Total Environment, 2014, 475:187-200. doi: 10.1016/j.scitotenv.2013.04.092 [4] Ramkumar M, Kumaraswamy K, Mohanraj R. Environmental management of river basin ecosystems[M]. Berlin: Springer, 2015. [5] Wang HJ, Yan H, Liu ZH. Contrasts in variations of the carbon and oxygen isotopic composition of travertines formed in pools and a ramp stream at Huanglong Ravine, China: Implications for paleoclimatic interpretations[J]. Geochimica et Cosmochimica Acta, 2014, 125:34-48. doi: 10.1016/j.gca.2013.10.001 [6] Wang HJ, Liu ZH, Zhang JL, Sun HL, An DJ, Fu RX, Wang XP. Spatial and temporal hydrochemical variations of the spring-fed travertine-depositing stream in the Huanglong Ravine, Sichuan, SW China[J]. Acta Carsologica 2010, 39(2): 247-259. [7] 雷婷婷, 陈良仲, 陈绍兴, 沈亮. 微生物对低温极端环境适应性的研究进展[J]. 微生物学报, 2022, 62(6):2150-2164.LEI Tingting, CHEN Liangzhong, CHEN Shaoxing, SHEN Liang. Progress in research on the adaptability of microorganisms to extremely cold environments[J]. Acta Microbiologica Sinica, 2022, 62(6):2150-2164. [8] Stanish L F, Nemergut D R, Mcknight D M. Hydrologic processes influence diatom community composition in Dry Valley streams[J]. Journal of the North American Benthological Society, 2011, 30(4):1057-1073. doi: 10.1899/11-008.1 [9] Frantz C, Petryshyn V, Corsetti F. Grain trapping by filamentous cyanobacterial and algal mats: Implications for stromatolite microfabrics through time[J]. Geobiology, 2015, 13(5):409-423. doi: 10.1111/gbi.12145 [10] Gushulak C A, Laird K R, Bennett J R, Cumming B F. Water depth is a strong driver of intra-lake diatom distributions in a small boreal lake[J]. Journal of Paleolimnology, 2017, 58(2):231-241. doi: 10.1007/s10933-017-9974-y [11] Bojorge-García M, Carmona J, Ramírez R. Species richness and diversity of benthic diatom communities in tropical mountain streams of Mexico[J]. Inland Waters, 2014, 4(3):279-292. doi: 10.5268/IW-4.3.568 [12] Zhang Yun, Peng Chengrong, Wang Jun, Huang Shun, Hu Yao, Zhang Jinli, Li Dunhai. Temperature and silicate are significant driving factors for the seasonal shift of dominant diatoms in a drinking water reservoir[J]. Journal of Oceanology and Limnology, 2019, 37(2):568-579. doi: 10.1007/s00343-019-8040-1 [13] Bae H, Park J, Ahn H, Khim J S. Shift in benthic diatom community structure and salinity thresholds in a hypersaline environment of solar saltern, Korea[J]. Algae, 2020, 35(4):361-373. doi: 10.4490/algae.2020.35.12.4 [14] Fouke B W. Hot-spring systems geobiology: Abiotic and biotic influences on travertine formation at Mammoth Hot Springs, Yellowstone National Park, USA[J]. Sedimentology, 2011, 58(1):170-219. doi: 10.1111/j.1365-3091.2010.01209.x [15] 郝卓, 高扬, 张晴雯, 熊佰炼. 典型喀斯特流域旱雨季交替下溶解硅的输送特征[J]. 生态学报, 2021, 41(24):9681-9690.HAO Zhuo, GAO Yang, ZHANG Qingwen, XIONG Bailian. Characteristics of dissolved silicon transport in typical karst watershed in alternating wet and dry season[J]. Acta Ecologica Sinica, 2021, 41(24):9681-9690. [16] 杨诗笛, 吴攀, 曹星星, 刘闪, 廖家豪. 岩溶湿地表层水体CO2分压时空分布特征及其扩散通量[J]. 湖泊科学, 2021, 33(3):854-865. doi: 10.18307/2021.0318YANG Shidi, WU Pan, CAO Xingxing, LIU Shan, LIAO Jiahao. Spatiotemporal distribution of carbon dioxide partial pressure and its diffusion flux in surface water of karst wetland[J]. Journal of Lake Sciences, 2021, 33(3):854-865. doi: 10.18307/2021.0318 [17] 张纪晖, 周成旭, 李冬玲, 林忠洲, 邱悦, 沙龙滨. 福建敖江口表层沉积硅藻空间分布特征[J]. 热带亚热带植物学报, 2021, 29(6):597-604.ZHANG Jihui, ZHOU Chengxu, LI Dongling, LIN Zhongzhou, QIU Yue, SHA Longbin. Diatom distribution in surface sediments of Aojiang river estuary in Fujian, China[J]. Journal of Tropical and Subtropical Botany, 2021, 29(6):597-604. [18] Round F E, Crawford R M, Mann D G. Diatoms: Biology and morphology of the genera[M]. Cambrige: Cambridge University Press, 1990. [19] 胡鸿钧, 魏印心. 中国淡水藻类: 系统、分类及生态[M]. 北京: 科学出版社, 2006.HU Hongjun, WEI Yinxin. The freshwater algae of China: Systematics, taxonomy and ecology[M]. Beijing: Science Press, 2006. [20] 施之新. 中国淡水藻志: 第十六卷, 硅藻门, 桥弯藻科[M]. 北京: 科学出版社, 2013.SHI Zhixin. Flora Algarum Sinicarum Aquae Dulcis: Timus 16, Bacillariophyta, Cymbellaceae[M]. Beijing: Science Press, 2013. [21] 李家英, 齐雨藻. 中国淡水藻志: 第十四卷, 硅藻门, 舟形藻科(Ⅰ)[M]. 北京: 科学出版社, 2010.LI Jiaying, QI Yuzao. Flora Algarum Sinicarum Aquae Dulcis: Timus 14, Bacillariophyta, Naviculaceae (I)[M]. Beijing: Science Press, 2010. [22] 李家英, 齐雨藻. 中国淡水藻志: 第十九卷, 硅藻门, 舟形藻科(Ⅱ)[M]. 北京: 科学出版社, 2014.LI Jiaying, QI Yuzao. Flora Algarum Sinicarum Aquae Dulcis: Timus 19, Bacillariophyta, Naviculaceae (Ⅱ)[M]. Beijing: Science Press, 2014. [23] Spaulding S A, Potapova M G, Bishop I W, Lee S S, Gasperak T S, Jovanoska E, Furey P C, Edlund M B. Diatoms. org: Supporting taxonomists, connecting communities[J]. Diatom Research, 2021, 36(4):291-304. doi: 10.1080/0269249X.2021.2006790 [24] 吴瑞, 高亚辉, 蓝东兆, 兰彬斌, 方琦. 象山港底栖硅藻群落结构特征[J]. 热带作物学报, 2016, 37(3):439-445.WU Rui, GAO Yahui, LAN Dongzhao, LAN Binbin, FANG Qi. The benthic diatom community of Xiangshan bay[J]. Chinese Journal of Tropical Crops, 2016, 37(3):439-445. [25] 谢纯林, 王涛, 胡俊杰, 阎春兰, 裴国凤. 赤水河流域秋季底栖硅藻群落结构特征及水质评价[J]. 水生态学杂志, 2022, 43(6):43-50.XIE Chunlin, WANG Tao, HU Junjie, YAN Chunlan, PEI Guofeng. Autumn benthic diatom community structure and water quality assessment in the Chishui river basin[J]. Journal of Hydroecology, 2022, 43(6):43-50. [26] 刘嘉钧, 罗洁, 岳素伟, 徐亚兰. “黄蜂石”的矿物成分及谱学特征研究[J]. 光谱学与光谱分析, 2021, 41(6):1936-1941.LIU Jiajun, LUO Jie, YUE Suwei, XU Yalan. Study on the mineral composition and spectral characteristics of "Bumblebee Stone"[J]. Spectroscopy and Spectral Analysis, 2021, 41(6):1936-1941. [27] 张钰, 李杰庆, 李涛, 刘鸿高, 王元忠. 不同部位矿质元素与红外光谱数据融合对美味牛肝菌产地溯源研究[J]. 光谱学与光谱分析, 2018, 38(10):3070-3076.ZHANG Yu, LI Jieqing, LI Tao, LIU Honggao, WANG Yuanzhong. Discrimination of geographical origins of boletus edulis using data fusion combined mineral elements with FTIR spectrum of different parts[J]. Spectroscopy and Spectral Analysis, 2018, 38(10):3070-3076. [28] 董发勤, 代群威, 饶瀚云, 王富东, 赵学钦, 蒋忠诚, 张强, 李博文, Alexander I. Malov, Enrico Capezzuoli, Augusto Auler. 黄龙与黄石钙华微生物沉积作用比较研究[J]. 中国岩溶, 2021, 40(2):264-272.DONG Faqin, DAI Qunwei, RAO Hanyun, WANG Fudong, ZHAO Xueqin, JIANG Zhongcheng, ZHANG Qiang, LI Bowen, Alexander I. Malov, Enrico Capezuoli, Augusto Auler. Comparative study on microbial deposition of travertine in Huanglong Scenic Area and Yellowstone National Park[J]. Carsologica Sinica, 2021, 40(2):264-272. [29] Tsai D D W, Chen P H, Ramaraj R. The potential of carbon dioxide capture and sequestration with algae[J]. Ecological Engineering, 2017, 98:17-23. doi: 10.1016/j.ecoleng.2016.10.049 [30] Iwasaki K, Evenhuis C, Tamburic B, Kuzhiumparambil U, O'Connor W, Ralph P, Szabó M. Improving light and CO2 availability to enhance the growth rate of the diatom, Chaetoceros muelleri[J]. Algal Research, 2021, 55:102234. doi: 10.1016/j.algal.2021.102234 [31] Gomez F J, Mlewski C, Boidi F J, Farías M E, Gérard E. Calcium carbonate precipitation in diatom-rich microbial mats: The Laguna Negra hypersaline lake, Catamarca, Argentina[J]. Journal of Sedimentary Research, 2018, 88(6):727-742. doi: 10.2110/jsr.2018.37 [32] Kuypers M M, Marchant H K, Kartal B. The microbial nitrogen-cycling network[J]. Nature Reviews Microbiology, 2018, 16(5):263-276. doi: 10.1038/nrmicro.2018.9 [33] 马芊红, 张科利. 西南喀斯特地区土壤侵蚀研究进展与展望[J]. 地球科学进展, 2018, 33(11):1130-1141. doi: 10.11867/j.issn.1001-8166.2018.11.1130.MA Qianhong, ZHANG Keli. Progresses and prospects of the research on soil erosion in karst area of Southwest China[J]. Advances in Earth Science, 2018, 33(11):1130-1141. doi: 10.11867/j.issn.1001-8166.2018.11.1130. [34] 孙亚玲, 刘进琪, 邹松兵. 渭河上游浮游植物群落结构对空间环境响应的差异性研究[J]. 水利水电技术, 2019, 50(7):144-152.SUN Yaling, LIU Jinqi, ZOU Songbing. Study on difference of response from phytoplankton community structure to spatial environment in upper Weihe river[J]. Water Resources and Hydropower Engineering, 2019, 50(7):144-152. [35] Phartiyal B, Singh R, Nag D, Sharma A, Agnihotri R, Prasad V, Yao T, Yao P, Karthick B, Joshi P, Gahlaud S K, Thakur B. Reconstructing climate variability during the last four millennia from trans-Himalaya (Ladakh-Karakoram, India) using multiple proxies[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 562:110142. doi: 10.1016/j.palaeo.2020.110142 [36] 杨宋琪, 杨江山, 陈成, 祖廷勋, 罗光宏. 张掖黑河湿地附植硅藻群落初步研究:以张掖国家湿地公园为例[J]. 水生态学杂志, 2020, 41(3):77-84.YANG Songqi, YANG Jiangshan, CHEN Cheng, ZU Tingxun, LUO Guanghong. A preliminary study on the epiphytic diatom community in Zhangye Heihe Wetland: A case study of Zhangye National Wetland Park[J]. Journal of Hydroecology, 2020, 41(3):77-84. [37] 薛浩, 王业耀, 孟凡生, 郑丙辉, 张铃松, 程佩瑄. 汤旺河着生硅藻群落及其与环境因子的关系[J]. 环境科学, 2020, 41(3):1256-1264. doi: 10.13227/j.hjkx.201907182XUE Hao, WANG Yeyao, MENG Fansheng, ZHENG Binghui, ZHANG Lingsong, CHENG Peixuan. Community of benthic diatoms and their relationship with aquatic environmental factors in the Tangwang river, China[J]. Environmental Science, 2020, 41(3):1256-1264. doi: 10.13227/j.hjkx.201907182 [38] 米文梅, 施军琼, 杨燕君, 杨宋琪, 何书晗, 吴忠兴. 三峡库区支流梅溪河附石藻类群落变化及其与环境因子的关系[J]. 环境科学, 2020, 41(4):1636-1647.MI Wenmei, SHI Junqiong, YANG Yanjun, YANG Songqi, HE Shuhan, WU Zhongxing. Changes in epilithic algae community and its relationship with environmental factors in the Meixi river, a tributary of the Three Gorges Reservoir[J]. Environmental Science, 2020, 41(4):1636-1647. [39] Potapova M, Charles D F. Diatom metrics for monitoring eutrophication in rivers of the United States[J]. Ecological Indicators, 2007, 7(1):48-70. doi: 10.1016/j.ecolind.2005.10.001 [40] 刘馨泽, 孙东, 曹楠, 袁楠楠, 黄何平, 田长宝, 张清明, 唐淑, 李大猛, 周大吉, 董发勤. 黄龙核心景区多层级水循环系统结构研究[J]. 中国岩溶, 2021, 40(1):19-33.LIU Xinze, SUN Dong, CAO Nan, YUAN Nannan, HUANG Heping, TIAN Changbao, ZHANG Qingming, TANG Shu, LI Dameng, ZHOU Daji, DONG Faqin. Study on the structure of multi-layer water circulation system in the core scenic spot of Huanglong[J]. Carsologica Sinica, 2021, 40(1):19-33. [41] 代群威, 党政, 彭启轩, 董发勤, 李琼芳, 罗尧东, 王富东, 赵学钦, 安德军, 张清明. 钙华天然海绵地质体多孔特性及其对水循环调节意义:以四川黄龙为例[J]. 矿物学报, 2019, 39(2):219-225.DAI Qunwei, DANG Zheng, PENG Qixuan, DONG Faqin, LI Qiongfang, LUO Yaodong, WANG Fudong, ZHAO Xueqin, AN Dejun, ZHANG Qingming. Porosity of travertine natural sponge geological bodies and its significance in regulating water circulation: A case study of travertine at Huanglong Ravine, Sichuan Province, China[J]. Acta Mineralogica Sinica, 2019, 39(2):219-225. [42] 董艳红, 王火焰, 周健民, 任正文. 不同土壤钾素淋溶特性的初步研究[J]. 土壤, 2014, 46(2):225-231. doi: 10.13758/j.cnki.tr.2014.02.005DONG Yanhong, WANG Huoyan, ZHOU Jianmin, REN Zhengwen. Preliminary study on potassium leaching characteristics of different soils[J]. Soils, 2014, 46(2):225-231. doi: 10.13758/j.cnki.tr.2014.02.005 [43] OUYANG Lili, PAN Yangdong, HUANG Chengmin, TANG Ya, DU Jie, XIAO Weiyang. Water quality assessment of benthic diatom communities for water quality in the subalpine karstic lakes of Jiuzhaigou, a world heritage site in China[J]. Journal of Mountain Science, 2016, 13(9):1632-1644. doi: 10.1007/s11629-014-3392-7 [44] Field C B, Behrenfeld M J, Randerson J T, Falkowski P. Primary production of the biosphere: Integrating terrestrial and oceanic components[J]. Science, 1998, 281(5374):237-240. doi: 10.1126/science.281.5374.237 [45] Sun Xiuming, Wu Naicheng, Faber Claas, Fohrer Nicola. Effects of hydrological variables on structuring morphological trait (cell size) of diatom community in a lowland river[J]. Ecological Indicators, 2018, 94:207-217. doi: 10.1016/j.ecolind.2018.06.044 [46] 张存凯, 李琼芳, 唐淑, 张清明, 陈超, 吕治州, 张文静. 影响黄龙藻类群落结构的环境因子分析[J]. 环境科学研究, 2017, 30(2):224-231. doi: 10.13198/j.issn.1001-6929.2017.01.36ZHANG Cunkai, LI Qiongfang, TANG Shu, ZHANG Qingming, CHEN Chao, LV Zhizhou, ZHANG Wenjing. Effects of environmental factors on algal community structure in Huanglong Scenic Area[J]. Research of Environmental Sciences, 2017, 30(2):224-231. doi: 10.13198/j.issn.1001-6929.2017.01.36 [47] Lin YJ, He ZL, Yang YG, Stoffella PJ, Phlips EJ, Powell CA. Nitrogen versus phosphorus limitation of phytoplankton growth in Ten Mile Creek, Florida, USA[J]. Hydrobiologia, 2008, 605(1):247-258. doi: 10.1007/s10750-008-9360-x [48] 蒋忠诚, 代群威, 董发勤, 张强, 党政, 汪智军, 刘凡. 国内外钙华岩溶景观的研究进展与展望[J]. 中国岩溶, 2021, 40(1):4-10.JIANG Zhongcheng, DAI Qunwei, DONG Faqin, ZHANG Qiang, DANG Zheng, WANG Zhijun, LIU Fan. Review of research progress and prospect of tufa/travertine karst landscape at home and abroad[J]. Carsologica Sinica, 2021, 40(1):4-10.