• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黄龙风景区藻席嗜冷硅藻群落结构变化及其驱动因子分析

饶瀚云 董发勤 刘明学 安德军 代群威 李琼芳 张强 刘轶凡 刘泽灵 张钰婷

饶瀚云,董发勤,刘明学,等. 黄龙风景区藻席嗜冷硅藻群落结构变化及其驱动因子分析[J]. 中国岩溶,2023,42(3):482-494 doi: 10.11932/karst20230301
引用本文: 饶瀚云,董发勤,刘明学,等. 黄龙风景区藻席嗜冷硅藻群落结构变化及其驱动因子分析[J]. 中国岩溶,2023,42(3):482-494 doi: 10.11932/karst20230301
RAO Hanyun, DONG Faqin, LIU Mingxue, AN Dejun, DAI Qunwei, LI Qiongfang, ZHANG Qiang, LIU Yifan, LIU Zeling, ZHANG Yuting. Changes and driving factors of psychrophilic diatom community structure of algal mats in Huanglong Scenic Area[J]. CARSOLOGICA SINICA, 2023, 42(3): 482-494. doi: 10.11932/karst20230301
Citation: RAO Hanyun, DONG Faqin, LIU Mingxue, AN Dejun, DAI Qunwei, LI Qiongfang, ZHANG Qiang, LIU Yifan, LIU Zeling, ZHANG Yuting. Changes and driving factors of psychrophilic diatom community structure of algal mats in Huanglong Scenic Area[J]. CARSOLOGICA SINICA, 2023, 42(3): 482-494. doi: 10.11932/karst20230301

黄龙风景区藻席嗜冷硅藻群落结构变化及其驱动因子分析

doi: 10.11932/karst20230301
基金项目: 国家重点研发计划项目(2020YFE0203200);国家自然科学基金项目(U21A2016,41877288,41831285,51974261);自然资源部岩溶生态系统与石漠化治理重点实验室开放基金项目(YRSW2021634)
详细信息
    作者简介:

    饶瀚云(1997-),男,硕士研究生,主要从事环境微生物学研究。E-mail:hanyun_rao@163.com

    通讯作者:

    董发勤(1963-),男,教授,博士研究生导师,主要研究方向为环境矿物学、固体废弃物处理及资源化利用。E-mail:fqdong@swust.edu.cn

  • 中图分类号: Q948

Changes and driving factors of psychrophilic diatom community structure of algal mats in Huanglong Scenic Area

  • 摘要: 硅藻群落对环境变化十分敏感,是自然河流水质变化的指示生物。为了解黄龙风景区藻席及藻席嗜冷硅藻群落结构与环境变量的关系,对景区内8个典型景点进行水样和藻席的采集并分析。结果表明,黄龙风景区藻席是以钙华作为基底,丝状藻作为骨架,栖息着大量硅藻的高寒岩溶微生态系统,共鉴定出25属72种硅藻,其中优势种13种,以桥弯藻属(Cymbella)为主。通过冗余分析发现,水温(F = 2.8,P = 0.02)和溶解硅(F = 2.3,P = 0.04)是影响黄龙风景区藻席嗜冷硅藻群落结构特征的主要驱动因子,TN是潜在驱动因子。硅藻可以为高寒岩溶区地表水监测提供重要的补充信息,建立完整的硅藻物种数据库,有利于区域水质监测。

     

  • 图  1  黄龙风景区位置及采样点分布

    Figure  1.  Distribution of sampling points in Huanglong Scenic and Historic Interest Area

    图  2  藻席结构和组成解析

    a-b. 使用SEM-EDS分析藻席微观结构; c. 使用元素分析仪分析不同颜色藻席的C,H,N,S元素含量; d. 使用FTIR分析不同颜色藻席的官能团或化学键; e. 使用XRD分析藻席中的矿相成分。

    Figure  2.  Structure and composition analysis of algal mats

    a-b. the analysis of the microstructure of algal mats by SEM-EDS; c. the analysis of the content of C, H, N and S elements of different colors of algal mats by elemental analyzer; d. the analysis of the functional groups or chemical bonds of different colors of algal mats by FTIR; e. the analysis of the mineral phase components of algal mats by XRD

    图  3  各采样点藻席的硅藻绝对丰度(Dabs)、Shannon-Weiner指数(H)、Simpson多样性指数(D)、Pielou指数(J)

    Figure  3.  Absolute abundance, Shannon Weiner index, Simpson's diversity index, and Pielou's species evenness index of diatoms

    图  4  各样点硅藻优势种组成占比

    Figure  4.  Proportion of dominant species of diatom in each site in Huanglong Scenic and Historic Interest Area

    图  5  采样点水环境因子的主成分分析与Spearman 相关系数

    Figure  5.  PCA and Spearman correlation coefficient of water environmental factors at sampling points

    图  6  环境因子与藻席硅藻的冗余分析

    Figure  6.  RDA between environmental factors and algal mat diatoms

    表  1  黄龙风景区采样点地理信息和水样物理化学参数

    Table  1.   Geographic information of sampling points and physicochemical parameters of water samples

    编号#1#2#3#4#5#6#7#8变异系数/%
    采样点转花泉五彩池争艳彩池盆景池潋滟湖金沙铺地飞瀑流辉迎宾池n.a.
    海拔/m3 588.003 574.003 432.003 328.003 297.003 239.003 226.003 220.00n.a.
    经度103°49′28″E103°49′58″E103°49′51″E103°49′44″E103°49′37″E103°49′29″E103°49′36″E103°49′25″En.a.
    纬度32°43′28″N32°43′30″N32°44′23″N32°44′47″N32°44′50″N32°45′1″N32°45′2″N32°45′4″Nn.a.
    T/ ℃7.206.507.707.607.309.607.608.3011.82
    pH6.787.508.108.448.578.408.498.507.87
    Ec/us1 116.001 075.00627.00523.00507.00515.00510.00501.0039.43
    pCO2/Pa0.150.010.000.000.000.000.000.00249.54
    ${\rm{CO}}_3^{2-}$/mg·L−10.000.000.0015.0050.000.000.0030.01198.41
    ${\rm{HCO}}_3^{-}$/mg·L−11 006.83732.24366.12274.59335.61282.22320.36221.2062.63
    TN/mg·L−10.020.040.190.110.150.140.120.2659.94
    TP/mg·L−10.050.050.130.050.040.040.040.0358.78
    Ca2+ /mg·L−1227.80190.60122.30100.9094.30135.3084.90107.8038.03
    Al3+ /mg·L−10.060.060.040.030.030.010.030.0346.48
    K+/mg·L−10.560.920.370.370.420.350.400.3741.19
    Mg2+/mg·L−123.1022.3915.1615.3315.6315.5715.9615.7619.22
    DSi/mg·L−12.692.742.001.961.971.991.931.9216.28
    Cl/mg·L−10.741.080.900.780.910.980.700.8314.75
    ${\rm{NO}}_3^{-}$/mg·L−10.270.390.881.261.261.451.211.2944.43
    ${\rm{SO}}_4^{2-}$/mg·L−157.4441.1453.9448.5247.9654.7546.9347.2410.61
    下载: 导出CSV

    表  2  黄龙风景区藻席硅藻种类名录

    Table  2.   List of diatom species in the algal mats of Huanglong Scenic and Historic Interest Area

    曲壳藻属(Achnanthes 线型曲壳藻 A. orenulata 等片藻属(Diatoma 念珠等片藻 D. moniliformis
    披针形曲壳藻 A. lanceolata 冬生等片藻 D. hiemale
    毛利曲壳藻 A. mauiensis 巨大等片藻 D. maximum
    曲丝藻属(Achnanthidium *极小曲丝藻 A. minutissimum 普通等片藻 D. vulgare
    美壁藻属(Caloneis 高山美壁藻 C. alpestris 中型等片藻 D. mesodon
    偏肿美壁藻 C. ventricosa 纤细等片藻 D. tenue
    舒曼美壁藻 C. schumanniana 双壁藻属(Diploneis 椭圆双壁藻 D. elliptica
    美丽美壁藻 C. pulchra 卵圆双壁藻长圆变种
    D. ovalis var. oblongella
    卵形藻属(Cocconeis 弯曲卵形藻 C. flexella 眼斑双壁藻 D. oculata
    扁圆卵形藻 C. placentula 内丝藻属(Encyonema 西里西亚内丝藻 E. silesiacum
    小环藻属(Cyclotella 可辨小环藻 C. distinguenda 簇生内丝藻 E. cespitosum
    梅尼小环藻 C. meneghiniana 纤细内丝藻 E. gracile
    波缘藻属(Cymatopleura *草鞋形波缘藻 C. solea 内丝藻属(Encyonopsis 斯托特拟内丝藻 E. stodderi
    桥弯藻属(Cymbella 新箱型桥弯藻 C. neocistula 赛萨特拟内丝藻 E. cesatii
    背弯桥弯藻 C. dorsenotata 脆杆藻属(Fragilaria 两头脆杆藻 F. biceps
    近轴桥弯藻 C. proxima 狭辐节脆杆藻 F. leptostauron
    桥弯藻属(Cymbella 近淡黄桥弯藻 C. subhelvetica 异极藻属(Gomphonema 短纹异极藻 G. abbreniatum
    近平截桥弯藻 C. subtruncata *窄异极藻 G. productum
    *新月形桥弯藻 C. cymbiformis 直链藻属(Melosira 变异直链藻 M. varians
    *箱型桥弯藻 C. cistula 颗粒直链藻极狭变种
    M. granulate var.angutissima
    斯图施拜桥弯藻 C. stuxbergii 舟型藻属(Navicula 隐头舟形藻 N. cryptocephala
    膨胀桥弯藻 C. tumida 簇生舟形藻 N. gregaria
    平滑桥弯藻 C. laevis 长篦藻属(Neidium *二哇长篦藻 N. bisulcatum
    微细桥弯藻 C. parva 优美长篦藻 N. mirabile
    *纤细桥弯藻 C. gracillis 菱形藻属(Nitzschia 细长菱形藻 N. gracilis
    *近北极桥弯藻 C. subarctica 细端菱形藻 N. dissipata
    近缘桥弯藻 C. affinis 羽纹藻属(Pinnularia 中型羽纹藻 P. intermedia
    弯肋藻属(Cymbopleura *奥地利弯肋藻 C. austriaca 弯楔藻属(Rhoicosphenia 弯形弯楔藻 R. curvata
    库尔伯斯弯肋藻 C. kuelbsii 辐节藻属(Stauroneis *沼泽辐节藻 S. palustris
    矩圆弯肋藻 C. oblongata 十字脆杆藻属(Staurosira 凸腹十字脆杆藻 S. venter
    杂种弯肋藻 C. hybrida 针杆藻属(Synedra 肘状针杆藻 S. ulna
    *窄弯肋藻 C. angustata 双头针杆藻 S. amphicephala
    双头弯肋藻 C. amphicephala 尖针杆藻 S. acus
    *线形弯肋藻 C. linearis 平片针杆藻 S. tabulata
    等片藻属(Diatoma D. hyemalis 平板藻属(Tabellaria 窗格平板藻 T. fenestrata
    *D. vulgaris 四环藻属(Tetracyclus 湖沼四环藻 T. lacustris
    注:*代表优势种。Note: * represents dominant species.
    下载: 导出CSV

    表  3  黄龙风景区藻席硅藻优势种

    Table  3.   Dominant species of diatom in Huanglong Scenic and Historic Interest Area

    优势度(Y)
    曲丝藻属(Achnanthidium 极小曲丝藻 A. minutissimum 0.039
    波缘藻属(Cymatopleura 草鞋形波缘藻 C. solea 0.045
    桥弯藻属(Cymbella 箱型桥弯藻 C. cistula 0.027
    新月形桥弯藻 C. cymbiformis 0.030
    近北极桥弯藻 C. subarctica 0.032
    纤细桥弯藻 C. gracillis 0.043
    弯肋藻属(Cymbopleura 线形弯肋藻 C. linearis 0.023
    窄弯肋藻 C. angustata 0.025
    奥地利弯肋藻 C. austriaca 0.028
    等片藻属(Diatoma D. vulgaris 0.053
    异极藻属(Gomphonema 窄异极藻 G. productum 0.035
    长篦藻属(Neidium 二哇长篦藻 N. bisulcatum 0.048
    辐节藻属(Stauroneis 沼泽辐节藻 S. palustris 0.026
    下载: 导出CSV
  • [1] 傅华龙, 韩福山, 周绪纶, 刘子福. 四川黄龙钙华景观中的藻类植物[J]. 资源开发与保护, 1989(3):40-41, 44.

    FU Hualong, HAN Fushan, ZHOU Xulun, LIU Zifu. Algae in the travertine landscape of Huanglong, Sichuan[J]. Resource Development and Protection, 1989(3):40-41, 44.
    [2] 汪智军, 殷建军, 郝秀东, 王培, 张强, 蓝高勇, 张清明. 基于微岩相分析的藻类在钙华沉积中的作用研究: 以四川黄龙为例[J]. 中国岩溶, 2021, 40(1):44-54.

    WANG Zhijun, YIN Jianjun, HAO Xiudong, WANG Pei, ZHANG Qiang, LAN Gaoyong, ZHANG Qingming. Role of algae in travertine deposition revealed by microscale observations: A case study of Huanglong, Sichuan, China[J]. Carsologica Sinica, 2021, 40(1):44-54.
    [3] Lavoie I, Campeau S, Zugic-Drakulic N, Winter J G, Fortin C. Using diatoms to monitor stream biological integrity in Eastern Canada: An overview of 10 years of index development and ongoing challenges[J]. Science of the Total Environment, 2014, 475:187-200. doi: 10.1016/j.scitotenv.2013.04.092
    [4] Ramkumar M, Kumaraswamy K, Mohanraj R. Environmental management of river basin ecosystems[M]. Berlin: Springer, 2015.
    [5] Wang HJ, Yan H, Liu ZH. Contrasts in variations of the carbon and oxygen isotopic composition of travertines formed in pools and a ramp stream at Huanglong Ravine, China: Implications for paleoclimatic interpretations[J]. Geochimica et Cosmochimica Acta, 2014, 125:34-48. doi: 10.1016/j.gca.2013.10.001
    [6] Wang HJ, Liu ZH, Zhang JL, Sun HL, An DJ, Fu RX, Wang XP. Spatial and temporal hydrochemical variations of the spring-fed travertine-depositing stream in the Huanglong Ravine, Sichuan, SW China[J]. Acta Carsologica 2010, 39(2): 247-259.
    [7] 雷婷婷, 陈良仲, 陈绍兴, 沈亮. 微生物对低温极端环境适应性的研究进展[J]. 微生物学报, 2022, 62(6):2150-2164.

    LEI Tingting, CHEN Liangzhong, CHEN Shaoxing, SHEN Liang. Progress in research on the adaptability of microorganisms to extremely cold environments[J]. Acta Microbiologica Sinica, 2022, 62(6):2150-2164.
    [8] Stanish L F, Nemergut D R, Mcknight D M. Hydrologic processes influence diatom community composition in Dry Valley streams[J]. Journal of the North American Benthological Society, 2011, 30(4):1057-1073. doi: 10.1899/11-008.1
    [9] Frantz C, Petryshyn V, Corsetti F. Grain trapping by filamentous cyanobacterial and algal mats: Implications for stromatolite microfabrics through time[J]. Geobiology, 2015, 13(5):409-423. doi: 10.1111/gbi.12145
    [10] Gushulak C A, Laird K R, Bennett J R, Cumming B F. Water depth is a strong driver of intra-lake diatom distributions in a small boreal lake[J]. Journal of Paleolimnology, 2017, 58(2):231-241. doi: 10.1007/s10933-017-9974-y
    [11] Bojorge-García M, Carmona J, Ramírez R. Species richness and diversity of benthic diatom communities in tropical mountain streams of Mexico[J]. Inland Waters, 2014, 4(3):279-292. doi: 10.5268/IW-4.3.568
    [12] Zhang Yun, Peng Chengrong, Wang Jun, Huang Shun, Hu Yao, Zhang Jinli, Li Dunhai. Temperature and silicate are significant driving factors for the seasonal shift of dominant diatoms in a drinking water reservoir[J]. Journal of Oceanology and Limnology, 2019, 37(2):568-579. doi: 10.1007/s00343-019-8040-1
    [13] Bae H, Park J, Ahn H, Khim J S. Shift in benthic diatom community structure and salinity thresholds in a hypersaline environment of solar saltern, Korea[J]. Algae, 2020, 35(4):361-373. doi: 10.4490/algae.2020.35.12.4
    [14] Fouke B W. Hot-spring systems geobiology: Abiotic and biotic influences on travertine formation at Mammoth Hot Springs, Yellowstone National Park, USA[J]. Sedimentology, 2011, 58(1):170-219. doi: 10.1111/j.1365-3091.2010.01209.x
    [15] 郝卓, 高扬, 张晴雯, 熊佰炼. 典型喀斯特流域旱雨季交替下溶解硅的输送特征[J]. 生态学报, 2021, 41(24):9681-9690.

    HAO Zhuo, GAO Yang, ZHANG Qingwen, XIONG Bailian. Characteristics of dissolved silicon transport in typical karst watershed in alternating wet and dry season[J]. Acta Ecologica Sinica, 2021, 41(24):9681-9690.
    [16] 杨诗笛, 吴攀, 曹星星, 刘闪, 廖家豪. 岩溶湿地表层水体CO2分压时空分布特征及其扩散通量[J]. 湖泊科学, 2021, 33(3):854-865. doi: 10.18307/2021.0318

    YANG Shidi, WU Pan, CAO Xingxing, LIU Shan, LIAO Jiahao. Spatiotemporal distribution of carbon dioxide partial pressure and its diffusion flux in surface water of karst wetland[J]. Journal of Lake Sciences, 2021, 33(3):854-865. doi: 10.18307/2021.0318
    [17] 张纪晖, 周成旭, 李冬玲, 林忠洲, 邱悦, 沙龙滨. 福建敖江口表层沉积硅藻空间分布特征[J]. 热带亚热带植物学报, 2021, 29(6):597-604.

    ZHANG Jihui, ZHOU Chengxu, LI Dongling, LIN Zhongzhou, QIU Yue, SHA Longbin. Diatom distribution in surface sediments of Aojiang river estuary in Fujian, China[J]. Journal of Tropical and Subtropical Botany, 2021, 29(6):597-604.
    [18] Round F E, Crawford R M, Mann D G. Diatoms: Biology and morphology of the genera[M]. Cambrige: Cambridge University Press, 1990.
    [19] 胡鸿钧, 魏印心. 中国淡水藻类: 系统、分类及生态[M]. 北京: 科学出版社, 2006.

    HU Hongjun, WEI Yinxin. The freshwater algae of China: Systematics, taxonomy and ecology[M]. Beijing: Science Press, 2006.
    [20] 施之新. 中国淡水藻志: 第十六卷, 硅藻门, 桥弯藻科[M]. 北京: 科学出版社, 2013.

    SHI Zhixin. Flora Algarum Sinicarum Aquae Dulcis: Timus 16, Bacillariophyta, Cymbellaceae[M]. Beijing: Science Press, 2013.
    [21] 李家英, 齐雨藻. 中国淡水藻志: 第十四卷, 硅藻门, 舟形藻科(Ⅰ)[M]. 北京: 科学出版社, 2010.

    LI Jiaying, QI Yuzao. Flora Algarum Sinicarum Aquae Dulcis: Timus 14, Bacillariophyta, Naviculaceae (I)[M]. Beijing: Science Press, 2010.
    [22] 李家英, 齐雨藻. 中国淡水藻志: 第十九卷, 硅藻门, 舟形藻科(Ⅱ)[M]. 北京: 科学出版社, 2014.

    LI Jiaying, QI Yuzao. Flora Algarum Sinicarum Aquae Dulcis: Timus 19, Bacillariophyta, Naviculaceae (Ⅱ)[M]. Beijing: Science Press, 2014.
    [23] Spaulding S A, Potapova M G, Bishop I W, Lee S S, Gasperak T S, Jovanoska E, Furey P C, Edlund M B. Diatoms. org: Supporting taxonomists, connecting communities[J]. Diatom Research, 2021, 36(4):291-304. doi: 10.1080/0269249X.2021.2006790
    [24] 吴瑞, 高亚辉, 蓝东兆, 兰彬斌, 方琦. 象山港底栖硅藻群落结构特征[J]. 热带作物学报, 2016, 37(3):439-445.

    WU Rui, GAO Yahui, LAN Dongzhao, LAN Binbin, FANG Qi. The benthic diatom community of Xiangshan bay[J]. Chinese Journal of Tropical Crops, 2016, 37(3):439-445.
    [25] 谢纯林, 王涛, 胡俊杰, 阎春兰, 裴国凤. 赤水河流域秋季底栖硅藻群落结构特征及水质评价[J]. 水生态学杂志, 2022, 43(6):43-50.

    XIE Chunlin, WANG Tao, HU Junjie, YAN Chunlan, PEI Guofeng. Autumn benthic diatom community structure and water quality assessment in the Chishui river basin[J]. Journal of Hydroecology, 2022, 43(6):43-50.
    [26] 刘嘉钧, 罗洁, 岳素伟, 徐亚兰. “黄蜂石”的矿物成分及谱学特征研究[J]. 光谱学与光谱分析, 2021, 41(6):1936-1941.

    LIU Jiajun, LUO Jie, YUE Suwei, XU Yalan. Study on the mineral composition and spectral characteristics of "Bumblebee Stone"[J]. Spectroscopy and Spectral Analysis, 2021, 41(6):1936-1941.
    [27] 张钰, 李杰庆, 李涛, 刘鸿高, 王元忠. 不同部位矿质元素与红外光谱数据融合对美味牛肝菌产地溯源研究[J]. 光谱学与光谱分析, 2018, 38(10):3070-3076.

    ZHANG Yu, LI Jieqing, LI Tao, LIU Honggao, WANG Yuanzhong. Discrimination of geographical origins of boletus edulis using data fusion combined mineral elements with FTIR spectrum of different parts[J]. Spectroscopy and Spectral Analysis, 2018, 38(10):3070-3076.
    [28] 董发勤, 代群威, 饶瀚云, 王富东, 赵学钦, 蒋忠诚, 张强, 李博文, Alexander I. Malov, Enrico Capezzuoli, Augusto Auler. 黄龙与黄石钙华微生物沉积作用比较研究[J]. 中国岩溶, 2021, 40(2):264-272.

    DONG Faqin, DAI Qunwei, RAO Hanyun, WANG Fudong, ZHAO Xueqin, JIANG Zhongcheng, ZHANG Qiang, LI Bowen, Alexander I. Malov, Enrico Capezuoli, Augusto Auler. Comparative study on microbial deposition of travertine in Huanglong Scenic Area and Yellowstone National Park[J]. Carsologica Sinica, 2021, 40(2):264-272.
    [29] Tsai D D W, Chen P H, Ramaraj R. The potential of carbon dioxide capture and sequestration with algae[J]. Ecological Engineering, 2017, 98:17-23. doi: 10.1016/j.ecoleng.2016.10.049
    [30] Iwasaki K, Evenhuis C, Tamburic B, Kuzhiumparambil U, O'Connor W, Ralph P, Szabó M. Improving light and CO2 availability to enhance the growth rate of the diatom, Chaetoceros muelleri[J]. Algal Research, 2021, 55:102234. doi: 10.1016/j.algal.2021.102234
    [31] Gomez F J, Mlewski C, Boidi F J, Farías M E, Gérard E. Calcium carbonate precipitation in diatom-rich microbial mats: The Laguna Negra hypersaline lake, Catamarca, Argentina[J]. Journal of Sedimentary Research, 2018, 88(6):727-742. doi: 10.2110/jsr.2018.37
    [32] Kuypers M M, Marchant H K, Kartal B. The microbial nitrogen-cycling network[J]. Nature Reviews Microbiology, 2018, 16(5):263-276. doi: 10.1038/nrmicro.2018.9
    [33] 马芊红, 张科利. 西南喀斯特地区土壤侵蚀研究进展与展望[J]. 地球科学进展, 2018, 33(11):1130-1141. doi: 10.11867/j.issn.1001-8166.2018.11.1130.

    MA Qianhong, ZHANG Keli. Progresses and prospects of the research on soil erosion in karst area of Southwest China[J]. Advances in Earth Science, 2018, 33(11):1130-1141. doi: 10.11867/j.issn.1001-8166.2018.11.1130.
    [34] 孙亚玲, 刘进琪, 邹松兵. 渭河上游浮游植物群落结构对空间环境响应的差异性研究[J]. 水利水电技术, 2019, 50(7):144-152.

    SUN Yaling, LIU Jinqi, ZOU Songbing. Study on difference of response from phytoplankton community structure to spatial environment in upper Weihe river[J]. Water Resources and Hydropower Engineering, 2019, 50(7):144-152.
    [35] Phartiyal B, Singh R, Nag D, Sharma A, Agnihotri R, Prasad V, Yao T, Yao P, Karthick B, Joshi P, Gahlaud S K, Thakur B. Reconstructing climate variability during the last four millennia from trans-Himalaya (Ladakh-Karakoram, India) using multiple proxies[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 562:110142. doi: 10.1016/j.palaeo.2020.110142
    [36] 杨宋琪, 杨江山, 陈成, 祖廷勋, 罗光宏. 张掖黑河湿地附植硅藻群落初步研究:以张掖国家湿地公园为例[J]. 水生态学杂志, 2020, 41(3):77-84.

    YANG Songqi, YANG Jiangshan, CHEN Cheng, ZU Tingxun, LUO Guanghong. A preliminary study on the epiphytic diatom community in Zhangye Heihe Wetland: A case study of Zhangye National Wetland Park[J]. Journal of Hydroecology, 2020, 41(3):77-84.
    [37] 薛浩, 王业耀, 孟凡生, 郑丙辉, 张铃松, 程佩瑄. 汤旺河着生硅藻群落及其与环境因子的关系[J]. 环境科学, 2020, 41(3):1256-1264. doi: 10.13227/j.hjkx.201907182

    XUE Hao, WANG Yeyao, MENG Fansheng, ZHENG Binghui, ZHANG Lingsong, CHENG Peixuan. Community of benthic diatoms and their relationship with aquatic environmental factors in the Tangwang river, China[J]. Environmental Science, 2020, 41(3):1256-1264. doi: 10.13227/j.hjkx.201907182
    [38] 米文梅, 施军琼, 杨燕君, 杨宋琪, 何书晗, 吴忠兴. 三峡库区支流梅溪河附石藻类群落变化及其与环境因子的关系[J]. 环境科学, 2020, 41(4):1636-1647.

    MI Wenmei, SHI Junqiong, YANG Yanjun, YANG Songqi, HE Shuhan, WU Zhongxing. Changes in epilithic algae community and its relationship with environmental factors in the Meixi river, a tributary of the Three Gorges Reservoir[J]. Environmental Science, 2020, 41(4):1636-1647.
    [39] Potapova M, Charles D F. Diatom metrics for monitoring eutrophication in rivers of the United States[J]. Ecological Indicators, 2007, 7(1):48-70. doi: 10.1016/j.ecolind.2005.10.001
    [40] 刘馨泽, 孙东, 曹楠, 袁楠楠, 黄何平, 田长宝, 张清明, 唐淑, 李大猛, 周大吉, 董发勤. 黄龙核心景区多层级水循环系统结构研究[J]. 中国岩溶, 2021, 40(1):19-33.

    LIU Xinze, SUN Dong, CAO Nan, YUAN Nannan, HUANG Heping, TIAN Changbao, ZHANG Qingming, TANG Shu, LI Dameng, ZHOU Daji, DONG Faqin. Study on the structure of multi-layer water circulation system in the core scenic spot of Huanglong[J]. Carsologica Sinica, 2021, 40(1):19-33.
    [41] 代群威, 党政, 彭启轩, 董发勤, 李琼芳, 罗尧东, 王富东, 赵学钦, 安德军, 张清明. 钙华天然海绵地质体多孔特性及其对水循环调节意义:以四川黄龙为例[J]. 矿物学报, 2019, 39(2):219-225.

    DAI Qunwei, DANG Zheng, PENG Qixuan, DONG Faqin, LI Qiongfang, LUO Yaodong, WANG Fudong, ZHAO Xueqin, AN Dejun, ZHANG Qingming. Porosity of travertine natural sponge geological bodies and its significance in regulating water circulation: A case study of travertine at Huanglong Ravine, Sichuan Province, China[J]. Acta Mineralogica Sinica, 2019, 39(2):219-225.
    [42] 董艳红, 王火焰, 周健民, 任正文. 不同土壤钾素淋溶特性的初步研究[J]. 土壤, 2014, 46(2):225-231. doi: 10.13758/j.cnki.tr.2014.02.005

    DONG Yanhong, WANG Huoyan, ZHOU Jianmin, REN Zhengwen. Preliminary study on potassium leaching characteristics of different soils[J]. Soils, 2014, 46(2):225-231. doi: 10.13758/j.cnki.tr.2014.02.005
    [43] OUYANG Lili, PAN Yangdong, HUANG Chengmin, TANG Ya, DU Jie, XIAO Weiyang. Water quality assessment of benthic diatom communities for water quality in the subalpine karstic lakes of Jiuzhaigou, a world heritage site in China[J]. Journal of Mountain Science, 2016, 13(9):1632-1644. doi: 10.1007/s11629-014-3392-7
    [44] Field C B, Behrenfeld M J, Randerson J T, Falkowski P. Primary production of the biosphere: Integrating terrestrial and oceanic components[J]. Science, 1998, 281(5374):237-240. doi: 10.1126/science.281.5374.237
    [45] Sun Xiuming, Wu Naicheng, Faber Claas, Fohrer Nicola. Effects of hydrological variables on structuring morphological trait (cell size) of diatom community in a lowland river[J]. Ecological Indicators, 2018, 94:207-217. doi: 10.1016/j.ecolind.2018.06.044
    [46] 张存凯, 李琼芳, 唐淑, 张清明, 陈超, 吕治州, 张文静. 影响黄龙藻类群落结构的环境因子分析[J]. 环境科学研究, 2017, 30(2):224-231. doi: 10.13198/j.issn.1001-6929.2017.01.36

    ZHANG Cunkai, LI Qiongfang, TANG Shu, ZHANG Qingming, CHEN Chao, LV Zhizhou, ZHANG Wenjing. Effects of environmental factors on algal community structure in Huanglong Scenic Area[J]. Research of Environmental Sciences, 2017, 30(2):224-231. doi: 10.13198/j.issn.1001-6929.2017.01.36
    [47] Lin YJ, He ZL, Yang YG, Stoffella PJ, Phlips EJ, Powell CA. Nitrogen versus phosphorus limitation of phytoplankton growth in Ten Mile Creek, Florida, USA[J]. Hydrobiologia, 2008, 605(1):247-258. doi: 10.1007/s10750-008-9360-x
    [48] 蒋忠诚, 代群威, 董发勤, 张强, 党政, 汪智军, 刘凡. 国内外钙华岩溶景观的研究进展与展望[J]. 中国岩溶, 2021, 40(1):4-10.

    JIANG Zhongcheng, DAI Qunwei, DONG Faqin, ZHANG Qiang, DANG Zheng, WANG Zhijun, LIU Fan. Review of research progress and prospect of tufa/travertine karst landscape at home and abroad[J]. Carsologica Sinica, 2021, 40(1):4-10.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  103
  • HTML浏览量:  32
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-12
  • 刊出日期:  2023-06-30

目录

    /

    返回文章
    返回