Hydrochemical characteristics and water quality evaluation of karst water in Jinan City
-
摘要: 岩溶地下水是济南泉群的重要补给来源,其水质直接影响着济南市保泉工作成效。本次研究于5月和9月在济南市长孝岩溶水系统、趵突泉岩溶水系统及白泉岩溶水系统采集水样并进行水质检测。通过运用数理统计、相关性分析、Piper三线图、Gibbs模型等方法,对研究区内地下水水化学特征进行分析,利用模糊评价方法,对研究区地下水的质量进行综合评价。结果表明:三个岩溶水系统中地下水均为弱碱性水,硬度较小,TDS值均<1 000 mg·L−1。阴阳离子浓度表现为:
${\rm{HCO}}_3^{-}$ >${\rm{SO}}_4^{2-}$ >Cl−>${\rm{NO}}_3^{-}$ ,Ca2+>Na+>Mg2+>K+。模糊评价的结果显示,三个岩溶水系统地下水总体水质良好,可用作生活饮用水,且长孝、趵突泉及白泉的岩溶水水化学类型大致相同,离子来源相似,故水力联系较强。Abstract:Karst groundwater is an important source recharge for springs in Jinan, and its water quality directly affects the effectiveness of spring protection work in this city. In this study, a total of 128 groundwater samples (64 each in the wet season and the dry season) were collected from the main karst hydrogeological units in Jinan—Changxiao karst water system, Baotu Spring karst water system and Baiquan karst water system in May (the dry season) and September (the wet season), and their water quality was tested. By means of mathematical statistics, correlation analysis, Piper three-line diagram, Gibbs model and ion ratio, the hydrochemical characteristics of groundwater in the study area were analyzed. Besides, the groundwater quality in this area was evaluated comprehensively by fuzzy evaluation method. The analysis may provide a basis for the hydraulic connection of the three karst water systems. Results show that groundwater in the three karst water systems of Changxiao, Baotu Spring and Baiquan are all weakly alkaline water with low hardness, and TDS values are less than 1,000 mg·L−1, among which TDS value and TH value show as Changxiao>Baiquan>Baotu Springs. The ion concentrations are as follows: Ca2+>Na+>Mg2+>K+, ${\rm{HCO}}_3^{-}$ >${\rm{SO}}_4^{2-}$ >Cl −>${\rm{NO}}_3^{-}$ . The water quality of the three karst water systems is worse in the dry season than in the wet season. The chemical types of water in Changxiao, Baotu and Baiquan are roughly the same, mainly calcium type and bicarbonate-mixed water. The Changxiao karst water system and Baotu Spring karst water system are mainly of SO4·Cl-Ca·Mg type, and the Baiquan karst water system is mainly of HCO3-Ca·Mg type. According to the piper three-line diagram and the Gibbs diagram, the main groundwater ions in the three karst water systems of Changxiao, Baotu Spring and Baiquan mainly come from rock weathering. It can be seen from the ion ratio diagram that the main hydrochemical effects in the study area are from the weathering and dissolution of carbonate rocks and evaporite salts and cation exchange. More than 50% of the water in the three karst water systems falls into Grade III in both the dry season and the wet season, indicating that the karst groundwater in the study area is less polluted. Compared with the water collected from sample points in two seasons, the water quality in the wet season is better than that in the dry season. The Baotu Spring karst water system has the best water quality, followed by the Baiquan karst water system.In this study, suggestions on the environmental protection of karst water resources are put forward: (1) The government should standardize the management of industrial water use, implement a quota system, and avoid unreasonable use of water resources. (2) Transporting sewage channels, pipelines and oil pipelines through protection area of water source should be prohibited. (3) The construction of oil depots in protection areas should be prohibited. (4) The government and institution should gradually improve the irrigation system in agriculture, and actively introduce new technologies and techniques to save water. (5) The government and related institutions should heighten citizens' awareness of water conservation and water resources protection, and promote standardized water resources management. -
Key words:
- karst area /
- groundwater /
- water quality evaluation /
- hydrochemical analysis /
- fuzzy evaluation
-
表 1 丰水期和枯水期水化学特征统计值
Table 1. Statistical values of water chemistry characteristics in the wet season and the dry season
长孝 趵突泉 白泉 最小
值/
mg·L−1最大
值/
mg·L−1平均
数/
mg·L−1变异
系数最小
值/
mg·L−1最大
值/
mg·L−1平均
数/
mg·L−1变异
系数最小
值/
mg·L−1最大
值/
mg·L−1平均
数/
mg·L−1变异
系数枯
水
期pH 7.14 7.57 7.39 0.02 6.77 8.64 7.43 0.05 6.91 7.69 7.25 0.03 TDS 334.00 918.00 647.21 0.25 312.00 710.00 488.27 0.21 362.00 792.00 526.05 0.25 TH 269.00 681.00 480.50 0.28 234.00 512.00 343.90 0.22 247.00 777.00 425.29 0.31 Na+ 9.05 58.20 28.07 0.36 7.00 115.00 28.61 1.12 6.50 107.00 17.74 2.12 K+ 0.20 5.90 1.23 0.53 0.50 17.00 1.97 0.90 0.30 3.00 0.99 1.20 Ca2+ 76.80 216.00 150.23 1.14 42.90 163.00 103.20 1.57 73.80 250.00 132.15 0.62 Mg2+ 16.20 44.20 25.69 0.30 10.80 30.80 20.98 0.28 13.80 41.00 23.13 0.33 Cl− 22.90 103.00 56.95 0.28 14.20 164.10 46.24 0.22 13.60 101.00 32.79 0.34 ${\rm{SO}}_4^{2-}$ 33.50 197.00 117.64 0.51 48.90 175.00 94.06 0.67 41.70 542.00 125.83 0.65 ${\rm{HCO}}_3^{-}$ 232.00 408.00 305.36 0.42 144.00 381.00 252.90 0.37 182.00 434.00 304.05 0.92 ${\rm{NO}}_3^{-}$ 11.50 238.00 96.24 0.17 12.40 155.00 38.98 0.23 8.90 73.20 35.32 0.22 丰
水
期pH 7.40 7.90 7.61 0.02 7.20 8.50 7.75 0.04 7.30 8.00 7.72 0.02 TDS 335.00 1218.00 713.64 0.37 330.00 868.00 517.33 0.28 375.00 1075.00 532.71 0.31 TH 265.71 862.69 518.74 0.35 248.20 593.47 374.42 0.24 242.19 779.62 420.19 0.29 Na+ 16.71 60.46 33.19 0.26 7.92 149.00 32.88 1.11 4.09 97.54 16.44 0.64 K+ 0.15 6.40 1.14 0.41 0.45 5.51 1.42 0.82 0.05 1.86 0.68 1.18 Ca2+ 76.75 300.00 167.49 1.38 69.14 204.41 116.17 0.81 74.75 252.30 134.14 0.79 Mg2+ 15.56 43.26 24.41 0.39 8.87 39.62 20.48 0.29 9.60 36.34 20.70 0.32 Cl− 20.45 110.77 63.56 0.32 10.23 122.70 44.71 0.27 6.82 61.35 25.89 0.35 ${\rm{SO}}_4^{2-}$ 48.44 212.23 146.08 0.52 66.90 328.16 127.33 0.66 59.07 616.95 144.48 0.66 ${\rm{NO}}_3^{-}$ 9.60 383.20 110.66 0.41 2.22 158.75 39.26 0.42 6.18 89.00 37.04 0.91 ${\rm{HCO}}_3^{-}$ 250.70 407.77 308.84 0.93 137.13 389.64 251.30 0.77 211.43 377.56 288.16 0.52 表 3 长孝岩溶水系统各水样水质评价结果
Table 3. Evaluation results of water quality of each water sample in Changxiao karst water system
枯水期 Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ 结果 丰水期 Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ 结果 长孝 TYJC11 0.02 0.05 0.26 0.39 0.00 Ⅳ TYJC11 0.02 0.12 0.24 0.55 0.00 Ⅳ TYJC18 0.01 0.03 0.04 0.11 0.79 Ⅴ TYJC18 0.01 0.06 0.07 0.14 0.44 Ⅴ TYJ99 0.02 0.07 0.34 0.48 0.00 Ⅳ TYJ99 0.02 0.08 0.36 0.50 0.00 Ⅳ TYJ67 0.01 0.04 0.08 0.16 0.70 Ⅴ TYJ67 0.01 0.04 0.15 0.07 0.72 Ⅴ TYJ92 0.06 0.46 0.48 0.00 0.00 Ⅲ TYJ92 0.07 0.35 0.59 0.00 0.00 Ⅲ TYJC22 0.02 0.05 0.14 0.46 0.18 Ⅳ TYJC22 0.02 0.05 0.23 0.44 0.20 Ⅳ TYJ688 0.03 0.02 0.23 0.59 0.17 Ⅳ TYJ688 0.02 0.03 0.21 0.58 0.19 Ⅳ TYJ689 0.07 0.44 0.50 0.00 0.00 Ⅲ TYJ689 0.07 0.19 0.60 0.15 0.00 Ⅲ TYJC24 0.02 0.07 0.30 0.55 0.00 Ⅳ TYJC24 0.03 0.12 0.45 0.40 0.00 Ⅲ TYJ158 0.02 0.06 0.29 0.63 0.00 Ⅳ TYJ158 0.02 0.07 0.29 0.61 0.00 Ⅳ TYJ61 0.03 0.08 0.35 0.54 0.00 Ⅳ TYJ61 0.02 0.07 0.34 0.58 0.00 Ⅳ TYJ60 0.04 0.18 0.65 0.14 0.00 Ⅲ TYJ60 0.15 0.01 0.84 0.00 0.00 Ⅲ TYJ-CL 0.01 0.04 0.07 0.18 0.70 Ⅴ TYJ-CL 0.03 0.14 0.55 0.29 0.00 Ⅲ TYJC15 0.01 0.07 0.08 0.09 0.75 Ⅴ TYJC15 0.01 0.08 0.08 0.16 0.37 Ⅴ 表 4 白泉岩溶水系统各水样水质评价结果
Table 4. Evaluation results of water quality of each water sample in Baiquan karst water system
枯水期 Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ 结果 丰水期 Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ 结果 白泉 TYJ466 0.03 0.11 0.57 0.29 0.00 Ⅲ TYJ466 0.04 0.30 0.63 0.03 0.00 Ⅲ TYJ295 0.02 0.21 0.56 0.21 0.00 Ⅲ TYJ295 0.02 0.10 0.52 0.36 0.00 Ⅲ TYJ485 0.01 0.11 0.11 0.58 0.25 Ⅳ TYJ485 0.01 0.10 0.21 0.51 0.00 Ⅳ TYJ460 0.02 0.11 0.18 0.54 0.00 Ⅳ TYJ460 0.00 0.45 0.53 0.02 0.00 Ⅲ TYJ501 0.02 0.04 0.35 0.47 0.00 Ⅳ TYJ501 0.03 0.04 0.52 0.42 0.00 Ⅲ TYJ502 0.02 0.46 0.52 0.01 0.00 Ⅲ TYJ502 0.02 0.03 0.08 0.30 0.07 Ⅳ TYJ489 0.03 0.03 0.33 0.54 0.00 Ⅳ TYJ489 0.03 0.16 0.57 0.24 0.00 Ⅲ TYJ491 0.03 0.18 0.69 0.09 0.00 Ⅲ TYJ491 0.03 0.13 0.53 0.31 0.00 Ⅲ TYJ495 0.03 0.03 0.65 0.30 0.00 Ⅲ TYJ495 0.03 0.18 0.64 0.16 0.00 Ⅲ TYJ506 0.02 0.02 0.08 0.10 0.32 Ⅴ TYJ506 0.01 0.01 0.10 0.07 0.82 Ⅴ TYJ267 0.03 0.19 0.67 0.11 0.00 Ⅲ TYJ267 0.03 0.14 0.49 0.34 0.00 Ⅲ TYJ-BQ 0.03 0.11 0.53 0.33 0.00 Ⅲ TYJ-BQ 0.02 0.15 0.42 0.41 0.00 Ⅲ TYJ268 0.03 0.14 0.73 0.10 0.00 Ⅲ TYJ268 0.03 0.11 0.66 0.20 0.00 Ⅲ TYJC71 0.01 0.02 0.01 0.12 0.83 Ⅴ TYJC71 0.05 0.15 0.68 0.12 0.00 Ⅲ TYJ412 0.02 0.13 0.56 0.28 0.00 Ⅲ TYJ412 0.02 0.05 0.35 0.29 0.00 Ⅲ TYJ690 0.02 0.13 0.57 0.27 0.00 Ⅲ TYJ690 0.02 0.12 0.20 0.57 0.00 Ⅳ TYJ560 0.03 0.05 0.61 0.31 0.00 Ⅲ TYJ560 0.03 0.03 0.24 0.34 0.00 Ⅳ TYJ452 0.03 0.03 0.29 0.53 0.00 Ⅳ TYJ452 0.04 0.22 0.60 0.15 0.00 Ⅲ TYJ455 0.02 0.13 0.50 0.35 0.00 Ⅲ TYJ455 0.03 0.18 0.58 0.21 0.00 Ⅲ TYJ694 0.04 0.16 0.60 0.21 0.00 Ⅲ TYJ694 0.04 0.17 0.50 0.30 0.00 Ⅲ TYJ564 0.03 0.17 0.64 0.16 0.00 Ⅲ TYJ564 0.02 0.05 0.33 0.33 0.00 Ⅲ 表 5 趵突泉岩溶水系统各水样水质评价结果
Table 5. Evaluation results of water quality of each water sample in Baotu Spring karst water system
枯水期 Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ 结果 丰水期 Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ 结果 趵突泉 TYJ684 0.04 0.13 0.58 0.25 0.00 Ⅲ TYJ684 0.03 0.13 0.55 0.29 0.00 Ⅲ TYJ231 0.02 0.11 0.43 0.44 0.00 Ⅳ TYJ231 0.02 0.08 0.15 0.35 0.36 Ⅴ TYJ243 0.02 0.09 0.32 0.53 0.00 Ⅳ TYJ243 0.03 0.17 0.66 0.15 0.00 Ⅲ TYJ263 0.02 0.08 0.17 0.67 0.00 Ⅳ TYJ263 0.03 0.14 0.52 0.31 0.00 Ⅲ TYJ272 0.02 0.08 0.51 0.40 0.00 Ⅲ TYJ272 0.03 0.14 0.41 0.42 0.00 Ⅳ TYJ424 0.01 0.06 0.15 0.18 0.33 Ⅴ TYJ424 0.04 0.15 0.44 0.37 0.00 Ⅲ TYJ254 0.04 0.16 0.63 0.17 0.00 Ⅲ TYJ254 0.03 0.24 0.67 0.06 0.00 Ⅲ TYJ650 0.03 0.13 0.55 0.29 0.00 Ⅲ TYJ650 0.03 0.16 0.59 0.22 0.00 Ⅲ TYJC45 0.03 0.16 0.50 0.31 0.00 Ⅲ TYJC45 0.05 0.28 0.67 0.01 0.00 Ⅲ TYJC54 0.04 0.15 0.61 0.20 0.00 Ⅲ TYJC54 0.03 0.16 0.58 0.23 0.00 Ⅲ TYJ199 0.04 0.40 0.56 0.00 0.00 Ⅲ TYJ199 0.05 0.35 0.59 0.02 0.00 Ⅲ TYJ141 0.03 0.14 0.66 0.17 0.00 Ⅲ TYJ141 0.05 0.22 0.73 0.01 0.00 Ⅲ TYJ696 0.05 0.21 0.74 0.01 0.00 Ⅲ TYJ696 0.06 0.47 0.48 0.00 0.00 Ⅲ TYJQ20 0.02 0.08 0.18 0.50 0.22 Ⅳ TYJQ20 0.04 0.18 0.61 0.17 0.00 Ⅲ TYJ276 0.03 0.04 0.43 0.50 0.00 Ⅳ TYJ276 0.03 0.15 0.51 0.32 0.00 Ⅲ TYJ228 0.02 0.11 0.28 0.58 0.00 Ⅳ TYJ228 0.00 0.28 0.66 0.06 0.00 Ⅲ TYJ699 0.05 0.36 0.58 0.00 0.00 Ⅲ TYJ699 0.03 0.26 0.68 0.02 0.00 Ⅲ TYJC30 0.05 0.27 0.67 0.01 0.00 Ⅲ TYJC30 0.03 0.10 0.72 0.15 0.00 Ⅲ TYJ703 0.07 0.24 0.70 0.00 0.00 Ⅲ TYJ703 0.05 0.52 0.43 0.00 0.00 Ⅱ TYJC58 0.03 0.15 0.57 0.25 0.00 Ⅲ TYJC58 0.02 0.05 0.19 0.47 0.13 Ⅳ TYJ245 0.04 0.16 0.76 0.04 0.00 Ⅲ TYJ245 0.03 0.13 0.52 0.32 0.00 Ⅲ TYJQ15 0.05 0.16 0.78 0.02 0.00 Ⅲ TYJQ15 0.02 0.15 0.51 0.31 0.00 Ⅲ TYJQ16 0.03 0.09 0.57 0.31 0.00 Ⅲ TYJQ16 0.03 0.14 0.38 0.46 0.00 Ⅳ TYJ227 0.02 0.10 0.48 0.39 0.00 Ⅲ TYJ227 0.03 0.10 0.63 0.25 0.00 Ⅲ TYJC44 0.03 0.29 0.68 0.00 0.00 Ⅲ TYJC44 0.03 0.14 0.81 0.02 0.00 Ⅲ TYJC55 0.00 0.05 0.36 0.38 0.06 Ⅳ TYJC55 0.03 0.11 0.21 0.64 0.00 Ⅳ TYJ-DY 0.05 0.44 0.51 0.00 0.00 Ⅲ TYJ-DY 0.02 0.13 0.37 0.48 0.00 Ⅳ TYJ664 0.02 0.05 0.16 0.54 0.19 Ⅳ TYJ664 0.02 0.15 0.48 0.34 0.00 Ⅲ TYJ-GC 0.04 0.14 0.61 0.21 0.00 Ⅲ TYJ-GC 0.06 0.49 0.45 0.00 0.00 Ⅱ TYJ702 0.03 0.14 0.57 0.26 0.00 Ⅲ TYJ702 0.00 0.34 0.62 0.05 0.00 Ⅲ -
[1] 武东强, 邢立亭, 兰晓荀, 孟庆晗, 侯玉松, 赵振华, 孙斌, 袁学圣. 济南岩溶含水介质孔隙结构特征[J]. 中国岩溶, 2021, 40(4):680-688.WU Dongqiang, XING Liting, LAN Xiaoxun, MENG Qinghan, HOU Yusong, ZHAO Zhenhua, SUN Bin, YUAN Xuesheng. Pore structure characteristics of karst water-bearing media in Jinan[J]. Carsologica Sinica, 2021, 40(4):680-688. [2] 赵一, 邹胜章, 申豪勇, 周长松, 樊连杰, 朱丹尼, 李军. 会仙湿地岩溶地下水系统水位动态特征与均衡分析[J]. 中国岩溶, 2021, 40(2):325-333.ZHAO Yi, ZOU Shengzhang, SHEN Haoyong, ZHOU Changsong, FAN Lianjie, ZHU Danni, LI Jun. Dynamic characteristics and equilibrium of water level of the karst groundwater system beneath the Huixian Wetland[J]. Carsologica Sinica, 2021, 40(2):325-333. [3] 李传生, 祁晓凡, 王雨山, 安永会, 邢立亭. 我国北方典型岩溶地下水位对降水及气象指数的响应特征: 以鲁中地区为例[J]. 中国岩溶, 2019, 38(5):643-652.LI Chuansheng, QI Xiaofan, WANG Yushan, AN Yonghui, XING Liting. Response characteristics of typical karst groundwater level of central Shandong Province to precipitation and climatic index[J]. Carsologica Sinica, 2019, 38(5):643-652. [4] 孙斌, 邢立亭, 李常锁. 趵突泉泉域岩溶水典型污染组分变化特征及污染途径[J]. 中国岩溶, 2018, 37(6):810-818.SUN Bin, XING Liting, LI Changsuo. Variation of typical pollution components and pollution way of karst water in Baotu Spring region[J]. Carsologica Sinica, 2018, 37(6):810-818. [5] 迟光耀, 邢立亭, 侯新宇, 黄林显, 杨奕, 张文静. 基于小波分析与Mann-Kendall法的岩溶大泉动态研究[J]. 中国岩溶, 2018, 37(4):515-526.CHI Guangyao, XING Liting, HOU Xinyu, HUANG Linxian, YANG Yi, ZHANG Wenjing. Study of large karst springs using the wavelet analysis and Mann-Kendall methods[J]. Carsologica Sinica, 2018, 37(4):515-526. [6] 隋海波, 康凤新, 李常锁, 韩建江, 邢立亭. 水化学特征揭示的济北地热水与济南泉水关系[J]. 中国岩溶, 2017, 36(1):49-58. doi: 10.11932/karst20170106SUI Haibo, KANG Fengxin, LI Changsuo, HAN Jianjiang, XING Liting. Relationship between north Ji'bei geothermal water and Ji'nan spring water revealed by hydrochemical characteristics[J]. Carsologica Sinica, 2017, 36(1):49-58. doi: 10.11932/karst20170106 [7] Gao S, Li C, Jia C, Zhang H, Guan Q, Wu X, Wang J, Lv M. Health risk assessment of groundwater nitrate contamination: A case study of a typical karst hydrogeological unit in East China[J]. Environmental Science and Pollution Research International, 2020, 27(9): 9274-9287. [8] 王珺瑜, 王家乐, 靳孟贵. 济南泉域岩溶水水化学特征及其成因[J]. 地球科学, 2017, 42(5):821-831.WANG Junyu, WANG Jiale, JIN Menggui. Hydrochemical characteristics and formation causes of karst water in Jinan spring catchment[J]. Earth Science, 2017, 42(5):821-831. [9] 孙斌, 彭玉明, 李常锁, 林广奇. 济南岩溶水系统划分及典型泉域水力联系[J]. 山东国土资源, 2016, 32(10):31-34, 38. doi: 10.3969/j.issn.1672-6979.2016.10.007SUN Bin, PENG Yuming, LI Changsuo, LIN Guangqi. Division of karst water system and hydraulic connection of typical spring fields in Jinan City[J]. Shandong Land and Resources, 2016, 32(10):31-34, 38. doi: 10.3969/j.issn.1672-6979.2016.10.007 [10] 李江柏, 邢立亭, 侯玉松, 邢学睿, 邓忠, 张凤娟, 孟庆晗, 武东强. 基于模糊相似优先比法的济南四大泉群补给来源[J]. 科学技术与工程, 2021, 21(3):918-926.LI Jiangbai, XING Liting, HOU Yusong, XING Xuerui, DENG Zhong, ZHANG Fengjuan, MENG Qinghan, WU Dongqiang. Replenishment sources of four great springs in Jinan based on fuzzy similarity priority ratio[J]. Science Technology and Engineering, 2021, 21(3):918-926. [11] 安强, 魏传江, 贺华翔, 崔英杰, 聂倩文. 基于模糊综合评价法的河南省中原城市群水资源承载力评价研究[J]. 节水灌溉, 2019(12):65-71.AN Qiang, WEI Chuanjiang, HE Huaxiang, CUI Yingjie, NIE Qianwen. Evaluation of water resources carrying capacity of central plains urban agglomeration in Henan Province based on fuzzy comprehensive evaluation method[J]. Water Saving Irrigation, 2019(12):65-71. [12] 崔永正, 刘涛. 黄河流域农业用水效率测度及其节水潜力分析[J]. 节水灌溉, 2021(1):100-103. doi: 10.3969/j.issn.1007-4929.2021.01.018CUI Yongzheng, LIU Tao. Measurement of agricultural water use efficiency and its water saving potential in the Yellow River Basin[J]. Water Saving Irrigation, 2021(1):100-103. doi: 10.3969/j.issn.1007-4929.2021.01.018 [13] 董咏梅, 苏光星, 李占华. 从济西抽水试验探济南泉域西边界[J]. 水资源保护, 2004(3):58-59. doi: 10.3969/j.issn.1004-6933.2004.03.019DONG Yongmei, SU Guangxing, LI Zhanhua. Probing the western boundary of Jinan springs from the water pumping test in Jixi[J]. Water Resources Protection, 2004(3):58-59. doi: 10.3969/j.issn.1004-6933.2004.03.019 [14] 曹星星, 吴攀, 杨诗笛, 刘闪, 廖家豪. 贵州威宁草海流域地下水水化学特征及无机碳通量估算[J]. 环境科学, 2021, 42(4):1761-1771. doi: 10.13227/j.hjkx.202007163CAO Xingxing, WU Pan, YANG Shidi, LIU Shan, LIAO Jiahao. Hydrochemistry characteristics and estimation of the dissolved inorganic carbon flux in the caohai lake wetland catchment of Guizhou Province[J]. Environmental Science, 2021, 42(4):1761-1771. doi: 10.13227/j.hjkx.202007163 [15] 孙瑛, 陈广桐. 模糊数学方法在湖泊水质评价中的应用[J]. 山东工业大学学报, 1994(2):154-158.SUN Ying, CHEN Guangtong. Application of fuzzy mathematics in assessment of lake water quality[J]. Journal of Shandong University (Engineering Science), 1994(2):154-158. [16] 付佳妮, 孙建明, 林青. 青岛市黄岛区潮河水源地地下水数值模拟[J]. 山东国土资源, 2015, 31(7):45-49. doi: 10.3969/j.issn.1672-6979.2015.07.011FU Jiani, SUN Jianming, LIN Qing. Numerical simulation of groundwater of Chaohe river in Huangdao district in Qingdao City[J]. Shandong Land and Resources, 2015, 31(7):45-49. doi: 10.3969/j.issn.1672-6979.2015.07.011 [17] 彭康宁, 张卫, 朱恒华, 周建伟, 万豪杰, 赵骏. 山东招远市地下水水化学特征及水质评价[J]. 安全与环境工程, 2018, 25(4):106-111, 138. doi: 10.13578/j.cnki.issn.1671-1556.2018.04.018PENG Kangning, ZHANG Wei, ZHU Henghua, ZHOU Jianwei, WAN Haojie, ZHAO Jun. Hydro-chemical characteristics and quality evaluation of groundwater in Zhaoyuan City, Shandong[J]. Safety and Environmental Engineering, 2018, 25(4):106-111, 138. doi: 10.13578/j.cnki.issn.1671-1556.2018.04.018 [18] 凌敏华, 左其亭. 水质评价的模糊数学方法及其应用研究[J]. 人民黄河, 2006(1):34-36. doi: 10.3969/j.issn.1000-1379.2006.01.014LING Minhua, ZUO Qiting. Research on fuzzy mathematical method and application of water quality evaluation[J]. Yellow River, 2006(1):34-36. doi: 10.3969/j.issn.1000-1379.2006.01.014 [19] 李贵恒, 冯建国, 鲁统民, 高宗军, 赫明浩. 泰莱盆地地下水水化学特征及水质评价[J]. 水电能源科学, 2019, 37(4):52-55, 121.LI Guiheng, FENG Jianguo, LU Tongmin, GAO Zongjun, HE Minghao. Hydrochemical characteristics and water quality evaluation of groundwater in Tailai Basin[J]. Water Resources and Power, 2019, 37(4):52-55, 121. [20] 冯建国, 鲁统民, 高宗军, 李贵恒, 刘久潭, 杨海博. 新泰市地下水水化学特征及成因探讨[J]. 山东科技大学学报(自然科学版), 2020, 39(1):11-20.FENG Jianguo, LU Tongmin, GAO Zongjun, LI Guiheng, LIU Jiutan, YANG Haibo. Hydrochemical characteristics and causes of groundwater in Xintai City[J]. Journal of Shandong University of Science and Technology (Natural Science Edition), 2020, 39(1):11-20. [21] 孙斌, 邢立亭, 彭玉明, 李常锁. 济南十大泉群特征、形成模式及水循环差异性浅析[J]. 中国岩溶, 2021, 40(3):409-419.SUN Bin, XING Liting, PENG Yuming, LI Changsuo. Characteristics, formation models and water cycle differences of ten major spring groups in Jinan City[J]. Carsologica Sinica, 2021, 40(3):409-419. [22] 管清花, 李福林, 王爱芹, 冯平, 田婵娟, 陈学群, 刘丹. 济南市岩溶泉域地下水化学特征与水环境演化[J]. 中国岩溶, 2019, 38(5):653-662.GUAN Qinghua, LI Fulin, WANG Aiqin, FENG Ping, TIAN Chanjuan, CHEN Xuequn, LIU Dan. Genesis relation of surface and underground rivers and reservoir characteristics in paleokarst drainage systems: A case study of Ordovician karst in the Tahe oilfield[J]. Carsologica Sinica, 2019, 38(5):653-662. [23] 李波, 王金晓, 吴璇, 刘春伟, 徐聪聪, 罗斐, 滕跃. 山东莱芜盆地东部水文地质条件及富水块段特征[J]. 中国岩溶, 2020, 39(5):637-649.LI Bo, WANG Jinxiao, WU Xuan, LIU Chunwei, XU Congcong, LUO Fei, TENG Yue. Hydrogeological conditions and characteristics of water-rich sections in the eastern Laiwu basin, Shandong Province[J]. Carsologica Sinica, 2020, 39(5):637-649. [24] 吴亚楠, 王延岭, 周绍智, 唐丽伟, 焦玉国. 基于综合指数法的泰莱盆地岩溶塌陷风险性评价[J]. 中国岩溶, 2020, 39(3):391-399.WU Yanan, WANG Yanling, ZHOU Shaozhi, TANG Liwei, JIAO Yuguo. Risk assessment of karst collapse in the Tailai basin based on the synthetic index method[J]. Carsologica Sinica, 2020, 39(3):391-399. [25] 高旭波, 王万洲, 侯保俊, 高列波, 张建友, 张松涛, 李成城, 姜春芳. 中国北方岩溶地下水污染分析[J]. 中国岩溶, 2020, 39(3):287-298.GAO Xubo, WANG Wanzhou, HOU Baojun, GAO Liebo, ZHANG Jianyou, ZHANG Songtao, LI Chengcheng, JIANG Chunfang. Analysis of karst groundwater pollution in Northern China[J]. Carsologica Sinica, 2020, 39(3):287-298.