• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

南洞地下河流域水质分析及灌溉适用性评价

李军 杨国丽 朱秀群 徐利 朱丹尼 赵一 李衍青 蓝芙宁

李 军,杨国丽,朱秀群,等. 南洞地下河流域水质分析及灌溉适用性评价[J]. 中国岩溶,2023,42(2):207-219 doi: 10.11932/karst20230203
引用本文: 李 军,杨国丽,朱秀群,等. 南洞地下河流域水质分析及灌溉适用性评价[J]. 中国岩溶,2023,42(2):207-219 doi: 10.11932/karst20230203
LI Jun, YANG Guoli, ZHU Xiuqun, XU Li, ZHU Danni, ZHAO Yi, LI Yanqing, LAN Funing. Water quality analysis and evaluation of irrigation applicability in Nandong underground river basin, Southwest China[J]. CARSOLOGICA SINICA, 2023, 42(2): 207-219. doi: 10.11932/karst20230203
Citation: LI Jun, YANG Guoli, ZHU Xiuqun, XU Li, ZHU Danni, ZHAO Yi, LI Yanqing, LAN Funing. Water quality analysis and evaluation of irrigation applicability in Nandong underground river basin, Southwest China[J]. CARSOLOGICA SINICA, 2023, 42(2): 207-219. doi: 10.11932/karst20230203

南洞地下河流域水质分析及灌溉适用性评价

doi: 10.11932/karst20230203
基金项目: 河北建筑工程学院基本科研业务项目(2022QNJS05,2021QNJS01)、国家重点研发计划课题(2016YFC0502502)和河北省教育厅青年基金项目(QN2020424)资助。
详细信息
    作者简介:

    李军(1990-),男,博士研究生,助教,研究方向为地下水环境。E-mail:lipshydro@163.com

    通讯作者:

    蓝芙宁(1977-),男,博士,副研究员,硕士生导师,研究方向为岩溶水文地质与岩溶生态地质。E-mail:lanfuning@mail.cgs.gov.cn

  • 中图分类号: S274;X826

Water quality analysis and evaluation of irrigation applicability in Nandong underground river basin, Southwest China

  • 摘要: 为查明云南南洞地下河流域水质特征和农业灌溉适用性,分别在雨季和旱季共采集32组地表河水样和24组地下河水样,进行12种常规指标和9种金属元素检测。利用内梅罗综合指数法进行水质评价,利用钠含量法(SC)、钠吸附比法(SAR)、残余碳酸钠法(RSC)和渗透指数法(PI)揭示雨季和旱季水体的农业灌溉适用性。结果显示,区内水体主要呈弱碱性,Ca2+${\rm{HCO}}_3^{-}$为主导型离子。地表河水,常规指标仅NH$_4^{+}$含量超过我国相关水质标准限值,金属元素Al、Pb、Mn和As含量超标,旱季超标率总体高于雨季。地下河水的金属元素Al、Pb、Zn、Cr、Mn和As含量超标,雨季超标率总体高于旱季。工矿业活动排放和裸露型岩溶水文地质是导致水体金属元素含量超标的重要原因。据水质评价结果,区内水质整体较好,旱季和雨季水质处于良好及以上级别分别占比89.29%和85.71%。灌溉适用性评价结果显示,区内水体灌溉适用性整体较好,仅在旱季地表河水As含量(54.70 μg·L−1)高于农田灌溉水质标准中蔬菜和水作标准限值,不适合周边蔬菜和稻田的灌溉。

     

  • 图  1  研究区概况与采样点分布示意

    Figure  1.  Sketch of the study area and the sampling positions

    图  2  旱季南洞地下河流域水化学组分分布特征

    Figure  2.  Distribution characteristics of water components in Nandong underground river basin during the dry season

    图  3  雨季南洞地下河流域水化学组分分布特征

    Figure  3.  Distribution characteristics of water components in Nandong underground river basin during the rainy season

    图  4  旱季和雨季南洞地下河流域水体水质时空分布

    Figure  4.  Spatio-temporal distributions of water quality in Nandong underground river basin during rain period

    表  1  内梅罗综合指数评价等级分级

    Table  1.   Grading of Nemero comprehensive index

    F
    得分<0.80≥0.80~2.50≥2.50~4.25≥4.25~7.20≥7.20
    污染等级
    污染级别优良良好较好较差极差
    下载: 导出CSV

    表  2  灌溉水适用性评分等级

    Table  2.   Index grades for irrigation applicability

    评价参数分类参考值适用等级评价参数分类参考值适用等级
    SC/%<20非常适合SAR/
    (meq·L−11/2
    <10非常适合
    20~40较适合10~18较适合
    40~60适合18~26适合
    60~80不确定>26不适合
    >80不适合
    RSC/meq·L−1<1.25非常适合PI/%>75Ⅰ类(非常适合)
    1.25~2.50适合25~75Ⅱ类(适合)
    >2.50不适合<25Ⅲ类(不适合)
    下载: 导出CSV

    表  3  南洞地下河流域水体中常规指标统计/mg·L−1

    Table  3.   Statistics of the regular ions in Nandong underground river/mg·L−1

    时期统计量pHK+Na+Ca2+Mg2+Cl${\rm{SO}}_4^{2-}$${\rm{HCO}}_3^{-}$${\rm{NO}}_3^{-}$NO$_2^{−}$NH$_4^{+}$F
    地表河水
    旱季 最大值 7.78 11.64 16.86 115.70 26.56 38.72 146.92 266.74 11.39 1.45 7.46 0.71
    最小值 7.07 1.94 1.36 33.86 13.74 2.58 3.74 109.52 nd nd nd 0.04
    平均值 7.41 4.92 10.31 65.25 19.22 19.10 82.02 181.62 3.21 0.21 0.85 0.32
    标准差 0.20 2.66 5.60 25.68 3.57 11.03 49.12 44.89 3.76 0.52 2.27 0.19
    变异系数 0.03 0.54 0.54 0.39 0.19 0.58 0.60 0.25 1.17 2.52 2.65 0.61
    雨季 最大值 7.44 10.71 22.35 111.40 24.92 39.46 156.61 254.66 42.06 1.24 2.66 0.86
    最小值 6.84 3.04 2.44 36.98 11.87 4.70 6.39 96.41 nd nd nd 0.09
    平均值 7.23 5.87 12.32 67.36 17.66 24.65 97.38 160.00 4.75 0.14 0.41 0.37
    标准差 0.16 2.53 6.33 22.27 4.29 10.64 51.27 47.85 12.61 0.48 0.87 0.22
    变异系数 0.02 0.43 0.51 0.33 0.24 0.43 0.53 0.30 2.65 3.34 2.13 0.58
    地下河水
    旱季 最大值 7.96 3.7 33.87 95.59 22.10 18.69 69.88 318.78 11.38 2.66 nd 0.17
    最小值 7.15 0.63 1.37 80.18 14.47 1.96 12.56 279.75 5.58 0.002 nd 0.04
    平均值 7.42 1.43 9.46 86.82 17.53 7.33 38.83 301.16 8.74 0.34 / 0.09
    标准差 0.22 0.93 12.04 5.95 2.92 5.41 22.31 11.02 1.72 0.76 / 0.04
    变异系数 0.03 0.65 1.27 0.07 0.17 0.74 0.57 0.04 0.20 2.27 / 0.47
    雨季 最大值 7.59 4.71 45.10 96.00 20.62 25.34 87.10 299.27 20.87 0.37 0.60 0.23
    最小值 7.25 0.57 0.76 68.71 13.78 1.38 11.68 221.92 2.68 nd nd nd
    平均值 7.40 1.69 9.21 82.00 15.44 7.62 44.14 270.05 11.49 0.03 0.05 0.11
    标准差 0.12 1.35 13.86 8.15 2.02 6.79 25.71 27.54 5.51 0.16 0.33 0.06
    变异系数 0.02 0.80 1.51 0.10 0.13 0.89 0.58 0.10 0.48 4.63 6.28 0.51
    水质标准 地表水(Ⅲ) 6~9 250 250 44.29 1.29 1.0
    地下水(Ⅲ) 6.5~8.5 200 250 250 88.57 3.29 0.64 1.0
    生活饮用水 6.5~8.5 200 250 250 44.29 0.64 1.0
    注:nd表示未检出,“/”表示无计算值,“—”表示无相应参考标准值,黑体字表示此浓度超标。
    下载: 导出CSV

    表  4  南洞地下河流域水体中金属浓度统计/μg·L−1

    Table  4.   Statistics of the metal concentrations in Nandong underground river/μg·L−1

    时期统计量AlCuPbZnCrCdNiMnAs
    地表河水
    旱季 最大值 4 514.00 20.60 43.80 43.90 10.70 1.46 10.90 1 266.00 54.70
    最小值 9.90 0.17 nd nd 1.45 nd 0.78 5.33 1.98
    平均值 440.65 2.16 3.91 3.35 2.97 0.33 2.85 151.47 9.73
    标准差 1 095.81 4.93 11.00 16.00 2.18 0.33 2.28 304.64 13.28
    变异系数 2.49 2.28 2.82 4.77 0.74 0.99 0.80 2.01 1.36
    超标率/% 37.50 0 6.25 0 0 0 0 31.25 25.00
    雨季 最大值 582.00 1.66 1.67 6.06 2.32 nd 3.72 116.00 18.10
    最小值 33.10 0.55 nd nd 1.10 nd 0.95 17.20 2.12
    平均值 200.89 1.20 0.63 1.66 1.72 / 2.38 55.22 6.18
    标准差 162.01 0.36 0.46 1.63 0.41 / 0.69 30.62 4.88
    变异系数 0.81 0.30 0.74 0.98 0.24 / 0.29 0.55 0.79
    超标率/% 37.50 0 0 0 0 0 0 6.25 18.75
    地下河水
    旱季 最大值 130.00 0.75 1.08 291.00 5.70 61.00 2.91 24.40 24.60
    最小值 12.10 nd nd nd 2.68 nd 1.88 2.44 0.09
    平均值 56.49 0.32 0.42 54.83 4.12 5.99 2.56 10.55 5.03
    标准差 34.18 0.28 0.23 85.53 1.02 18.95 0.34 7.40 7.66
    变异系数 0.61 0.87 0.55 1.56 0.25 3.17 0.13 0.70 1.52
    超标率/% 0 0 0 0 0 8.33 0 0 25.00
    雨季 最大值 5 274.00 26.70 124.00 1 311.00 8.51 21.90 13.90 2 035.00 13.80
    最小值 19.90 nd nd nd 2.38 nd 1.88 2.54 0.20
    平均值 1 370.12 6.49 12.26 203.11 4.13 4.34 5.47 322.15 3.02
    标准差 1 656.96 10.12 38.50 439.51 1.81 7.88 3.97 592.32 4.31
    变异系数 1.21 1.56 3.14 2.16 0.44 1.82 0.73 1.84 1.43
    超标率/% 75.00 0 8.33 8.33 0 33.33 0 33.33 8.33
    水质标准 地表水 1 000 50 1 000 50 5 100 50
    地下水 200 1 000 10 1 000 50 5 20 100 10
    生活饮用水 200 1 000 10 1 000 50 5 20 100 10
    注:nd表示未检测出,“—”为无相应参考标准值,“/”为无计算结果,黑体字表示此浓度超标
    下载: 导出CSV

    表  5  南洞地下河流域水体水质评价结果

    Table  5.   Water quality assessment in Nandong underground river basin

    时期统计量单项指数得分内梅罗综合
    指数得分
    Na+Cl${\rm{SO}}_4^{2-}$${\rm{NO}}_3^{-}$NH$_4^{+}$FAlCuPbZnCrCdNiMnAs
    地表河水
    旱季平均值0.050.080.330.070.670.322.200.0020.0780.003 60.060.0680.141.410.191.350
    最大值0.080.150.590.265.780.7122.570.0210.8760.043 90.210.2920.5512.661.0911.369
    最小值0.010.010.010.0010.010.040.05 0.000 20.0010.000 40.030.0060.040.050.040.171
    雨季平均值0.060.100.390.110.320.371.000.0010.0130.001 80.030.0060.120.550.120.583
    最大值0.110.160.630.952.060.862.910.0020.0330.006 10.050.0060.191.160.361.473
    最小值0.010.020.030.0010.010.090.170.000 60.0010.000 40.020.0060.050.170.040.211
    地下河水
    旱季平均值0.040.030.160.100.0250.090.280.000 30.0430.0550.081.1980.130.110.500.834
    最大值0.170.070.280.130.1250.170.650.000 80.1080.2910.1112.2000.150.242.466.119
    最小值0.010.010.050.060.0160.040.060.000 10.0040.000 40.050.0060.090.020.010.112
    雨季平均值0.050.030.180.130.100.106.850.006 51.2260.2030.080.870.273.220.304.089
    最大值0.230.100.350.240.940.2326.370.026 712.4001.3110.174.380.7020.351.3813.231
    最小值0.0040.010.050.030.020.010.100.000 10.0040.000 40.050.0060.090.030.020.117
    下载: 导出CSV

    表  6  南洞地下河流域水体农田灌溉适用性分布

    Table  6.   Distribution of irrigation applicability of Nandong underground river basin

    指标常规指标/mg·L−1金属元素/μg·L−1
    pHClFCuPbZnCrCdAs
    地表河水
    旱季 最大值 7.78 38.72 0.71 20.60 43.80 43.90 10.70 1.46 54.70
    最小值 7.07 2.58 0.04 0.17 nd nd 1.45 nd 1.98
    平均值 7.41 19.10 0.32 2.16 3.91 3.35 2.97 0.33 9.73
    雨季 最大值 7.44 39.46 0.86 1.66 1.67 6.06 2.32 nd 18.10
    最小值 6.84 4.70 0.09 0.55 nd nd 1.10 nd 2.12
    平均值 7.23 24.65 0.37 1.20 0.63 1.66 1.72 / 6.18
    地下河水
    旱季 最大值 7.96 18.69 0.17 0.75 1.08 291.00 5.70 61.00 24.60
    最小值 7.15 1.96 0.04 nd nd nd 2.68 nd 0.09
    平均值 7.42 7.33 0.09 0.32 0.42 54.83 4.12 5.99 5.03
    雨季 最大值 7.59 25.34 0.23 26.70 124.00 1 311.00 8.51 21.90 13.80
    最小值 7.25 1.38 nd nd nd nd 2.38 nd 0.20
    平均值 7.40 7.62 0.11 6.49 12.26 203.11 4.13 4.34 3.02
    农田灌溉
    水质标准
    水作 5.5~8.5 350 2 500 200 2 000 100 10 50
    旱作 5.5~8.5 350 2 1 000 200 2 000 100 10 100
    蔬菜 5.5~8.5 350 2 1 000 200 2 000 100 10 50
    nd-表示未检测出;“/”表示无计算值;pH无纲量。
    下载: 导出CSV

    表  7  南洞地下河流域水体灌溉适用性评价结果

    Table  7.   Assessment results of irrigation applicability of Nandong underground river basin

    指标SARSCPIRCS综合
    地表河水
    旱季平均级别非常适合非常适合Ⅱ(适合)非常适合适合
    最大级别非常适合非常适合Ⅱ(适合)非常适合适合
    雨季平均级别非常适合非常适合Ⅱ(适合)非常适合适合
    最大级别非常适合非常适合Ⅱ(适合)非常适合适合
    地下河水
    旱季平均级别非常适合非常适合Ⅱ(适合)非常适合适合
    最大级别非常适合较适合Ⅱ(适合)非常适合适合
    雨季平均级别非常适合非常适合Ⅱ(适合)非常适合适合
    最大级别非常适合较适合Ⅱ(适合)非常适合适合
    下载: 导出CSV
  • [1] Jiang Y, Wu Y, Groves C, Yuan D, Kambesis P. Natural and anthropogenic factors affecting the groundwater quality in the Nandong karst underground river system in Yunan, China[J]. Journal of Contaminant Hydrology, 2009, 109:49-61. doi: 10.1016/j.jconhyd.2009.08.001
    [2] 袁道先, 蔡桂鸿. 岩溶环境学[M]. 重庆: 重庆出版社, 1988, 20-30.

    YUAN Daoxian, CAI Guihong. Karst Environmentology[M]. Chongqing: Chongqing Publishing House, 1988, 20-30.
    [3] 朱秀群. 南洞岩溶水系统水文地球化学特征及形成机制研究[D]. 北京: 中国地质大学(北京), 2020.

    ZHU Xiuqun. Study on hydrogeochemistry characteristics and formation mechanism in Nandong karst water system[D]. Beijing: China University of Geosciences, 2020.
    [4] 李军, 邹胜章, 梁永平, 林永生, 周长松, 赵一. 会仙岩溶湿地水体金属元素分布与健康风险评价[J]. 环境科学, 2020, 41(11):4948-4957. doi: 10.13227/j.hjkx.202003212

    LI Jun, ZOU Shengzhang, LIANG Yongping, LIN Yongsheng, ZHOU Changsong, ZHAO Yi. Metal distributions and human health risk assessments on waters in Huixian karst wetland, China[J]. Environmental Science, 2020, 41(11):4948-4957. doi: 10.13227/j.hjkx.202003212
    [5] Kohl D H, Shearer B G, Commoner B. Fertiliter nitrogen: Contribution to nitrate in surface water in a Corn Belt Watershed[J]. Science, 1971, 174: 1331-1334.
    [6] Nestler A, Berglund M, Accoe F, Duta S, Xue D, Boeckx P, Taylor P. Isotopes for improved management of nitrate pollution in aqueous resources: Review of surface water field studies[J]. Environmental Science and Pollution Research, 2011, 18: 519-533.
    [7] Burkart M R, Kolpin D W. Hydrologic and land-use factors associated with herbicides and nitrate in near-surface aquifers[J]. Journal of Environmental Quality, 1993, 22(4):646-656.
    [8] MIAO Xiongyi, HAO Yupei, ZHANG Fawang, ZOU Shengzhang, YE Siyuan, XIE Zhouqing. Spatial distribution of heavy metals and their potential sources in the soil of Yellow River Delta: A traditional oil field in China[J]. Environmental Geochemistry and Health, 2019, 42(1):7-26.
    [9] LI Jun, MIAO Xiongyi, HAO Yupei, XIE Zhouqing, ZOU Shengzheng, ZHOU Changsong. Health risk assessment of metals (Cu, Pb, Zn, Cr, Cd, As, Hg, Se) in angling fish with different lengths collected from Liuzhou, China[J]. International Journal of Environmental Research Public Health, 2020, 17, 2192.
    [10] ZHAO Xuemin, YAO Lingai, Ma Qianli, ZHOU Guangjie, XU Zhencheng. Distribution and ecological risk assessment of cadmium in water and sediment in Longjiang River, China: Implication on water quality management after pollution accident[J]. Chemosphere, 2017, 194:107.
    [11] Parise M, Waele J D, Gutierrez F. Current perspectives on the environmental impacts and hazards in karst[J]. Environmental Geology, 2009, 58(2):235-237. doi: 10.1007/s00254-008-1608-2
    [12] Jiang Zhongcheng, Lian Yanqing, Qin Xiaojun. Rocky desertification in Southwest China: Impacts, causes, and restoration[J]. Earth-Science Reviews, 2014, 132(3):1-12.
    [13] Jiang Yongjun, Yan Jun. Effects of land use on hydrochemistry and contamination of karst groundwater from Nandong underground river system, China[J]. Water, Air, and Soil Pollution, 2010, 210:123-141.
    [14] Li Y Q, Jiang Z C, Chen Z H, Yu Y, Lan F, Shan Z J, Sun Y J, Liu P, Tang X B, Rodrigo-Comino J. Anthropogenic disturbances and precipitation affect karst sediment discharge in the Nandong Underground River System in Yunnan, Southwest China[J]. Sustainability, 2020, 12:3006. doi: 10.3390/su12073006
    [15] 莫美仙, 王宇, 李峰, 虞慧. 云南南洞地下河系统边界及性质研究[J]. 中国岩溶, 2019, 38(2):173-185.

    MO Meixian, WANG Yu, LI Feng, YU Hui. Study on the boundaries and properties of the underground river system in Nandong, Yunnan Province[J]. Carsologica Sinica, 2019, 38(2):173-185.
    [16] 伍鹏, 舒倩, 罗小芳, 伍钢. 湘西古丈烂泥田锰矿区地表水污染特征及风险评价[J]. 水土保持通报, 2019, 39(3):70-74. doi: 10.13961/j.cnki.stbctb.2019.03.012

    WU Peng, SHU Qian, LUO Xiaofang, WU Gang. Surface water pollution and risk assessment at a manganese mining area located in mud field in Guzhang county of western Hu'nan Province[J]. Bulletin of Soil and Water Conservation, 2019, 39(3):70-74. doi: 10.13961/j.cnki.stbctb.2019.03.012
    [17] 周巾枚, 蒋忠诚, 徐光黎, 覃小群, 黄奇波, 张连凯. 崇左响水地区地下水水质分析及健康风险评价[J]. 环境科学, 2019, 40(6):2675-2685.

    ZHOU Jinmei, JIANG Zhongcheng, XU Guangli, QIN Xiaoqun, HUANG Qibo, ZHANG Liankai. Water quality analysis and health risk assessment for groundwater at Xiangshui, Chongzuo[J]. Environmental Science, 2019, 40(6):2675-2685.
    [18] 国家环境保护总局. GB 3838—2002 地表水环境质量标准[S].

    State Bureau of Environmental Protection. GB 3838—2002 Environmental quality standards for surface water[S].
    [19] 国家技术监督局. GB/T14848—2017 地下水质量标准[S].

    The State Bureau of Quality and Technical Supervision. GB/T14848—2017 Quality standard for ground water[S].
    [20] 中华人民共和国卫生部. GB5749—2006 生活饮用水卫生标准[S].

    Ministy of Health P. R. China. GB5749—2006 Standard of drinking water quality[S].
    [21] 毛萌, 朱雪芹. 宣化盆地地下水化学特性及灌溉适用性评价[J]. 干旱区资源与环境, 2020, 34(7):142-149. doi: 10.13448/j.cnki.jalre.2020.195

    MAO Meng, ZHU Xueqin. Chemical characteristics of groundwater in Xuanhua basin and assessment of irrigation applicability[J]. Journal of Arid Land Resources and Environment, 2020, 34(7):142-149. doi: 10.13448/j.cnki.jalre.2020.195
    [22] Sen Z. Practical and Applied Hydrogeology[M]. Elsevier, 2015.
    [23] 朱丹尼, 邹胜章, 李军, 樊连杰, 赵一, 谢浩, 朱天龙, 潘民强, 徐利. 会仙岩溶湿地丰平枯水期地表水污染及灌溉适用性评价[J]. 环境科学, 2021, 42(5):2240-2250.

    ZHU Danni, ZOU Shengzhang, LI Jun, FAN Lianjie, ZHAO Yi, XIE Hao, ZHU Tianlong, PAN Minqiang, XU Li. Pollution and irrigation applicability on surface water from wet, normal, and dry periods in Huixian karst wetland, China[J]. Environmental Science, 2021, 42(5):2240-2250.
    [24] 张恒星, 张翼龙, 李政红, 王文中, 郝奇琛. 基于主导离子分类的呼和浩特盆地浅层地下水化学特征研究[J]. 干旱区资源与环境, 2019, 33(4):189-195.

    ZHANG Hengxing, ZHANG Yilong, LI Zhenghong, WANG Wenzhong, HAO Qichen. Chemical characteristics of shallow groundwater in Hohhot basin[J]. Journal of Arid Land Resources and Environment, 2019, 33(4):189-195.
    [25] 王波, 王宇, 张贵, 张华, 代旭升, 康晓波. 滇东南泸江流域岩溶地下水质量及污染影响因素研究[J]. 地球学报, 2021, 42(3):352-362.

    WANG Bo, WANG Yu, ZHANG Gui, ZHANG Hua, DAI Xusheng, KANG Xiaobo. A study of quality and pollution factors of karst groundwater in Lujiang river basin in southeast Yunnan[J]. Acta Geoscientica Sinica, 2021, 42(3):352-362.
    [26] 李军, 邹胜章, 赵一, 赵瑞科, 党志文, 潘民强, 朱丹尼, 周长松. 会仙岩溶湿地地下水主要离子特征及成因分析[J]. 环境科学, 2021, 42(4):1750-1760.

    LI Jun, ZOU Shengzhang, ZHAO Yi, ZHAO Ruike, DANG Zhiwen, PAN Minqiang, ZHU Danni, ZHOU Changsong. Major ionic characteristics and factors of karst groundwater at Huixian karst wetland, China[J]. Environmental Science, 2021, 42(4):1750-1760.
    [27] 周巾枚, 蒋忠诚, 徐光黎, 覃小群, 黄奇波, 张连凯. 崇左响水地区岩溶地下水主要离子特征及控制因素[J]. 环境科学, 2019, 40(5):2143-2151. doi: 10.13227/j.hjkx.201810021

    ZHOU Jinmei, JIANG Zhongcheng, XU Guangli, QIN Xiaoqun, HUANG Qibo, ZHANG Liankai. Major ionic characteristics and controlling factors of karst groundwater at Xiangshui, Chongzuo[J]. Environmental Science, 2019, 40(5):2143-2151. doi: 10.13227/j.hjkx.201810021
    [28] 魏兴, 周金龙, 乃尉华, 曾妍妍, 范薇, 李斌. 新疆喀什三角洲地下水SO42−化学特征及来源[J]. 环境科学, 2019(8):3550-3558.

    WEI Xing, ZHOU Jinlong, NAI Weihua, ZENG Yanyan, FAN Wei, LI Bin. Chemical characteristics and sources of groundwater sulfate in the Kashgar Delta, Xinjiang[J]. Environmental Science, 2019(8):3550-3558.
    [29] Delpla I, Jung A V, Bauers E, Clement M, Thomas O. Impact of climate change on surface water quality in relation to drinking water production[J]. Environment Internation, 2009, 35(8):1225-1233.
    [30] Nolan B T, Hitt K J. Vulnerability of shallow groundwater a drinking-water wells to nitrate in the United States[J]. Environmental Science and Technology, 2006, 40(24):7834-7840.
    [31] 张小文, 何江涛, 黄冠星. 石家庄地区浅层地下水铁锰分布特征及影响因素分析[J]. 地学前缘, 2020. doi: 10.13745/j.esf.sf.2020.7.4.

    ZHANG Xiaowen, HE Jiangtao, HUANG Guanxing. Distribution characteristics and cause analysis of iron and manganese in shallow groundwater in Shijiazhuang area[J]. Earth Science Frontiers, 2020. doi: 10.13745/j.esf.sf.2020.7.4.
    [32] 王宇. 西南岩溶地区岩溶水系统分类、特征及勘查评价要点[J]. 中国岩溶, 2002(2):44-49. doi: 10.3969/j.issn.1001-4810.2002.02.008

    WANG Yu. Classification, features of karst water system and key point for the evaluation to karst water exploration in Southwest China karst area[J]. Carsologica Sinica, 2002(2):44-49. doi: 10.3969/j.issn.1001-4810.2002.02.008
    [33] 刘全吉. 冬小麦、油菜对砷污染反应的比较研究[D]. 武汉: 华中农业大学, 2008.

    LIU Quanji. Comparision of responses of winter wheat (Triticum aestivum L.) and rape (Brassica napus) to arsenic stress pollution[D]. Wuhan: Huazhong Agricultural University, 2008.
    [34] 张秀武. 葫芦岛市锌厂周围砷污染格局与生态风险评价[D]. 北京: 中国科学院, 2008.

    ZHANG Xiuwu. Spatial pattern and risk assessment of soil arsenic around Huludao zinc plant[D]. Beijing: Chinese Academy of Sciences, 2008.
    [35] 国家环境保护局. GB 5084-2005 农田灌溉水质标准[S].

    State Bureau of Environmental Protection. GB 5084-2005 Standard for irrigation water quality[S].
  • 加载中
图(4) / 表(7)
计量
  • 文章访问数:  1397
  • HTML浏览量:  1198
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-29
  • 刊出日期:  2023-04-25

目录

    /

    返回文章
    返回