• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

淄博洪山—寨里煤矿地下水串层污染治理区水化学和硫同位素特征

刁海忠 于桑 李洪亮 尹秀贞 周建伟 刘红 王元新

刁海忠,于 桑,李洪亮,等. 淄博洪山—寨里煤矿地下水串层污染治理区水化学和硫同位素特征[J]. 中国岩溶,2023,42(1):171-181 doi: 10.11932/karst20230113
引用本文: 刁海忠,于 桑,李洪亮,等. 淄博洪山—寨里煤矿地下水串层污染治理区水化学和硫同位素特征[J]. 中国岩溶,2023,42(1):171-181 doi: 10.11932/karst20230113
DIAO Haizhong, YU Sang, LI Hongliang, YIN Xiuzhen, ZHOU Jianwei, LIU Hong, WANG Yuanxin. Analysis on the hydrochemical and sulfur isotope characteristics of the groundwater in cross-strata pollution control area of Hongshan and Zhaili coal mines in Zibo[J]. CARSOLOGICA SINICA, 2023, 42(1): 171-181. doi: 10.11932/karst20230113
Citation: DIAO Haizhong, YU Sang, LI Hongliang, YIN Xiuzhen, ZHOU Jianwei, LIU Hong, WANG Yuanxin. Analysis on the hydrochemical and sulfur isotope characteristics of the groundwater in cross-strata pollution control area of Hongshan and Zhaili coal mines in Zibo[J]. CARSOLOGICA SINICA, 2023, 42(1): 171-181. doi: 10.11932/karst20230113

淄博洪山—寨里煤矿地下水串层污染治理区水化学和硫同位素特征

doi: 10.11932/karst20230113
基金项目: 山东省鲁南地质工程勘察院(山东省地质矿产勘查开发局第二地质大队)开放基金课题(LNY2020-N13)
详细信息
    作者简介:

    刁海忠(1980-),男,高级工程师,从事地质勘查和水工环调查工作。E-mail:359923604@qq.com

    通讯作者:

    李洪亮(1981-),男,正高级工程师,从事水工环地质及地质环境生态修复工作。E-mail:28863208@qq.com

  • 中图分类号: X523

Analysis on the hydrochemical and sulfur isotope characteristics of the groundwater in cross-strata pollution control area of Hongshan and Zhaili coal mines in Zibo

  • 摘要: 在明确淄博洪山—寨里煤矿地下水串层污染治理区内水文地质状况、地下水流场特征等基础上,通过对矿井水、采空区水、矿排水、奥灰水、雨水、地表水的取样分析,掌握治理区的地下水水化学、硫同位素特征。选择接受大气降雨补给的区域、煤矿水聚集区、奥灰水聚集区以及奥灰水与煤矿水交叉混合区,分区对地下水水质现状及煤矿水和奥灰水之间水力联系情况进行分析判断。通过对比分析治理前后研究区水质情况,发现治理后奥灰水仍呈现高${\rm{SO}}_4^{2-}$浓度、高硬度、高TDS特征,且硫酸盐主要来源于煤矿水,治理后洪山、寨里煤矿地下水串层通道依然存在,串层污染情况持续进行,且污染较治理前有加重趋势。则今后治理工作应进一步查清、控制导水通道,控制矿坑水水位,避免其污染奥灰水。

     

  • 图  1  研究区采样点分布图

    Figure  1.  Distribution of sampling points in the study area

    图  2  研究区水质样品Piper三线图

    Figure  2.  Piper diagram of water samples in the study area

    图  3  不同类型水样硫酸盐硫同位素和${\rm{SO}}_4^{2-}$浓度关系图

    Figure  3.  Relational graph of concentration between the sulfate sulfur isotope and ${\rm{SO}}_4^{2-}$ from different types of water samples

    图  4  地下水硫酸盐δ34SSO4与Eh的关系

    Figure  4.  Relationship between sulfate δ34SSO4 and Eh of groundwater

    图  5  硫酸盐δ34S与1/${\rm{SO}}_4^{2-}$的关系

    Figure  5.  Relationship between sulfate δ34S and 1/${\rm{SO}}_4^{2-}$

    图  6  研究区水文地质剖面图

    Figure  6.  Hydrogeological section in the study area

    图  7  治理前后硫酸盐浓度等值线图(mg·L−1

    Figure  7.  Contour map of sulfate concentration in the groundwater before and after treatment(mg·L−1)

    图  8  治理后部分替代井奥灰水中${\rm{SO}}_4^{2-} $和总硬度变化

    Figure  8.  Changes of ${\rm{SO}}_4^{2-} $ and total hardness in Ordovician limestone water in some of the replaced wells after treatment

    表  1  研究区水样水化学测试分析结果(部分指标)

    Table  1.   Analysis of hydrochemical test on water samples in the study area (some indicators)

    编号取样点位置取样类型TDS/mg·L−1总硬度/mg·L−1${\rm{SO}}_4^{2-}$/mg·L−1pH水化学类型
    GW01下黄2下黄村东奥灰水1 364.34964.86531.686.96SO4·HCO3-Ca
    GW02下黄1下黄村西奥灰水1 511.241 028.70514.326.93SO4·Cl-Ca
    GW03SH04牟家村西奥灰水1 693.991 291.00877.726.74SO4·HCO3-Ca·Mg
    GW04上黄1上黄村西奥灰水893.65650.17319.617.33SO4·HCO3-Ca
    GW05河1河东村东北奥灰水966.81725.16257.047.04SO4·Cl·HCO3-Ca
    GW06BJ1河东村东奥灰水464.35415.2990.787.25HCO3-Ca
    GW07河4河东村东南奥灰水1 221.54814.30294.637.10SO4·Cl-Ca
    GW08河2河东村东奥灰水809.08642.97243.617.24SO4·HCO3-Ca
    GW09洼1洼子村东南奥灰水783.23613.66236.017.22SO4·HCO3·Cl-Ca
    GW10南韩1南韩村东奥灰水619.73411.80189.567.19HCO3·SO4-Ca
    GW11X-南韩2南韩村西煤矿水1 500.411 077.53627.117.34SO4·HCO3-Ca·Mg
    GW12北韩3北韩村北奥灰水997.92611.13376.027.15SO4·HCO3-Ca·Na
    GW13北韩1北韩村东奥灰水1 631.19561.96714.617.20SO4-Ca·Na
    GW14东2东官村东北奥灰水796.70587.95251.757.27SO4·HCO3-Ca
    GW15东3东官庄东奥灰水903.58655.81300.627.20SO4·HCO3-Ca
    GW16SH06东官庄东北奥灰水987.65605.79379.337.23SO4·HCO3-Ca·Na
    GW17X-东05东官庄南煤矿水1 411.371 035.19625.407.35SO4-Ca
    GW18罗9罗村南煤矿水2 129.161 402.961 252.587.24SO4-Ca·Mg
    GW19罗2罗村西煤矿水1 056.72777.00572.857.06SO4-Ca·Mg
    GW20K01罗村西奥灰水2 051.441 427.371 145.167.09SO4-Ca·Mg
    GW21SH02大窎桥村西奥灰水2 329.441 610.571 343.756.95SO4-Ca·Mg
    GW22X-大6大窎桥村南煤矿水2 598.161 743.051 563.777.03SO4-Ca·Mg
    GW23X-大7大窎桥村北煤矿水2 075.751 479.05784.437.34SO4-Ca
    GW24鲁1鲁家庄西北煤矿水2 677.711 731.761 442.487.17SO4-Ca·Mg
    GW25X-史3史家村南煤矿水1 474.181 003.10755.467.26SO4-Ca
    GW26矿排1暖水河村南煤矿水2 880.771 856.281 678.236.56SO4-Ca·Mg
    GW27暖2暖水河村东奥灰水1 324.03805.40760.587.41SO4-Ca·Mg
    GW28聂1聂村东奥灰水1 688.10285.35872.557.92SO4-Na
    GW29聂2聂村东奥灰水2 589.871 484.701 466.706.98SO4-Ca·Mg
    GW30X-洪3洪五社区西奥灰水2 276.241 436.521 373.186.80SO4-Ca·Mg
    GW31泗水2小旦村东地表水1 950.881 212.60893.807.45SO4-Ca
    GW32汇1孝妇河地表水2 832.901 300.291 426.658.05SO4·Cl-Ca·Na
    GW33X-小3小窎桥村西煤矿水2 806.591 826.101 652.367.05SO4-Ca·Mg
    GW34X-千3千峪村村中奥灰水505.22440.93104.537.80HCO3·SO4-Ca
    GW35X-前宅2前宅村南奥灰水538.36463.88125.657.34HCO3·SO4-Ca
    GW36雨水淄川城区雨水22.905.036.975.03SO4·Cl·HCO3-Ca
    下载: 导出CSV

    表  2  不同类型水样主要水化学指标对比

    Table  2.   Comparison of main hydrochemical indexes of different types of water samples

    类型pH${\rm{SO}}_4^{2-}$浓度/mg·L−1TDS/mg·L−1总硬度/mg·L−1主要水化学类型
    雨水5.036.9722.95.03SO4·Cl·HCO3-Ca
    地表水7.45~8.05893.80~1 426.651 950.88~2 832.901 212.60~1 300.29SO4-Ca、SO4·Cl-Ca·Na
    奥灰水6.74~7.9290.78~1 466.70464.35~2 589.87285.35~1 610.57HCO3·SO4-Ca、SO4·HCO3-Ca
    煤矿水6.56~7.35572.85~1 678.231 056.72~2 880.77777.00~1 856.28SO4-Ca、SO4-Ca·Mg
    下载: 导出CSV

    表  3  不同类型水样硫酸盐硫同位素组成

    Table  3.   Sulfate sulfur isotope compositions of different types of water samples

    各指标δ34S 范围/‰δ34S平均/‰
    雨水2.50
    地表水−0.24~0.970.37
    奥灰水−3.08~3.710.95
    煤矿水−5.95~0.89−2.13
    下载: 导出CSV

    表  4  部分取样井治理前后水化学特征对比

    Table  4.   Comparison of hydrochemical characteristics before and after treatment in some water samples

    井号取样时间${\rm{SO}}_4^{2-} $总硬度/mg·L−1TDS/mg·L−1硫酸盐污染变化
    上黄12015.2.26243.13454.56718.32
    2019.12.8319.61650.17893.65
    下黄12013.11.8568.12932.991 403.13
    2019.12.8514.321 028.701 511.24
    下黄22015.2.261 539.851 961.562 763.54
    2019.12.7531.68964.861 364.34
    K012014.1.22355.52660.231 019.68
    2019.12.121 145.161 427.372 276.24
    2013.1049.8816.72460.28
    暖22015.8.19183.17150.77795.66
    2019.12.13760.58805.402 051.44
    2013.10690.98373.191 841.72
    聂12014.7.29534.89515.261 436.62
    2019.12.13872.55285.352 598.16
    聂22013.11.18162.11177.331 437.26
    2019.12.131 466.701 484.702 075.75
    罗92013.11.181 076.971 037.071 978.62
    2019.12.111 252.581 402.961 688.10
    2013.10208.45576.52880.30
    洼12015.2.26291.76619.86991.93
    2019.12.9236.01613.66783.23
    2013.10221.58648.881 027.07
    河12014.5.8244.16601.59968.49
    2019.12.8257.04725.16966.81
    河22014.7.29159.77414.97695.07
    2019.12.9243.61642.97809.08
    河42014.5.8223.16718.501 254.91
    2019.12.9294.63814.301 221.54
    2013.10142.82392.70641.61
    南韩12014.7.29151.90420.58687.90
    2019.12.10189.56411.80619.73
    北韩12013.11.8897.86593.182 238.65
    2019.12.10714.61561.961 631.19
    2013.10261.48551.40915.90
    东22014.6.12396.42623.861 245.37
    2019.12.10251.75587.95796.70
    东32013.11.8264.11559.801 014.27
    2019.12.10300.62655.81903.58
    2013.101 732.712 060.903 099.02
    矿排12015.3.91 319.851 914.722 797.92
    2019.12.121 678.231 856.282 880.77
    下载: 导出CSV
  • [1] Khalil K, Hanich L, Bannari A, Zouhri L, Pourret O, Hakkou R. Assessment of soil contamination around an abandoned mine in a semi-arid environment using geochemistry and geostatistics: Pre-work of geochemical process modeling with numerical models[J]. Journal of Geochemical Exploration, 2013, 125:117-129. doi: 10.1016/j.gexplo.2012.11.018
    [2] Bhattacharya P, Sracek O, Eldvall B, Asklund R, Barmen G, Jacks G, Koku J, Gustafsson J, Singh N, Balfors B. Hydrogeochemical study on the contamination of water resources in a part of Tarkwa mining area, Western Ghana[J]. Journal of African Earth Sciences, 2012, 66:72-84.
    [3] Equeenuddin M D, Tripathy S, Saho P K, Panigrahi M K. Hydrogeochemical characteristics of acid mine drainage and water pollution at Makum Coalfield, India[J]. Journal of Geochemical Exploration, 2010, 105:75-82. doi: 10.1016/j.gexplo.2010.04.006
    [4] Rachid Hakkou, Mostafa Benzaazoua, Bruno Bussière. Acid mine drainage at the abandoned kettara mine (Morocco): 1. environmental characterization[J]. Mine Water and the Environment, 2008, 27:145-159. doi: 10.1007/s10230-008-0036-6
    [5] Olias M, Moral F, Galván L, Cerón J C. Groundwater contamination evolution in the Guadiamar and Agrio aquifers after the Aznalcóllar spill: Assessment and environmental implications[J]. Environmental Monitoring & Assessment, 2012, 184(6):3629-3641. doi: 10.1007/s10661-011-2212-6
    [6] 常允新, 冯在敏, 韩德刚. 淄博市洪山、寨里煤矿地下水污染形成原因及防治[J]. 山东地质, 1999, 15(1):41-45.

    CHANG Yunxin, FENG Zaimin, HAN Degang. Origin and prevention of underground water pollution in Hongshan and Zhaili coal mine areas in Zibo city[J]. Geology of Shandong, 1999, 15(1):41-45.
    [7] 徐军祥, 徐品. 淄博煤矿闭坑对地下水的污染及控制[J]. 煤炭科学技术, 2003, 31(10):28-30. doi: 10.3969/j.issn.0253-2336.2003.10.010

    XU Junxiang, XU Pin. Underground water pollution and control with mining district closed in Zibo mine[J]. Coal Science and Technology, 2003, 31(10):28-30. doi: 10.3969/j.issn.0253-2336.2003.10.010
    [8] 吕华, 刘洪量, 马振民, 徐品. 淄博洪山、寨里煤矿地下水串层污染形成原因及防治[J]. 中国煤田地质, 2005, 17(4):24-27, 31.

    LV Hua, LIU Hongliang, MA Zhenmin, XU Pin. Formation and influential factors of Zibo City Hongshan and Zhaili coalmines underground water cross strata pollution[J]. Coalfield Geology in China, 2005, 17(4):24-27, 31.
    [9] Bottrell S, Tellam J, Bartlett R, Hughes A. Isotopic composition of sulfate as a tracer of natural and anthropogenic influences on groundwater geochemistry in an urban sandstone aquifer, Birmi-ngham, UK[J]. Applied Geochemistry, 2008, 23(8):2382-2394. doi: 10.1016/j.apgeochem.2008.03.012
    [10] Jezierski P, Szynkiewicz A, Jsun drysek M O. Natural and anthropogenic origin sulphate in an mountainous groundwater system: S and O isotope evidences[J]. Water, Air and Soil Pollution, 2006, 173(1/2/3/4):81-101.
    [11] 赵春红, 梁永平, 卢海平, 唐春雷, 申豪勇, 王志恒. 娘子关泉域岩溶水SO4 2− 、δ34S特征及其环境意义[J]. 中国岩溶, 2019, 38(6):867-875.

    ZHAO Chunhong, LIANG Yongping, LU Haiping, TANG Chunlei, SHEN Haoyong, WANG Zhiheng. Chemical characteristics and environmental significance of SO4 2− and sulfur isotope in the karst watershed of the Niangziguan spring, Shanxi Province[J]. Carsologica Sinica, 2019, 38(6):867-875.
    [12] 郝春明, 何培雍, 王议, 侯双林, 董建芳. 煤炭开采后峰峰矿区奥陶系岩溶水硫酸盐演化过程研究[J]. 中国岩溶, 2014, 33(4):425-431. doi: 10.11932/karst20140406

    HAO Chunming, HE Peiyong, WANG Yi, HOU Shuanglin, DONG Jianfang. Study on the evolutionary process of sulfate concentration in Ordovician karst water after coal mining in Fengfeng mine[J]. Carsologica Sinica, 2014, 33(4):425-431. doi: 10.11932/karst20140406
    [13] 张秋霞, 周建伟, 林尚华, 魏东, 张黎明, 袁磊. 淄博洪山、寨里煤矿区闭坑后地下水污染特征及成因分析[J]. 安全环境与工程, 2015, 22(6):23-28.

    ZHANG Qiuxia, ZHOU Jianwei, LIN Shanghua, WEI Dong, ZHANG Liming, YUAN Lei. Characteristics and causes of groundwater pollution after Hongshan-Zhaili mine closure in Zibo[J]. Safety Environment and Engineering, 2015, 22(6):23-28.
    [14] 张秋霞, 周建伟, 康凤新, 林尚华, 魏东, 张黎明, 袁磊. 淄博煤矿区地下水污染水动力和同位素解析[J]. 环境科学与技术, 2016, 39(8):116-122.

    ZHANG Qiuxia, ZHOU Jianwei, KANG Fengxin, LIN Shanghua, WEI Dong, ZHANG Liming, YUAN Lei. Hydrodynamic analysis and isotope tracing for probing into groundwater pollution of Zibo mining area[J]. Environmental Science and Technology, 2016, 39(8):116-122.
    [15] 李建中, 周爱国, 周建伟, 柴波, 冯海波, 苏丹辉. 华北煤田矿山开采导致含水层破坏风险评估: 以淄博洪山煤矿为例[J]. 地球科学, 2020, 45(3):1027-1040.

    LI Jianzhong, ZHOU Aiguo, ZHOU Jianwei, CHAI Bo, FENG Haibo, SU Danhui. Risk assessment of aquifer destruction in underground mining coal of North China: A case study of Hongshan mine in Zibo City[J]. Earth Science, 2020, 45(3):1027-1040.
    [16] 高旭波, 王万洲, 侯保俊, 高列波, 张建友, 张松涛, 李成城, 姜春芳. 中国北方岩溶地下水污染分析[J]. 中国岩溶, 2020, 39(3):287-298.

    GAO Xubo, WANG Wanzhou, HOU Baojun, GAO Liebo, ZHANG Jianyou, ZHANG Songtao, LI Chengcheng, JIANG Chunfang. Analysis of karst groundwater pollution in Northern China[J]. Carsologica Sinica, 2020, 39(3):287-298.
    [17] 梁永平, 申豪勇, 赵春红, 王志恒, 唐春雷, 赵一, 谢浩, 石维芝. 对中国北方岩溶水研究方向的思考与实践[J]. 中国岩溶, 2021, 40(3):363-380.

    LIANG Yongping, SHEN Haoyong, ZHAO Chunhong, WANG Zhiheng, TANG Chunlei, ZHAO Yi, XIE Hao, SHI Weizhi. Thinking and practice on the research direction of karst water in Northern China[J]. Carsologica Sinica, 2021, 40(3):363-380.
    [18] 郭达鹏, 康凤新, 陈奂良, 成建梅, 罗伟. 山东淄博沣水泉域岩溶水系统模拟及水源地优化开采预测[J]. 中国岩溶, 2017, 36(3):327-338. doi: 10.11932/karst20170306

    GUO Dapeng, KANG Fengxin, CHEN Huanliang, CHENG Jianmei, LUO Wei. Numerical simulation and optimal exploitation scheme for the karst groundwater recourses system of Fengshui spring basin in Zibo region, Shandong Province, China[J]. Carsologica Sinica, 2017, 36(3):327-338. doi: 10.11932/karst20170306
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  1088
  • HTML浏览量:  623
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-20
  • 刊出日期:  2023-02-25

目录

    /

    返回文章
    返回