Analysis on the hydrochemical and sulfur isotope characteristics of the groundwater in cross-strata pollution control area of Hongshan and Zhaili coal mines in Zibo
-
摘要: 在明确淄博洪山—寨里煤矿地下水串层污染治理区内水文地质状况、地下水流场特征等基础上,通过对矿井水、采空区水、矿排水、奥灰水、雨水、地表水的取样分析,掌握治理区的地下水水化学、硫同位素特征。选择接受大气降雨补给的区域、煤矿水聚集区、奥灰水聚集区以及奥灰水与煤矿水交叉混合区,分区对地下水水质现状及煤矿水和奥灰水之间水力联系情况进行分析判断。通过对比分析治理前后研究区水质情况,发现治理后奥灰水仍呈现高
${\rm{SO}}_4^{2-}$ 浓度、高硬度、高TDS特征,且硫酸盐主要来源于煤矿水,治理后洪山、寨里煤矿地下水串层通道依然存在,串层污染情况持续进行,且污染较治理前有加重趋势。则今后治理工作应进一步查清、控制导水通道,控制矿坑水水位,避免其污染奥灰水。Abstract:Since the closure of Hongshan and Zhaili coal mines in Zibo City, Shandong Province, the pumping and drainage of groundwater has stopped, leading to the rise of water level in coal mines. Consequently, Ordovician limestone water was polluted to different degrees through the hydraulic connection channels such as broken well pipes. The main pollution factors, like ${\rm{SO}}_4^{2-}$ , TDS, total hardness, etc., resulted in the deterioration of karst water below the drinking standard in the study area, and hence seriously affected local residents’ living and economic activities. The main water-bearing strata in the study area include loose rock pore aquifers, clastic rock fissure aquifers or interlayer karst fissure aquifers and carbonate rock karst aquifers. As the main coal measure aquifer in the study area, the fissure aquifer is the direct water source of coal mining. In the natural state, there lacks hydraulic connection between the fissure aquifer and the underlying Ordovician karst aquifer. But because the impermeable layer was damaged by coal mining, the water channel has been formed. During the mining process, the fissure water in the coal measure strata was basically drained, and the Ordovician limestone water entered the pit by the way of jacking recharge. After the coal mine was closed, the level of the coal mine water rose, and the Ordovician limestone water was replenished through the connecting place.In order to provide a scientific basis for future remediation of groundwater pollution in Hongshan and Zhaili coal mine areas and other similar mining areas, this study was carried out on the hydrochemical and isotope characteristics of the water after treatment in the study area, and a qualitative and quantitative analysis was conducted on the quality characteristics and treatment effects of the groundwater. To conduct the hydrochemical and isotope analyses based on hydrogeological conditions, characteristics of groundwater flowing field and sampling points before treatment, a series of monitoring points were set up along the groundwater flowing direction from the upstream of the pollution source area. Sampling types include coal mine water, Ordovician limestone water, rain water, surface water, etc. Coal mine water includes mine water, goaf water and mine drainage. Through the sampling test, the results of hydrochemical and isotope analyses show that there is a hydraulic relation and mutual influence between Ordovician limestone water and coal mine water in the study area. The sulfate in groundwater in this area mainly comes from the oxidation of sulfide minerals in coal-bearing strata, and the Ordovician limestone water is polluted by the coal mine water in cross-strata, which leads to the increase of sulfate concentration in Ordovician limestone water. Results show that the hydrochemical type of Ordovician limestone water is complex, and some Ordovician limestone water is characterized by high ${\rm{SO}}_4^{2-}$ concentration, high hardness and high TDS. The concentration range of high${\rm{SO}}_4^{2-}$ is basically consistent with the coal mine area and its downstream. The normal Ordovician limestone water environment in the area has been disturbed, because of the mixture of extraneous water. The hydrogen and oxygen isotopic compositions of some Ordovician limestone water and coal mine water are similar, and δS values present positive and negative deviations. According to the characteristics of sulfates and sulfur isotopes, the sulfates in Ordovician limestone water mainly come from the cross-strata pollution of coal mine water, and the pollution is more serious than it is before treatment. It is speculated that there is still a hydraulic connection between coal mine water and Ordovician limestone water. Therefore, further treatment is suggested to identify and control the water channel, strengthen the pumping and drainage of coal mine water and encourage the comprehensive utilization. Besides, the water level of mine pit should be controlled to avoid the pollution of Ordovician limestone water. -
表 1 研究区水样水化学测试分析结果(部分指标)
Table 1. Analysis of hydrochemical test on water samples in the study area (some indicators)
编号 取样点 位置 取样类型 TDS/mg·L−1 总硬度/mg·L−1 ${\rm{SO}}_4^{2-}$/mg·L−1 pH 水化学类型 GW01 下黄2 下黄村东 奥灰水 1 364.34 964.86 531.68 6.96 SO4·HCO3-Ca GW02 下黄1 下黄村西 奥灰水 1 511.24 1 028.70 514.32 6.93 SO4·Cl-Ca GW03 SH04 牟家村西 奥灰水 1 693.99 1 291.00 877.72 6.74 SO4·HCO3-Ca·Mg GW04 上黄1 上黄村西 奥灰水 893.65 650.17 319.61 7.33 SO4·HCO3-Ca GW05 河1 河东村东北 奥灰水 966.81 725.16 257.04 7.04 SO4·Cl·HCO3-Ca GW06 BJ1 河东村东 奥灰水 464.35 415.29 90.78 7.25 HCO3-Ca GW07 河4 河东村东南 奥灰水 1 221.54 814.30 294.63 7.10 SO4·Cl-Ca GW08 河2 河东村东 奥灰水 809.08 642.97 243.61 7.24 SO4·HCO3-Ca GW09 洼1 洼子村东南 奥灰水 783.23 613.66 236.01 7.22 SO4·HCO3·Cl-Ca GW10 南韩1 南韩村东 奥灰水 619.73 411.80 189.56 7.19 HCO3·SO4-Ca GW11 X-南韩2 南韩村西 煤矿水 1 500.41 1 077.53 627.11 7.34 SO4·HCO3-Ca·Mg GW12 北韩3 北韩村北 奥灰水 997.92 611.13 376.02 7.15 SO4·HCO3-Ca·Na GW13 北韩1 北韩村东 奥灰水 1 631.19 561.96 714.61 7.20 SO4-Ca·Na GW14 东2 东官村东北 奥灰水 796.70 587.95 251.75 7.27 SO4·HCO3-Ca GW15 东3 东官庄东 奥灰水 903.58 655.81 300.62 7.20 SO4·HCO3-Ca GW16 SH06 东官庄东北 奥灰水 987.65 605.79 379.33 7.23 SO4·HCO3-Ca·Na GW17 X-东05 东官庄南 煤矿水 1 411.37 1 035.19 625.40 7.35 SO4-Ca GW18 罗9 罗村南 煤矿水 2 129.16 1 402.96 1 252.58 7.24 SO4-Ca·Mg GW19 罗2 罗村西 煤矿水 1 056.72 777.00 572.85 7.06 SO4-Ca·Mg GW20 K01 罗村西 奥灰水 2 051.44 1 427.37 1 145.16 7.09 SO4-Ca·Mg GW21 SH02 大窎桥村西 奥灰水 2 329.44 1 610.57 1 343.75 6.95 SO4-Ca·Mg GW22 X-大6 大窎桥村南 煤矿水 2 598.16 1 743.05 1 563.77 7.03 SO4-Ca·Mg GW23 X-大7 大窎桥村北 煤矿水 2 075.75 1 479.05 784.43 7.34 SO4-Ca GW24 鲁1 鲁家庄西北 煤矿水 2 677.71 1 731.76 1 442.48 7.17 SO4-Ca·Mg GW25 X-史3 史家村南 煤矿水 1 474.18 1 003.10 755.46 7.26 SO4-Ca GW26 矿排1 暖水河村南 煤矿水 2 880.77 1 856.28 1 678.23 6.56 SO4-Ca·Mg GW27 暖2 暖水河村东 奥灰水 1 324.03 805.40 760.58 7.41 SO4-Ca·Mg GW28 聂1 聂村东 奥灰水 1 688.10 285.35 872.55 7.92 SO4-Na GW29 聂2 聂村东 奥灰水 2 589.87 1 484.70 1 466.70 6.98 SO4-Ca·Mg GW30 X-洪3 洪五社区西 奥灰水 2 276.24 1 436.52 1 373.18 6.80 SO4-Ca·Mg GW31 泗水2 小旦村东 地表水 1 950.88 1 212.60 893.80 7.45 SO4-Ca GW32 汇1 孝妇河 地表水 2 832.90 1 300.29 1 426.65 8.05 SO4·Cl-Ca·Na GW33 X-小3 小窎桥村西 煤矿水 2 806.59 1 826.10 1 652.36 7.05 SO4-Ca·Mg GW34 X-千3 千峪村村中 奥灰水 505.22 440.93 104.53 7.80 HCO3·SO4-Ca GW35 X-前宅2 前宅村南 奥灰水 538.36 463.88 125.65 7.34 HCO3·SO4-Ca GW36 雨水 淄川城区 雨水 22.90 5.03 6.97 5.03 SO4·Cl·HCO3-Ca 表 2 不同类型水样主要水化学指标对比
Table 2. Comparison of main hydrochemical indexes of different types of water samples
类型 pH ${\rm{SO}}_4^{2-}$浓度/mg·L−1 TDS/mg·L−1 总硬度/mg·L−1 主要水化学类型 雨水 5.03 6.97 22.9 5.03 SO4·Cl·HCO3-Ca 地表水 7.45~8.05 893.80~1 426.65 1 950.88~2 832.90 1 212.60~1 300.29 SO4-Ca、SO4·Cl-Ca·Na 奥灰水 6.74~7.92 90.78~1 466.70 464.35~2 589.87 285.35~1 610.57 HCO3·SO4-Ca、SO4·HCO3-Ca 煤矿水 6.56~7.35 572.85~1 678.23 1 056.72~2 880.77 777.00~1 856.28 SO4-Ca、SO4-Ca·Mg 表 3 不同类型水样硫酸盐硫同位素组成
Table 3. Sulfate sulfur isotope compositions of different types of water samples
各指标 δ34S 范围/‰ δ34S平均/‰ 雨水 2.50 − 地表水 −0.24~0.97 0.37 奥灰水 −3.08~3.71 0.95 煤矿水 −5.95~0.89 −2.13 表 4 部分取样井治理前后水化学特征对比
Table 4. Comparison of hydrochemical characteristics before and after treatment in some water samples
井号 取样时间 ${\rm{SO}}_4^{2-} $ 总硬度/mg·L−1 TDS/mg·L−1 硫酸盐污染变化 上黄1 2015.2.26 243.13 454.56 718.32 ↑ 2019.12.8 319.61 650.17 893.65 下黄1 2013.11.8 568.12 932.99 1 403.13 ↓ 2019.12.8 514.32 1 028.70 1 511.24 下黄2 2015.2.26 1 539.85 1 961.56 2 763.54 ↓ 2019.12.7 531.68 964.86 1 364.34 K01 2014.1.22 355.52 660.23 1 019.68 ↑ 2019.12.12 1 145.16 1 427.37 2 276.24 2013.10 49.88 16.72 460.28 暖2 2015.8.19 183.17 150.77 795.66 ↑ 2019.12.13 760.58 805.40 2 051.44 2013.10 690.98 373.19 1 841.72 聂1 2014.7.29 534.89 515.26 1 436.62 ↑ 2019.12.13 872.55 285.35 2 598.16 聂2 2013.11.18 162.11 177.33 1 437.26 ↑ 2019.12.13 1 466.70 1 484.70 2 075.75 罗9 2013.11.18 1 076.97 1 037.07 1 978.62 ↑ 2019.12.11 1 252.58 1 402.96 1 688.10 2013.10 208.45 576.52 880.30 洼1 2015.2.26 291.76 619.86 991.93 ↓ 2019.12.9 236.01 613.66 783.23 2013.10 221.58 648.88 1 027.07 河1 2014.5.8 244.16 601.59 968.49 ↑ 2019.12.8 257.04 725.16 966.81 河2 2014.7.29 159.77 414.97 695.07 ↑ 2019.12.9 243.61 642.97 809.08 河4 2014.5.8 223.16 718.50 1 254.91 ↑ 2019.12.9 294.63 814.30 1 221.54 2013.10 142.82 392.70 641.61 南韩1 2014.7.29 151.90 420.58 687.90 ↑ 2019.12.10 189.56 411.80 619.73 北韩1 2013.11.8 897.86 593.18 2 238.65 ↓ 2019.12.10 714.61 561.96 1 631.19 2013.10 261.48 551.40 915.90 东2 2014.6.12 396.42 623.86 1 245.37 ↓ 2019.12.10 251.75 587.95 796.70 东3 2013.11.8 264.11 559.80 1 014.27 ↑ 2019.12.10 300.62 655.81 903.58 2013.10 1 732.71 2 060.90 3 099.02 矿排1 2015.3.9 1 319.85 1 914.72 2 797.92 ↑ 2019.12.12 1 678.23 1 856.28 2 880.77 -
[1] Khalil K, Hanich L, Bannari A, Zouhri L, Pourret O, Hakkou R. Assessment of soil contamination around an abandoned mine in a semi-arid environment using geochemistry and geostatistics: Pre-work of geochemical process modeling with numerical models[J]. Journal of Geochemical Exploration, 2013, 125:117-129. doi: 10.1016/j.gexplo.2012.11.018 [2] Bhattacharya P, Sracek O, Eldvall B, Asklund R, Barmen G, Jacks G, Koku J, Gustafsson J, Singh N, Balfors B. Hydrogeochemical study on the contamination of water resources in a part of Tarkwa mining area, Western Ghana[J]. Journal of African Earth Sciences, 2012, 66:72-84. [3] Equeenuddin M D, Tripathy S, Saho P K, Panigrahi M K. Hydrogeochemical characteristics of acid mine drainage and water pollution at Makum Coalfield, India[J]. Journal of Geochemical Exploration, 2010, 105:75-82. doi: 10.1016/j.gexplo.2010.04.006 [4] Rachid Hakkou, Mostafa Benzaazoua, Bruno Bussière. Acid mine drainage at the abandoned kettara mine (Morocco): 1. environmental characterization[J]. Mine Water and the Environment, 2008, 27:145-159. doi: 10.1007/s10230-008-0036-6 [5] Olias M, Moral F, Galván L, Cerón J C. Groundwater contamination evolution in the Guadiamar and Agrio aquifers after the Aznalcóllar spill: Assessment and environmental implications[J]. Environmental Monitoring & Assessment, 2012, 184(6):3629-3641. doi: 10.1007/s10661-011-2212-6 [6] 常允新, 冯在敏, 韩德刚. 淄博市洪山、寨里煤矿地下水污染形成原因及防治[J]. 山东地质, 1999, 15(1):41-45.CHANG Yunxin, FENG Zaimin, HAN Degang. Origin and prevention of underground water pollution in Hongshan and Zhaili coal mine areas in Zibo city[J]. Geology of Shandong, 1999, 15(1):41-45. [7] 徐军祥, 徐品. 淄博煤矿闭坑对地下水的污染及控制[J]. 煤炭科学技术, 2003, 31(10):28-30. doi: 10.3969/j.issn.0253-2336.2003.10.010XU Junxiang, XU Pin. Underground water pollution and control with mining district closed in Zibo mine[J]. Coal Science and Technology, 2003, 31(10):28-30. doi: 10.3969/j.issn.0253-2336.2003.10.010 [8] 吕华, 刘洪量, 马振民, 徐品. 淄博洪山、寨里煤矿地下水串层污染形成原因及防治[J]. 中国煤田地质, 2005, 17(4):24-27, 31.LV Hua, LIU Hongliang, MA Zhenmin, XU Pin. Formation and influential factors of Zibo City Hongshan and Zhaili coalmines underground water cross strata pollution[J]. Coalfield Geology in China, 2005, 17(4):24-27, 31. [9] Bottrell S, Tellam J, Bartlett R, Hughes A. Isotopic composition of sulfate as a tracer of natural and anthropogenic influences on groundwater geochemistry in an urban sandstone aquifer, Birmi-ngham, UK[J]. Applied Geochemistry, 2008, 23(8):2382-2394. doi: 10.1016/j.apgeochem.2008.03.012 [10] Jezierski P, Szynkiewicz A, Jsun drysek M O. Natural and anthropogenic origin sulphate in an mountainous groundwater system: S and O isotope evidences[J]. Water, Air and Soil Pollution, 2006, 173(1/2/3/4):81-101. [11] 赵春红, 梁永平, 卢海平, 唐春雷, 申豪勇, 王志恒. 娘子关泉域岩溶水SO4 2− 、δ34S特征及其环境意义[J]. 中国岩溶, 2019, 38(6):867-875.ZHAO Chunhong, LIANG Yongping, LU Haiping, TANG Chunlei, SHEN Haoyong, WANG Zhiheng. Chemical characteristics and environmental significance of SO4 2− and sulfur isotope in the karst watershed of the Niangziguan spring, Shanxi Province[J]. Carsologica Sinica, 2019, 38(6):867-875. [12] 郝春明, 何培雍, 王议, 侯双林, 董建芳. 煤炭开采后峰峰矿区奥陶系岩溶水硫酸盐演化过程研究[J]. 中国岩溶, 2014, 33(4):425-431. doi: 10.11932/karst20140406HAO Chunming, HE Peiyong, WANG Yi, HOU Shuanglin, DONG Jianfang. Study on the evolutionary process of sulfate concentration in Ordovician karst water after coal mining in Fengfeng mine[J]. Carsologica Sinica, 2014, 33(4):425-431. doi: 10.11932/karst20140406 [13] 张秋霞, 周建伟, 林尚华, 魏东, 张黎明, 袁磊. 淄博洪山、寨里煤矿区闭坑后地下水污染特征及成因分析[J]. 安全环境与工程, 2015, 22(6):23-28.ZHANG Qiuxia, ZHOU Jianwei, LIN Shanghua, WEI Dong, ZHANG Liming, YUAN Lei. Characteristics and causes of groundwater pollution after Hongshan-Zhaili mine closure in Zibo[J]. Safety Environment and Engineering, 2015, 22(6):23-28. [14] 张秋霞, 周建伟, 康凤新, 林尚华, 魏东, 张黎明, 袁磊. 淄博煤矿区地下水污染水动力和同位素解析[J]. 环境科学与技术, 2016, 39(8):116-122.ZHANG Qiuxia, ZHOU Jianwei, KANG Fengxin, LIN Shanghua, WEI Dong, ZHANG Liming, YUAN Lei. Hydrodynamic analysis and isotope tracing for probing into groundwater pollution of Zibo mining area[J]. Environmental Science and Technology, 2016, 39(8):116-122. [15] 李建中, 周爱国, 周建伟, 柴波, 冯海波, 苏丹辉. 华北煤田矿山开采导致含水层破坏风险评估: 以淄博洪山煤矿为例[J]. 地球科学, 2020, 45(3):1027-1040.LI Jianzhong, ZHOU Aiguo, ZHOU Jianwei, CHAI Bo, FENG Haibo, SU Danhui. Risk assessment of aquifer destruction in underground mining coal of North China: A case study of Hongshan mine in Zibo City[J]. Earth Science, 2020, 45(3):1027-1040. [16] 高旭波, 王万洲, 侯保俊, 高列波, 张建友, 张松涛, 李成城, 姜春芳. 中国北方岩溶地下水污染分析[J]. 中国岩溶, 2020, 39(3):287-298.GAO Xubo, WANG Wanzhou, HOU Baojun, GAO Liebo, ZHANG Jianyou, ZHANG Songtao, LI Chengcheng, JIANG Chunfang. Analysis of karst groundwater pollution in Northern China[J]. Carsologica Sinica, 2020, 39(3):287-298. [17] 梁永平, 申豪勇, 赵春红, 王志恒, 唐春雷, 赵一, 谢浩, 石维芝. 对中国北方岩溶水研究方向的思考与实践[J]. 中国岩溶, 2021, 40(3):363-380.LIANG Yongping, SHEN Haoyong, ZHAO Chunhong, WANG Zhiheng, TANG Chunlei, ZHAO Yi, XIE Hao, SHI Weizhi. Thinking and practice on the research direction of karst water in Northern China[J]. Carsologica Sinica, 2021, 40(3):363-380. [18] 郭达鹏, 康凤新, 陈奂良, 成建梅, 罗伟. 山东淄博沣水泉域岩溶水系统模拟及水源地优化开采预测[J]. 中国岩溶, 2017, 36(3):327-338. doi: 10.11932/karst20170306GUO Dapeng, KANG Fengxin, CHEN Huanliang, CHENG Jianmei, LUO Wei. Numerical simulation and optimal exploitation scheme for the karst groundwater recourses system of Fengshui spring basin in Zibo region, Shandong Province, China[J]. Carsologica Sinica, 2017, 36(3):327-338. doi: 10.11932/karst20170306