Experimental study on source compensation of Xiaoling key seepage zone in Jinan karst area
-
摘要: 为了解济南趵突泉泉域重点渗漏带下伏可溶性岩补源渗漏特征、影响因素及对泉水的影响,以小岭重点渗漏带为研究对象,采用野外调查、地球物理勘探、钻探、补源试验、模型评估等方法,分析小岭重点渗漏带下伏可溶性岩石岩性、厚度、岩溶发育情况、影响因素及补源渗漏量,评估补源效果。结果表明:小岭重点渗漏带下伏岩层为炒米店组,岩性主要为中厚层微晶灰岩、薄层状灰岩、泥质条带灰岩,厚度自东向西从7.6 m向56.3 m增厚,岩溶发育较弱,受千佛山断裂影响,发育规模大的断裂带两侧岩溶越发育,岩溶发育带越宽,补源渗漏能力越强。在钻孔补源条件下,小岭重点渗漏带断裂两侧精准补源地段炒米店组地层补源渗漏量为20 023 m3·d−1。在综合考虑其他补源措施的情况下枯水期补源量为15 000 m3·d−1、补源时长1个月对泉水的影响值为2 cm。Abstract:
Located in Baotu Spring area, the study area is a key leakage zone in Xiaoling, a valley with east-west trend surrounded by the foothills of Jiunu Mountain, Xinglong Mountain, Changgeng Mountain and Hujia Mountain. The total area of this leakage zone is 4.03 km2. This study is aimed at understanding the characteristics and influencing factors of the leakage of source supplement of the soluble rock under the key seepage zone of Baotu Spring area in Jinan. Besides, this study may provide a basis for the selection of accurate location of source supplement and for the restoration measures of key leakage zone. In this paper, the thickness of Quaternary system, the buried depth and thickness of underlying soluble rock layer, the development degree of karst fissures, the distribution characteristics of fault structures, and the leakage amount and its effect on spring water in Xiaoling key leakage zone are studied by using the methods of field geological investigation, geophysics exploration, drilling, water injection and recharge experiment, and model simulation and prediction evaluation. The thickness of the Quaternary in the Xiaoling key leakage zone is 2.7-6.0 m, and the underlying strata of the Quaternary are the Chaomidian Formation with the lithology mainly composed of medium-thick micro-crystalline limestone, thin-bedded limestone and argillaceous-banded limestone. Controlled by the sedimentary environment, the formation development of Chaomidian Formation gradually thickens from east to west with its thickness from 7.6 m in the east to 56.3 m in the west. Fault structures are mainly developed with the north-north-west Qianfo Mountain Fault and the near-east-west fault in the key leakage zone. The development of karst is mainly controlled by stratum lithology and fault structure. The karstification of Chaomidian Formation is weak in the study area, affected by the Qianfo Mountain fault. On both sides of the large-scale fault zone, the more developed the karst is, the stronger the leakage of source supplement becomes. Under the condition of drilling and source supplement test, the amount of source-replenishing leakage of the Chaomidian Formation is 20,023 m3·d−1 on both sides of the fault in the Xiaoling key leakage zone. Given other recharge measures, the recharge amount is 15,000 m3·d−1 in the dry season, and the influence value of one-month recharge time on spring water is 2 cm. The research findings show that the influencing factors of recharge amount of the Guaternary underlying soluble rocks are listed as follows: the lithology of the underlying soluble rock, the degree of karst development, the degree of controlling over karst development by the fault structure, the width of the fracture zone of the fault structure, etc.. Besides, the fractured shatter zone in the key leakage zone is a precise source supplement section. -
表 1 千佛山断裂地层厚度统计表
Table 1. Statistics of formation thickness in the Qianfoshan fault
地层厚度/m ZK1 ZK2 ZK3 ZK4 ZK5 第四系 2.7 5.0 4.0 6.0 5.8 炒米店组 56.3 30.0 32.0 42.0 7.6 表 2 注水层厚度与注水量统计表
Table 2. Statistics of thickness of water injection layer and water injection quantity
钻孔号 初始水位埋深/m 注水量/m3·d−1 注水时间/h 稳定水位埋深/m 注水层厚度/m 距离断裂距离 ZK1 19.29 108 11 0.22 11.3 F4断裂西40 m ZK2 22.95 2 880 11 1.20 22.0 F4断裂东13.5 m ZK3 18.86 2400 8 0.30 12.7 F1断裂西4.5 m ZK4 24.20 228 5 1.18 12.4 F1断裂东3 m ZK5 14.69 1.2 F2断裂东7 m 表 3 允许补源量计算综合表
Table 3. Comprehensive table for calculation of allowable supplementary sources
断裂带 水头高度/m 渗水段/m 渗透系数/m·d−1 大井半径/m 渗漏量/m·d−1 F1 18.36 12.70 7.37 7.07 10 582 F4 22.45 22.00 7.06 5.66 9 441 表 4 2017年10月-2018年9月岩溶地下水均衡表
Table 4. Karst groundwater balance from October,2017 to September, 2018
地下水均衡 源汇项 岩溶水补排量/104 m3·d−1 趵突泉泉域 补给 降雨 30.04 侧向补给量 4.76 越流 0.14 河道水库渗流量 12.00 灌溉回渗量 1.52 小计 48.46 排泄 人工开采 26.74 泉水排泄 16.55 侧向排泄量 3.19 越流 1.55 小计 48.03 补排差 0.43 -
[1] 李道真. 山丘区三水转化及应用变参进行区域水资源计算方法研究(上)[J]. 中国人口 · 资源与环境, 1989, 1(1):44-49.LI Daozhen. Study on calculating method of variable parameters in areal water resource evaluation and the interaction between surface water and groundwater[J]. China Population, Resources and Environment, 1989, 1(1):44-49. [2] 李道真. 山丘区三水转化及应用变参进行区域水资源计算方法研究(下)[J]. 中国人口 · 资源与环境, 1990, 2(1):36-44.LI Daozhen. Study on calculating method of variable parameters in areal water resource evaluation and the interaction between surface water and groundwater[J]. China Population, Resources and Environment, 1990, 2(1):36-44. [3] 孟庆斌, 邢立亭, 滕朝霞. 济南泉域三水转化与泉水恢复关系探讨[J]. 山东大学学报(工学版), 2008, 38(5):82-87.MENG Qingbin, XING Liting, TENG Zhaoxia. The relationship of spring protection and transformation pattern between precipitation and groundwater and surface water in the Jinan spring region[J]. Journal of Shandong University (Engineering Science), 2008, 38(5):82-87. [4] 邢立亭, 周娟, 宋广增, 邢学睿. 济南四大泉群泉水补给来源混合比探讨[J]. 地学前缘, 2018, 25(3):260-272.XING Liting, ZHOU Juan, SONG Guangzeng, XING Xuerui. Mixing ratios of recharging water sources for the four largest spring groups in Jinan[J]. Earth Science Frontiers, 2018, 25(3):260-272. [5] 孙斌, 邢立亭, 彭玉明, 李常锁. 济南十大泉群特征、形成模式及水循环差异性浅析[J]. 中国岩溶, 2021, 40(3):409-419.SUN Bin, XING Liting, PENG Yuming, LI Changsuo. Characteristics, formation models and water cycle differences of ten major spring groups in Jinan City[J]. Carsologica Sinica, 2021, 40(3):409-419. [6] 孙斌, 彭玉明. 济南泉域边界条件、水循环特征及水环境问题[J]. 中国岩溶, 2014, 33(3):272-279. doi: 10.11932/zgyr20140302SUN Bin, PENG Yuming. Boundary condition, water cycle and water environment changes in the Jinan spring region[J]. Carsologica Sinica, 2014, 33(3):272-279. doi: 10.11932/zgyr20140302 [7] 周娟, 邢立亭, 滕朝霞, 王立艳. 制约济南岩溶大泉持续喷涌的主因素阀值研究[J]. 华东师范大学学报(自然科学版), 2015(3):146-156.ZHOU Juan, XING Liting, TENG Zhaoxia, WANG Liyan. Study on the threshold of main factors restricting Jinan large karst spring spewing[J]. Journal of East China Normal University(Natural Science), 2015(3):146-156. [8] 李凤丽, 王维平, 徐巧艺, 吴深, 张郑贤. 济南市玉符河多水源回灌岩溶水水质风险评价[J]. 中国岩溶, 2017, 36(5):751-758.LI Fengli, WANG Weiping, XU Qiaoyi, WU Shen, ZHANG Zhengxian. Assessment of water quality risk from karst aquifer recharge with multi-source water in the Yufuhe river, Jinan[J]. Carsologica Sinica, 2017, 36(5):751-758. [9] 李福林, 马吉刚, 李玉国, 金丽, 陈学群, 王德辰, 吴兴波, 卢朝霞, 赵德岭. 济南市泉群喷涌的控制性参数计算及供水保泉宏观调控措施研究[J]. 中国岩溶, 2002, 21(3):188-194. doi: 10.3969/j.issn.1001-4810.2002.03.007LI Fulin, MA Jigang, LI Yuguo, JIN Li, CHEN Xuequn, WANG Dechen, WU Xingbo, LU Zhaoxia, ZHAO Deling. Study on controlling parameters of Jinan spring groups gushing and macro-methods of spring protection and water supply[J]. Carsologica Sinica, 2002, 21(3):188-194. doi: 10.3969/j.issn.1001-4810.2002.03.007 [10] 徐军祥, 邢立亭, 佟光玉, 范立芹. 济南泉域地下水环境演化与保护[J]. 水文地质工程地质, 2004(6):69-73. doi: 10.3969/j.issn.1000-3665.2004.06.015XU Junxiang, XING Liting, TONG Guangyu, FAN Liqin. Groundwater environment evolution and its conservation in Jinan spring catchment[J]. Hydrogeology and Engineering Geology, 2004(6):69-73. doi: 10.3969/j.issn.1000-3665.2004.06.015 [11] 梁永平, 申豪勇, 赵春红, 王志恒, 唐春雷, 赵一, 谢浩, 石维芝. 对中国北方岩溶水研究方向的思考与实践[J]. 中国岩溶, 2021, 40(3):363-380.LIANG Yongping, SHEN Haoyong, ZHAO Chunhong, WANG Zhiheng, TANG Chunlei, ZHAO Yi, XIE Hao, SHI Weizhi. Thinking and practice on the research direction of karst water in Northern China[J]. Carsologica Sinica, 2021, 40(3):363-380. [12] 王志恒, 梁永平, 唐春雷, 申豪勇, 赵春红, 郭芳芳, 谢浩, 赵一. 北方断流岩溶大泉复流的生态修复模式与复流措施效果的定量评价: 以山西太原晋祠泉为例[J]. 中国地质, 2020, 47(6):1726-1738. doi: 10.12029/gc20200610WANG Zhiheng, LIANG Yongping, TANG Chunlei, SHEN Haoyong, ZHAO Chunhong, GUO Fangfang, XIE Hao, ZHAO Yi. Ecological restoration pattern and quantitative evaluation of recirculation measures for northern discontinuous karst spring: A case study of Jinci Spring in Taiyuan City, Shanxi Province[J]. Geology in China, 2020, 47(6):1726-1738. doi: 10.12029/gc20200610 [13] 黄春海, 李升云. 地下水开发研究[M]. 济南: 山东大学出版社, 1988.HUANG Chunhai, LI Shengyun. Study on groundwater exploitation[M]. Jinan: Shandong University Press, 1988. [14] 陈学群, 刘彩虹, 管清花, 田婵娟, 李成光, 辛光明. 趵突泉泉域洼地型强渗漏带特征及保护措施[J]. 人民黄河, 2020, 47(6):1726-1738. doi: 10.3969/j.issn.1000-1379.2020.04.012CHEN Xuequn, LIU Caihong, GUAN Qinghua, TIAN Chanjuan, LI Chengguang, XIN Guangming. Characteristics and protection measures of depression type strong leakage zone in Baotu Spring area[J]. Yellow River, 2020, 47(6):1726-1738. doi: 10.3969/j.issn.1000-1379.2020.04.012 [15] 刘彩虹, 陈学群, 田婵娟, 辛光明, 管清花, 李成光. 小岭村改造项目对济南泉域小岭强渗漏带的影响[J]. 长江科学院院报, 2020, 37(11):40-45. doi: 10.11988/ckyyb.20190872LIU Caihong, CHEN Xuequn, TIAN Chanjuan, XIN Guangming, GUAN Qinghua, LI Chengguang. Impacts of Xiaoling urban village renovation project on leakage zone of Baotu Spring area, Jinan[J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(11):40-45. doi: 10.11988/ckyyb.20190872 [16] 齐欢, 秦品瑞, 赵振华, 丁冠涛. 基于GMS的玉符河人工补源影响研究[J]. 山东国土资源, 2017, 33(11):55-61. doi: 10.3969/j.issn.1672-6979.2017.11.009QI Huan, QIN Pinrui, ZHAO Zhenhua, DING Guantao. Study on impact of artificial recharge of Yufu river based on GMS[J]. Shandong Land and Resources, 2017, 33(11):55-61. doi: 10.3969/j.issn.1672-6979.2017.11.009 [17] 齐欢, 秦品瑞, 丁冠涛. 基于GMS的济南市人工补源影响研究[J]. 灌溉排水学报, 2018, 37(1):98-105.QI Huan, QIN Pinrui, DING Guantao. Impact of artificial recharge in Jinan City based on GMS[J]. Journal of Irrigation and Drainage, 2018, 37(1):98-105. [18] 刘国爱, 赵新华. 济南泉域岩溶水动态特征及有关问题讨论[J]. 山东地质, 1997, 13(2):67-73.LIU Guoai, ZHAO Xinhua. Dynamic characteristics of karst water in Jinan Spring field and discussion on some questions related[J]. Geology of Shandong, 1997, 13(2):67-73. [19] 陈鸿汉, 张永祥. 中国北方岩溶区地下岩溶水库—地表水库联合调蓄[J]. 地学前缘, 2001, 8(1):185-190. doi: 10.3321/j.issn:1005-2321.2001.01.024CHEN Honghan, ZHANG Yongxiang. Coupling-management of the underground karst reservoir and the surface reservoir in the karst area in North China[J]. Earth Science Frontiers, 2001, 8(1):185-190. doi: 10.3321/j.issn:1005-2321.2001.01.024 [20] 王鑫, 武朝军, 谢松彬, 李岩, 郑灿政, 周雨阳. 济南千佛山断裂与文化桥断裂导水透水性研究[J]. 山东国土资源, 2018, 34(4):50-55. doi: 10.3969/j.issn.1672-6979.2018.04.009WANG Xin, WU Chaojun, XIE Songbin, LI Yan, ZHENG Canzheng, ZHOU Yuyang. Study on water conductivity and permeability of Qianfoshan fault and Wenhuaqiao fault in Jinan City[J]. Shandong Land and Resources, 2018, 34(4):50-55. doi: 10.3969/j.issn.1672-6979.2018.04.009 [21] 祁晓凡, 李文鹏, 李传生, 杨丽芝, 马瑜宏. 济南岩溶泉域地下水位与降水的趋势性与持续性[J]. 灌溉排水学报, 2015, 34(11):98-104.QI Xiaofan, LI Wenpeng, LI Chuansheng, YANG Lizhi, MA Yuhong. Trends and persistence of groundwater table and precipitation of Ji'nan karst springs watershed[J]. Journal of Irrigation and Drainage, 2015, 34(11):98-104.