Review of the quantitative study on soil leakage in karst area
-
摘要: 岩溶区特殊的“二元三维”水文地质结构为水土漏失提供了空间条件。水土漏失准确定量一直是岩溶区水土流失研究的重点和难点。以水土漏失的影响因素为核心,深入分析水土漏失对土壤性质、植被、降雨、地貌和人类活动等环境因子的响应特征,系统归纳前人采用径流小区监测法、洞穴滴水示踪法、传统模型法和指纹识别技术等方法获得径流小区、洞穴汇水区和流域尺度的水土漏失定量研究成果,指出水土漏失定量研究存在的主要问题,探讨水土漏失定量研究发展方向,为深入分析水土漏失驱动机制和进一步研究水土漏失与环境因子联动耦合关系提供参考。Abstract: Soil loss in karst area is divided into surface soil loss and soil leakage. The binary and three-dimensional hydrogeologic structure in karst area provides space condition for its soil leakage. Different from surface soil loss, soil leakage is the transport and deposition of soil from the surface to the underground space. The strong karstification provides multifarious paths for soil leakage. Due to the complexity and variability of loss paths, the diversity and interactivity of influencing factors and the multi-interface nature of subsurface hydrological processes, a quantitative analysis of soil leakage in karst area is always one of the important issues in soil erosion research and one of the difficult questions in soil erosion forecasting and monitoring. Focused on influencing factors of soil leakage, this study is aimed at analyzing the effects of environmental factors such as soil properties, vegetation, rainfall characteristics, terrain feature and human activities on soil leakage. For quantitative tracing of sediment source in such levels as runoff plots, cave catchment area and watershed in spatial scale, four main quantitative methods about evaluating soil leakage in karst area, such as simulated runoff plot method, cave drip tracer method, traditional model method and composite fingerprinting, have been analyzed and compared. These four quantitative research methods have their own advantages and limitations. The simulated runoff plot method can quickly and intuitively monitor the soil leakage at a small spatial and temporal scale. However, its result is highly sensitive to external environmental factors such as rainfall and physical and chemical properties of soil. The cave drip method can only trace the soil loss that occurs by cave dropping water, which is quite different from the actual loss in the cave catchment. However, as a new leakage research method, it provides a new idea for leakage monitoring. The determination of soil leakage at watershed scale mainly includes model method and fingerprinting identification method. The traditional model method can directly monitor the leakage at the watershed scale, but there are some limitations in practice. First of all, the traditional method requires clear underground runoff outlet in the basin and no exchange and superposition between underground runoff and surface runoff. Secondly, it is requested that the surface and underground sediment production and drainage only occur in the basin without the disturbance by other basins. Thirdly, for the traditional model method, the underground or surface runoff sediment discharge should be monitored at fixed points, and the accuracy of sediment amount is greatly affected by the location of monitoring point and monitoring time. To some extent, fingerprinting identification method can be used to solve some problems of traditional model method, but it also has some limitations such as the selection of sediment sources, the screening of fingerprinting factors and the correction of retention of them. In this paper, the future study focuses on soil leakage in karst area are also pointed out by analyzing the problems of research on soil leakage. The collation of quantitative research on soil leakage in karst area provides a reference for exploring the driving mechanism of soil leakage and for further studying the coupling relation between soil leakage and environmental factors.
-
Key words:
- karst area /
- soil leakage /
- quantitative study /
- influencing factor
-
[1] 刘拓, 周光辉, 但新球, 杨维西, 熊智平. 中国岩溶石漠化: 现状, 成因与防治[M]. 北京: 中国林业出版社, 2009LIU Tuo, ZHOU Guanghui, DAN Xinqiu, YANG Weixi, XIONG Zhiping. Karst rocky desertification in China: Current situation, causes and prevention[M]. Beijing: China Forestry Publishing House, 2009. [2] 杨杨, 赵良杰, 潘晓东, 夏日元, 曹建文. 西南岩溶山区地下水资源评价方法对比研究: 以寨底地下河流域为例[J]. 中国岩溶, 2022, 41(1):111-123.YANG Yang, ZHAO Liangjie, PAN Xiaodong, XIA Riyuan, CAO Jianwen. Comparative study on evaluation methods of groundwater resources in karst area of Southwest China: Taking Zhaidi underground river basin as an example[J]. Carsologica Sinica, 2022, 41(1):111-123. [3] WU Qinglin, LIANG Hong, XIONG Kangning, LI Rui. Eco-benefits coupling of agroforestry and soil and water conservation under KRD environment: Frontier theories and outlook[J]. Agroforestry Systems, 2019, 93(5):1927-1938. doi: 10.1007/s10457-018-0301-z [4] 杨明德. 论贵州岩溶水赋存的地貌规律性[J]. 中国岩溶, 1982, 1(2):81-91.YANG Mingde. The geomorphological regularities of karst water occurences in Guizhou Plateau[J]. Carsologica Sinica, 1982, 1(2):81-91. [5] 张信宝, 王世杰, 曹建华, 王克林, 孟天友, 白晓永. 西南喀斯特山地水土流失特点及有关石漠化的几个科学问题[J]. 中国岩溶, 2010, 29(3):274-279. doi: 10.3969/j.issn.1001-4810.2010.03.009ZHANG Xinbao, WANG Shijie, CAO Jianhua, WANG Kelin, MENG Tianyou, BAI Xiaoyong. Characteristics of water loss and soil erosion and some scientific problems on karst rocky desertification in Southwest China karst area[J]. Carsologica Sinica, 2010, 29(3):274-279. doi: 10.3969/j.issn.1001-4810.2010.03.009 [6] AN Jiping, WANG Ji, CAI Xiongfei, DUAN Zhibin, YAN Mengmeng. Research progress of soil loss in karst areas under the dual structure of Southwest China[J]. Agricultural Science & Technology 2017, 18(8): 1452-1458. [7] 闫钇全, 刘琦, 邓大鹏, 王涵. 表层岩溶裂隙带土壤地表流失/地下漏失室内模拟实验[J]. 中国岩溶, 2022, 41(2):240-248.YAN Yiquan, LIU Qi, DENG Dapeng, WANG Han. Laboratory simulation study on soil surface loss and underground leakage in the epikarst fissure zone[J]. Carsologica Sinica, 2022, 41(2):240-248. [8] 张信宝, 王世杰. 浅议喀斯特流域土壤地下漏失的界定[J]. 中国岩溶, 2016, 35(5):602-603.ZHANG Xinbao, WANG Shijie. A discussion on the definition of soil leaking in a karst catchment[J]. Carsologica Sinica, 2016, 35(5):602-603. [9] 蒋忠诚, 罗为群, 邓艳, 曹建华, 覃星铭, 李衍青, 杨奇勇. 岩溶峰丛洼地水土漏失及防治研究[J]. 地球学报, 2014, 35(5): 535-542JIANG Zhongcheng, LUO Weiqun, DENG Yan, CAO Jianhua, QIN Xingming, LI Yanqing, YANG Qiyong. The leakage of water and soil in the karst peak cluster depression and its prevention and treatment[J]. Acta Geoeoscientica Sinica,2014,35(5): 535-542 [10] 彭韬, 王世杰, 张信宝, 容丽, 杨涛, 陈波, 汪进阳. 喀斯特坡地地表径流系数监测初报[J]. 地球与环境, 2008, 36(2): 125-129PENG Tao, WANG Shijie, ZHANG Xinbao, RONG Li, YANG Tao, CHEN Bo, WANG Jinyang. Results of preliminary monitoring of surface runoff coefficients for karat slopes[J]. Earth and Environment, 2008, 36(2): 125-129. [11] DAI Quanhou, LIU Zhengtang, SHAO Hongbo, YANG Zhi. Karst bare slope soil erosion and soil quality: A simulation case study[J]. Solid Earth, 2015, 6(3):985-995. doi: 10.5194/se-6-985-2015 [12] 刘正堂, 戴全厚, 杨智. 喀斯特裸坡土壤侵蚀模拟研究[J]. 中国岩溶, 2014, 33(3):356-362. doi: 10.11932/zgyr201403012LIU Zhengtang, DAI Quanhou, YANG Zhi. Study of simulated soil erosion on a bare karst slope[J]. Carsologica Sinica, 2014, 33(3):356-362. doi: 10.11932/zgyr201403012 [13] 吴夏懿, 张志才. 贵州省岩溶地区年径流系数受下垫面影响的分析[J]. 水电能源科学, 2014, 32(5):6-9.WU Xiayi, ZHANG Zhicai. Analysis of annual runoff coefficient variation and influenced by catchment properties in Guizhou Province[J]. Water Resources and Power, 2014, 32(5):6-9. [14] 严友进, 戴全厚, 伏文兵, 李燕. 喀斯特坡地土壤地下侵蚀模拟试验研究[J]. 水土保持学报, 2015, 29(6):7-13. doi: 10.13870/j.cnki.stbcxb.2015.06.002YAN Youjin, DAI Quanhou, FU Wenbin, LI Yan. Experimental study on simulation of underground soil erosion in karst slope[J]. Journal of Soil and Water Conservation, 2015, 29(6):7-13. doi: 10.13870/j.cnki.stbcxb.2015.06.002 [15] DAI Quanhou, PENG Xudong, ZHAO Longshan, SHAO Hongbo, YANG Zhi. Effects of underground pore fissures on soil erosion and sediment yield on karst slopes[J]. Land Degradation and Development, 2017, 28(7):1922-1930. doi: 10.1002/ldr.2711 [16] DAI Quanhou, PENG Xudong, WANG Peijiang, LI Changlan, SHAO Hongbo. Surface erosion and underground leakage of yellow soil on slopes in karst regions of Southwest China[J]. Land Degradation and Development, 2018, 29(8):2438-2448. doi: 10.1002/ldr.2960 [17] YAN Youjin, DAI Quanhou, YUAN Yingfei, PENG Xudong, ZHAO Longshan, YANG Jing. Effects of rainfall intensity on runoff and sediment yields on bare slopes in a karst area, SW China[J]. Geoderma, 2018, 330(1):30-40. [18] 岳坤前. 中国南方典型石漠化区地下水土流失防治技术初步研究与示范[D]. 贵阳: 贵州师范大学, 2016YUE Kunqian. Prevention technology demonstration of subterranean soil erosion in the typical rocky desertification area of South China karst[D]. Guiyang: Guizhou Normal University, 2016. [19] 秦旭梅. 模拟研究喀斯特地区不同地表作物覆盖下水土流失特征[D]. 重庆: 重庆师范大学, 2017QIN Xumei. A simulation study of the characteristics of soil and water loss under different surface crops in karst region[D]. Chongqing: College of Geography and Tourism, 2017. [20] 殷建军, 郭小娇, 姜光辉, 郭芳, 唐伟, 汤庆佳, 刘绍华. 桂林硝盐洞洞穴滴水示踪及气候环境意义研究[J]. 水文, 2017, 37(4):18-23. doi: 10.3969/j.issn.1000-0852.2017.04.004YIN Jianjun, GUO Xiaojiao, JIANG Guanghui, GUO Fang, TANG Wei, TANG Qingjia, LIU Shaohua. Tracer test of drip water in Xiaoyan cave, Guilin and its climatic and environmental significance[J]. Journal of China Hydrology, 2017, 37(4):18-23. doi: 10.3969/j.issn.1000-0852.2017.04.004 [21] 魏兴萍. 岩溶槽谷区水土流失特征及机理研究[D]. 重庆: 西南大学, 2011WEI Xingping. The study on the characteristics and mechanism of soil erosion in karst valley area, Chongqing[D]. Chongqing: Southwest University, 2011. [22] 程倩云, 彭韬, 张信宝, 曹乐, 王世杰. 西南喀斯特小流域地表、地下河流细粒泥沙来源的137Cs和磁化率双指纹示踪研究[J]. 水土保持学报, 2019, 33(2):140-145.CHENG Qianyun, PENG Tao, ZHANG Xinbao, CAO Le, WANG Shijie. Tracing fine sediment sources in the surface and subsurface rivers of a karst watershed using compound fingerprinting with 137Cs and magnetic susceptibility in Southwest China[J]. Journal of Soil and Water Conservation, 2019, 33(2):140-145. [23] 刘雪枚. 基于岩性差异的喀斯特区水土流失特征研究: 以三岔河流域为例[D]. 湘潭: 湖南科技大学, 2019LIU Xuemei. Study on characteristics of soil and water loss based on lithological difference in karst area: A case study of the catchment of Sanchahe area[D]. Xiangtan: Hunan University of Science and Technology, 2019. [24] ZHANG Xinbao, BAI Xiaoyong, LIU Xiuming. Application of a 137Cs fingerprinting technique for interpreting responses of sediment deposition of a karst depression to deforestation in the Guizhou Plateau, China[J]. Science China, 2011(3):431-437. [25] 雷珊, 魏兴萍. 复合指纹法定量示踪西南岩溶洼地小流域泥沙来源[J]. 水土保持研究, 2021, 28(144):48-53.LEI Shan, WEI Xingping. Quantitative tracing of sediment sources in small watersheds in southwestern karst depressions by composite fingerprinting[J]. Research of Soil and Water Conservation, 2021, 28(144):48-53. [26] 岳坤前, 顾再柯, 李瑞. 喀斯特石漠化地区地下水土流失研究进展与展望[J]. 中国水土保持, 2015(5):58-61. doi: 10.3969/j.issn.1000-0941.2015.05.022YUE Kunqian, GU Zaike, LI Rui. Research progress and prospect of soil erosion in karst rocky desertification area[J]. Soil and Water Conservation in China, 2015(5):58-61. doi: 10.3969/j.issn.1000-0941.2015.05.022 [27] 唐益群, 张晓晖, 周洁, 佘恬钰, 杨坪, 王建秀. 喀斯特石漠化地区土壤地下漏失的机理研究: 以贵州普定县陈旗小流域为例[J]. 中国岩溶, 2010, 29(2):121-127. doi: 10.3969/j.issn.1001-4810.2010.02.003TANG Yiqun, ZHANG Xiaohui, ZHOU Jie, SHE Tianyu, YANG Ping, WANG Jianxiu. The mechanism of underground leakage of soil in karst rocky desertification areas: A case in Chenqi small watershed, Puding, Guizhou Province[J]. Carsologica Sinica, 2010, 29(2):121-127. doi: 10.3969/j.issn.1001-4810.2010.02.003 [28] 张信宝, 王世杰, 贺秀斌, 汪阳春, 何永彬. 碳酸盐岩风化壳中的土壤蠕滑与岩溶坡地的土壤地下漏失[J]. 地球与环境, 2007, 35(3):202-206. doi: 10.14050/j.cnki.1672-9250.2007.03.007ZHANG Xinbao, WANG Shijie, HE Xiubin, WANG Yangchun, HE Yongbing. Soil creeping in weathering crusts of carbonate rocks and underground soil losses on karst slopes[J]. Earth and Environment, 2007, 35(3):202-206. doi: 10.14050/j.cnki.1672-9250.2007.03.007 [29] 周春衡, 陈洪松, 付智勇, 任惠敏, 兰秀. 土壤大孔隙形态对喀斯特区水土漏失过程的影响[J]. 水土保持学报, 2020, 34(6):70-76. doi: 10.13870/j.cnki.stbcxb.2020.06.011ZHOU Chunheng, CHEN Hongsong, FU Zhiyong, REN Huimin, LAN Xiu. Effect of soil macropore structures on soil and water loss progress in karst areas[J]. Journal of Soil and Water Conservation, 2020, 34(6):70-76. doi: 10.13870/j.cnki.stbcxb.2020.06.011 [30] 李渊, 刘子琦, 吕小溪, 曹洋, 董晓超. 贵州石漠化地区地下漏失水土理化性质特征[J]. 水土保持学报, 2016, 30(6):111-117. doi: 10.13870/j.cnki.stbcxb.2016.06.020LI Yuan, LIU Ziqi, LV Xiaoxi, CAO Yang, DONG Xiaochao. Physicochemical properties of underground leakage water and soil in rocky desertification area of Guizhou, China[J]. Journal of Soil and Water Conservation, 2016, 30(6):111-117. doi: 10.13870/j.cnki.stbcxb.2016.06.020 [31] 李晋, 熊康宁. 岩溶洞穴土壤颗粒分析及其对水土流失的研究意义[J]. 贵州师范大学学报(自然科学版), 2011, 29(2):16-18. doi: 10.16614/j.cnki.issn1004-5570.2011.02.004LI Jin, XIONG Kangning. Particle analysis of soil in karst caves and its significance for water and soil erosion[J]. Journal of Guizhou Normal University (Natural Sciences), 2011, 29(2):16-18. doi: 10.16614/j.cnki.issn1004-5570.2011.02.004 [32] 罗小杰, 罗程. 岩溶地面塌陷三机理理论及其应用[J]. 中国岩溶, 2021, 40(2):171-188.LUO Xiaojie, LUO Cheng. Three-Mechanism Theory (TMT) of karst ground collapse and its application[J]. Carsologica Sinica, 2021, 40(2):171-188. [33] 杨宇琼, 戴全厚, 李昌兰, 彭旭东, 严友进. 模拟降雨条件下喀斯特坡耕地氮磷元素地下漏失特征[J]. 中国水土保持科学, 2018, 16(3):62-70. doi: 10.16843/j.sswc.2018.03.008YANG Yuqiong, DAI Quanhou, LI Changlan, PENG Xudong, YAN Youjin. Characteristics of nitrogen and phosphorus underground loss in karst slope farmlands under simulated rainfall[J]. Science of Soil and Water Conservation, 2018, 16(3):62-70. doi: 10.16843/j.sswc.2018.03.008 [34] 袁红, 胡宁, 黄运湘, 张扬珠, 何寻阳, 谢红霞. 西南岩溶坡地土壤流失的养分含量响应特征研究[J]. 安徽农业科学, 2012, 40(12):7313-7314. doi: 10.13989/j.cnki.0517-6611.2012.12.150YUAN Hong, HU Ning, HUANG Yunxiang, ZHANG Yangzhu, HE Xunyang, XIE Hongxia. Study on the response of soil nutrient content to soil loss in karst sloping land of Southwest China[J]. Journal of Anhui Agricultural Sciences, 2012, 40(12):7313-7314. doi: 10.13989/j.cnki.0517-6611.2012.12.150 [35] 彭旭东, 戴全厚, 李昌兰, 袁应飞, 赵龙山. 模拟雨强和地下裂隙对喀斯特地区坡耕地养分流失的影响[J]. 农业工程学报, 2017, 33(2):131-140. doi: 10.11975/j.issn.1002-6819.2017.02.018PENG Xudong, DAI Quanhou, LI Changlan, YUAN Yingfei, ZHAO Longshan. Effect of simulated rainfall intensities and underground pore fissure degrees on soil nutrient loss from slope farmlands in karst region[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(2):131-140. doi: 10.11975/j.issn.1002-6819.2017.02.018 [36] 李昌兰, 戴全厚, 彭旭东, 袁应飞. 喀斯特裸坡地地下孔(裂)隙流养分流失特征研究[J]. 水土保持学报, 2016, 30(3):19-23. doi: 10.13870/j.cnki.stbcxb.2016.03.004LI Changlan, DAI Quanhou, PENG Xudong, YUAN Yingfei. Characteristics of nutrient loss in runoff of underground pore fissure on the karst bare slope[J]. Journal of Soil and Water Conservation, 2016, 30(3):19-23. doi: 10.13870/j.cnki.stbcxb.2016.03.004 [37] 张信宝. 造林困难地区植被恢复的科学检讨及建议[J]. 人民长江, 2004, 35(10):6-7. doi: 10.3969/j.issn.1001-4179.2004.10.003ZHANG Xinbao. Scientific examination and suggestions of vegetation restoration in afforestation-difficult area[J]. Yangtze River, 2004, 35(10):6-7. doi: 10.3969/j.issn.1001-4179.2004.10.003 [38] 张信宝, 王世杰, 曹建华. 西南喀斯特山地的土壤硅酸盐矿物物质平衡与土壤流失[J]. 地球与环境, 2009, 37(2):97-102. doi: 10.14050/j.cnki.1672-9250.2009.02.017ZHANG Xinbao, WANG Shijie, CAO Jianhua. Mass balance of silicate minerals in soils and soil losses in the karst mountainous regions of Southwest China[J]. Earth and Environment, 2009, 37(2):97-102. doi: 10.14050/j.cnki.1672-9250.2009.02.017 [39] 解明曙. 林木根系固坡土力学机制研究[J]. 水土保持学报, 1990, 4(3):7-14. doi: 10.13870/j.cnki.stbcxb.1990.03.002XIE Mingshu. A study on the soil mechanical role of tree roots in the stability of slopes[J]. Journal of Soil and Water Conservation, 1990, 4(3):7-14. doi: 10.13870/j.cnki.stbcxb.1990.03.002 [40] 石燕金, 周运超. 石漠化喀斯特皆伐迹地的土壤侵蚀特征[J]. 中国水土保持科学, 2018, 16(5):114-119. doi: 10.16843/j.sswc.2018.05.014SHI Yanjin, ZHOU Yunchao. Soil erosion characteristics of clear cutting plots in karst rocky desertification area[J]. Science of Soil and Water Conservation, 2018, 16(5):114-119. doi: 10.16843/j.sswc.2018.05.014 [41] 周梦玲, 郭建斌, 周金星, 王磊, 陈霄, 闫伟鹏. 丹江口库区喀斯特坡地不同植被覆盖类型的产流产沙特征[J]. 中国水土保持科学, 2020, 18(2):81-87. doi: 10.16843/j.sswc.2020.02.010ZHOU Mengling, GUO Jianbin, ZHOU Jinxing, WANG Lei, CHEN Xiao, YAN Weipeng. Characteristics of runoff and sediment yield from different vegetation types in the karst region of Danjiangkou Reservoir area[J]. Science of Soil and Water Conservation, 2020, 18(2):81-87. doi: 10.16843/j.sswc.2020.02.010 [42] 孔洁. 典型表层岩溶泉域水土漏失过程与泥沙来源研究[D]. 北京: 中国地质大学(北京), 2018KONG Jie. Leakage water and soil process and sources of sediment from typical epikarst springs[D]. Beijng: China University of Geosciences (Beijing), 2018 [43] Gosden Ms. Peat deposits of scar close Ingleborough, Yorkshire[J]. Joumal of Ecology, 1968, 56(2):345-353. doi: 10.2307/2258237 [44] 杨长春. 喀斯特地区土壤侵蚀研究进展[J]. 中国水土保持, 2012(3):15-17. doi: 10.3969/j.issn.1000-0941.2012.03.006YANG Changchun. Research progress of soil erosion in karst area[J]. Soil and Water Conservation in China, 2012(3):15-17. doi: 10.3969/j.issn.1000-0941.2012.03.006 [45] 王正雄. 岩溶槽谷区坡地水土流失过程及控制因素分析[D]. 重庆: 西南大学, 2019WANG Zhengxiong. Analysis of soil and water loss process and control factors in slope land of karst trough area[D]. Chongqing: Southwest University, 2019 [46] 周永华. 岩溶洼地水土漏失特征及防治技术试验[D]. 南宁: 南宁师范大学, 2019ZHOU Yonghua. Soil and water leaking characteristics in karst depressions and its prevention and control technology test[D]. Nanning: Nanning Normal University, 2019. [47] 胡奕, 戴全厚, 王佩将. 喀斯特坡耕地产流特征及影响因素[J]. 水土保持学报, 2012, 26(6):46-51. doi: 10.13870/j.cnki.stbcxb.2012.06.028HU Yi, DAI Quanhou, WANG Peijiang. Runoff features and the influencing factors on karst sloping farmland[J]. Journal of Soil and Water Conservation, 2012, 26(6):46-51. doi: 10.13870/j.cnki.stbcxb.2012.06.028 [48] 杨智, 戴全厚, 黄启鸿, 吴学强. 典型喀斯特坡面产流过程试验研究[J]. 水土保持学报, 2010, 24(4):78-81. doi: 10.13870/j.cnki.stbcxb.2010.04.022YANG Zhi, DAI Quanhou, HUANG Qihong, WU Xueqiang. Experimental study of runoff processes on typical karst slope[J]. Journal of Soil and Water Conservation, 2010, 24(4):78-81. doi: 10.13870/j.cnki.stbcxb.2010.04.022 [49] 朱晓锋, 陈洪松, 付智勇, 王克林, 张伟, 徐勤学, 方荣杰. 喀斯特灌丛坡地土壤–表层岩溶带产流及氮素流失特征[J]. 应用生态学报, 2017, 28(7):2197-2206. doi: 10.13287/j.1001-9332.201707.029ZHU Xiaofeng, CHEN Hongsong, FU Zhiyong, WANG Kelin, ZHANG Wei, XU Qinxue, FANG Rongjie. Runoff and nitrogen loss characteristics in soil-epikarst system on a karst shrub hillslope[J]. Chinese Journal of Applied Ecology, 2017, 28(7):2197-2206. doi: 10.13287/j.1001-9332.201707.029 [50] 罗为群, 蒋忠诚, 韩清延, 曹建华, 裴建国. 岩溶峰丛洼地不同地貌部位土壤分布及其侵蚀特点[J]. 中国水土保持, 2008, 2(12):46-49. doi: 10.3969/j.issn.1000-0941.2008.12.014LUO Weiqun, JIANG Zhongcheng, HAN Qingyan, CAO Jianhua, PEI Jianguo. Soil distribution and erosion characteristics in different landforms of karst peak cluster depression[J]. Soil and Water Conservation in China, 2008, 2(12):46-49. doi: 10.3969/j.issn.1000-0941.2008.12.014 [51] 苏维词. 中国西南岩溶山区石漠化的现状成因及治理的优化模式[J]. 水土保持学报, 2002, 16(2):29-32. doi: 10.3321/j.issn:1009-2242.2002.02.008SU Weici. Controlling model for rocky desertification of karst mountainous region and its preventing strategy in Southwest, China[J]. Journal of Soil Water Conservation, 2002, 16(2):29-32. doi: 10.3321/j.issn:1009-2242.2002.02.008 [52] 魏兴萍, 袁道先, 谢世友. 运用137Cs与土壤营养元素探讨重庆岩溶槽谷区山坡土壤的流失和漏失[J]. 水土保持学报, 2010, 24(6):16-19.WEI Xingping, YUAN Daoxian, XIE Shiyou. Study on soil erosion and loss on slope in karst mountain valley area of Chongqing valley with 137Cs and soil nutrient elements[J]. Journal of Soil and Water Conservation, 2010, 24(6):16-19. [53] 熊康宁, 李晋, 龙明忠. 典型喀斯特石漠化治理区水土流失特征与关键问题[J]. 地理学报, 2012, 67(7):878-888. doi: 10.11821/xb201207002XIONG Kangning, LI Jin, LONG Mingzhong. Features of soil and water loss and key issues in demonstration areas for combating karst rocky desertification[J]. Acta Geographica Sinica, 2012, 67(7):878-888. doi: 10.11821/xb201207002 [54] 彭旭东, 戴全厚, 杨智, 赵龙山. 喀斯特山地石漠化过程中地表地下侵蚀产沙特征[J]. 土壤学报, 2016, 53(5):1237-1248. doi: 10.11766/trxb201601110565PENG Xudong, DAI Quanhou, YANG Zhi, ZHAO Longshan. Sediment yield of surface and underground erosion in the process of rocky desertification of karst area[J]. Acta Pedologica Sinica, 2016, 53(5):1237-1248. doi: 10.11766/trxb201601110565 [55] 李阳兵. 中国西南岩溶山地石漠化转型演变解析[J]. 中国岩溶, 2021, 40(4):698-706.LI Yangbing. Analysis on transformation and evolution of rocky desertification in karst mountainous areas of Southwest China[J]. Carsologica Sinica, 2021, 40(4):698-706. [56] 吴清林, 梁虹, 熊康宁, 李瑞. 喀斯特地区水土漏失监测方法评述[J]. 贵州师范大学学报(自然科学版), 2020, 38(3):30-38. doi: 10.16614/j.gznuj.zrb.2020.03.004WU Qinglin, LIANG Hong, XIONG Kangning, LI Rui. Reviews of soil leakage loss monitoring in karst areas[J]. Journal of Guizhou Normal University (Natural Sciences), 2020, 38(3):30-38. doi: 10.16614/j.gznuj.zrb.2020.03.004 [57] 李晋, 熊康宁, 王仙攀. 喀斯特地区小流域地下水土流失观测研究[J]. 中国水土保持, 2012, 5(6):38-40. doi: 10.3969/j.issn.1000-0941.2012.06.016LI Jin, XIONG Kangning, WANG Xianpan. Observation of subterranean soil and water loss of karst area[J]. Soil and Water Conservation in China, 2012, 5(6):38-40. doi: 10.3969/j.issn.1000-0941.2012.06.016 [58] 赵恬茵, 王志兵, 吴媛媛, 傅良同, 高礼安. 基于指纹识别技术的小流域泥沙来源研究进展[J]. 水土保持研究, 2020, 27(2):377-382. doi: 10.13869/j.cnki.rswc.2020.02.053ZHAO Tianyin, WANG Zhibing, WU Yuanyuan, FU Liangtong, GAO Lian. A Review of studies on sediment sources of small catchments using composite fingerprinting[J]. Research of Soil and Water Conservation, 2020, 27(2):377-382. doi: 10.13869/j.cnki.rswc.2020.02.053 [59] 杨明义, 田均良, 刘普灵. 应用137Cs研究小流域泥沙来源[J]. 土壤侵蚀与水土保持学报, 1999, 5(3):49-53.YANG Mingyi, TIAN Junliang, LIU Puling. Studying sediment sources in small watershed using 137Cs tracing[J]. Journal of Soil and Water Conservation, 1999, 5(3):49-53. [60] 杨明义, 徐龙江. 黄土高原小流域泥沙来源的复合指纹识别法分析[J]. 水土保持学报, 2010, 24(2):30-34. doi: 10.13870/j.cnki.stbcxb.2010.02.018YANG Mingyi, XU Longjiang. Fingerprinting suspended sediment sources in a small catchment on the Loess Plateau[J]. Journal of Soil and Water Conservation, 2010, 24(2):30-34. doi: 10.13870/j.cnki.stbcxb.2010.02.018 [61] 赵恬茵, 王志兵, 吴媛媛, 傅良同, 高礼安. 淤地坝沉积泥沙解译小流域土壤侵蚀信息研究进展[J]. 水土保持研究, 2020, 27(4):400-404. doi: 10.13869/j.cnki.rswc.2020.04.048ZHAO Tianyin, WANG Zhibing, WU Yuanyuan, FU Liangtong, GAO Lian. Review of studies on using sediment in check dam to interpret soil erosion information of small catchment[J]. Research of Soil and Water Conservation, 2020, 27(4):400-404. doi: 10.13869/j.cnki.rswc.2020.04.048 [62] 赵恬茵. 复合指纹识别法研究黄土高原小流域泥沙来源[D]. 咸阳: 西北农林科技大学, 2017ZHAO Tianyin. Study on sediment sources in catchments on the Loess Plateau using composite fingerprinting[D]. Xianyang: Northwest A&F University, 2017.
点击查看大图
计量
- 文章访问数: 1008
- HTML浏览量: 587
- PDF下载量: 73
- 被引次数: 0