• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

方解石在不同水环境中的溶解与沉淀作用

马诚佑 康志强 张立浩 玄惠灵 农培杰 潘树芬 孔琪琪 朱义年 朱宗强

马诚佑,康志强,张立浩,等. 方解石在不同水环境中的溶解与沉淀作用[J]. 中国岩溶,2023,42(1):29-39, 51 doi: 10.11932/karst20230102
引用本文: 马诚佑,康志强,张立浩,等. 方解石在不同水环境中的溶解与沉淀作用[J]. 中国岩溶,2023,42(1):29-39, 51 doi: 10.11932/karst20230102
MA Chengyou, KANG Zhiqiang, ZHANG Lihao, XUAN Huiling, NONG Peijie, PAN Shufen, KONG Qiqi, ZHU Yinian, ZHU Zongqiang. Dissolution and precipitation of calcite in different water environments[J]. CARSOLOGICA SINICA, 2023, 42(1): 29-39, 51. doi: 10.11932/karst20230102
Citation: MA Chengyou, KANG Zhiqiang, ZHANG Lihao, XUAN Huiling, NONG Peijie, PAN Shufen, KONG Qiqi, ZHU Yinian, ZHU Zongqiang. Dissolution and precipitation of calcite in different water environments[J]. CARSOLOGICA SINICA, 2023, 42(1): 29-39, 51. doi: 10.11932/karst20230102

方解石在不同水环境中的溶解与沉淀作用

doi: 10.11932/karst20230102
基金项目: 国家自然科学基金项目(42063003;41763012);广西自然科学基金项目(2018GXNSFAA050044)
详细信息
    作者简介:

    马诚佑(1994-),男,硕士研究生,研究方向为岩溶区环境地球化学。E-mail:machengyou2022@163.com

    通讯作者:

    朱宗强(1982-),男,博士,教授,研究方向为岩溶区重金属污染土壤修复。E-mail:zhuzongqiang@glut.edu.cn

  • 中图分类号: P642.25

Dissolution and precipitation of calcite in different water environments

  • 摘要: 方解石的溶解与沉淀是各种岩溶地质作用的基础,但对其在不同水环境条件下的溶解过程和溶解度有待深入研究。文章通过实验研究了天然方解石(CaCO3)在不同水环境中的溶解作用。结果表明 方解石在纯净水、空气饱和水、CO2饱和水、初始pH=3的溶液和初始pH=9的溶液中溶解时,Ca浓度随着溶解时间的增加呈现缓慢升高并趋于稳定,在溶解4 080 h后达到0.444 4~0.469 6 mmol·L−1、0.402 0~0.415 4 mmol·L−1、0.573 9~0.659 7 mmol·L−1、1.098 1 mmol·L−1和0.448 9 mmol·L−1;方解石(CaCO3)在纯净水中溶解时溶度积(Ksp)为10−8.48±0.08~10−8.48±0.13,吉布斯生成自由能ΔGf˚[CaCO3]为−1 129.82±0.51~−1 129.87±0.76 kJ·mol−1。在天然水中溶解时,桂林漓江水中Ca和Mg的浓度在达到饱和状态后呈现下降趋势;广西北海海水相对于碳酸盐矿物处于饱和或过饱和状态;桂林雁山和丫吉地下水相对于方解石、文石和白云石处于饱和或过饱和状态。研究结果进一步证明了水环境对方解石溶解的显著影响,研究结果可为岩溶地质作用的地球化学模拟提供参考。

     

  • 图  1  方解石在不同水溶液中溶解前和溶解4080 h后的XRD图谱

    Figure  1.  XRD patterns of calcite before and after dissolution in different types of water for 4,080 h

    图  2  方解石在不同水溶液中溶解前和溶解4 080 h后的扫描电镜图

    Figure  2.  SEM images‎ of calcite before and after dissolution in different types of water for 4,080 h

    图  3  方解石在不同水溶液中溶解时液相的变化

    Figure  3.  Aqueous variation during the dissolution of calcite in different types of water

    图  4  方解石在天然水中溶解时Ca和Mg浓度与碳酸盐矿物饱和指数的关系

    Figure  4.  Relation between Ca and Mg concentrations and saturation indexes of carbonate minerals during the dissolution of calcite in types of natural water

    表  1  地表水和地下水的理化特性

    Table  1.   Physicochemical characteristics of surface water and groundwater

    样品pHEC / μs·cm−1浓度 / mg·L−1
    CaMgMnFeNaK${\rm{HCO}}_3^{-}$+${\rm{CO}}_3^{2-}$Cl${\rm{NO}}_3^{-}$${\rm{SO}}_4^{2-}$
    漓江水7.49134.920.371.520.052.601.2957.813.924.7610.29
    北海海水7.9441 700340.41 0560.206 509222119.5914782 114
    雁山地下水7.6336567.226.700.012.560.40227.184.885.5317.64
    丫吉地下水7.8633561.873.500.010.031.443.26200.043.283.9012.51
    下载: 导出CSV

    表  2  方解石(CaCO3)在不同水环境中的溶解(25 ℃)

    Table  2.   Dissolution of calcite (CaCO3) in different types of water at 25 ℃

    样品号溶解时间 / hpH浓度 / mmol·L−1log_IAP
    (≈log_Ksp)

    log_IAP平均值
    ΔGf° /
    kJ·mol−1
    ΔGf°平均值 /
    kJ·mol−1
    CaHCO3+CO3
    纯净水12 6408.640.452 10.640 0−8.42−8.48−1 129.52−1 129.82
    3 3608.510.457 40.818 6−8.44±0.08−1 129.60±0.51
    4 0808.300.469 60.851 0−8.56−1 130.33
    纯净水22 6408.680.425 90.736 7−8.35−8.48−1 129.11−1 129.87
    3 3608.500.426 70.761 8−8.50±0.13−1 129.96±0.76
    4 0808.310.444 40.798 6−8.60−1 130.53
    空气饱和水12 6408.380.380 50.712 7−8.39−8.47−1 129.31−1 129.78
    3 3608.270.407 00.737 3−8.48±0.08−1 129.86±0.47
    4 0808.170.415 40.734 6−8.54−1 130.18
    空气饱和水22 6408.230.352 80.681 5−8.41−8.46−1 129.45−1 129.74
    3 3608.160.388 20.684 5−8.46±0.05−1 129.73±0.30
    4 0808.080.402 00.714 2−8.51−1 130.04
    CO2饱和水12 6408.680.568 11.037 3−8.41−8.50−1 129.44−1129.94
    3 3608.560.583 41.020 8−8.48±0.10−1 129.82±0.61
    4 0808.370.573 91.014 6−8.60−1 130.55
    CO2饱和水22 6408.740.661 71.208 9−8.40−8.51−1 129.40−1 130.03
    3 3608.550.681 41.217 1−8.53±0.11−1 130.15±0.63
    4 0808.400.659 71.173 3−8.60−1 130.53
    pH=3溶液2 6408.251.107 30.805 6−8.37−8.46−1 129.23−1 129.74
    3 3608.111.103 30.796 9−8.50±0.09−1 129.98±0.51
    4 0808.061.098 10.797 0−8.51−1 130.01
    pH=9溶液2 6408.700.404 70.785 5−8.33−8.46−1 128.99−1 129.73
    3 3608.510.438 90.797 3−8.46±0.13−1 129.75±0.74
    4 0808.310.44890.830 5−8.58−1 130.43
    桂林漓江水2 6408.730.459 10.783 8−7.90−7.81
    3 3608.590.263 70.423 0−7.95±0.22
    4 0808.800.236 00.427 9−7.59
    广西北海海水2 6409.128.759 21.7307−7.45−7.50
    3 3609.628.68311.5843−7.61±0.11
    4 08010.318.679 31.467 3−7.43
    雁山校区地下水2 6408.051.004 82.085 0−8.23−8.28
    3 3608.010.964 11.886 9−8.31±0.05
    4 0808.030.886 81.774 7−8.30
    桂林丫吉地下水2 6408.350.809 71.668 4−8.10−8.19
    3 3608.320.747 51.498 8−8.19±0.09
    4 0808.280.663 21.324 9−8.28
    下载: 导出CSV
  • [1] 莫春梦, 黄芬, 胡晓农, 曹建华, 辛胜林, 张连凯. 硫酸和硝酸对桂林毛村碳酸盐岩溶蚀的室内模拟[J]. 中国岩溶, 2021, 40(4):608-616.

    MO Chunmeng, HUANG Fen, HU Xiaonong, CAO Jianhua, XIN Shenglin, ZHANG Liankai. Laboratory simulation of the dissolution of carbonate rocks sampled from Maocun, Guilin by sulfuric acid and nitric acid[J]. Carsologica Sinica, 2021, 40(4):608-616.
    [2] 吴水木, 翁全南, 唐孝谦. 桂林市岩溶地下水对酸、碱的缓冲作用[J]. 广西地质, 1991, 4(4):69-73.

    WU Shuimu, WENG Quannan, TANG Xiaoqian. The buffering process of karst underground water to acid and alkali in Guilin City[J]. Geology of Guangxi, 1991, 4(4):69-73.
    [3] 曹建华, 潘根兴, 袁道先. 柠檬酸对石灰岩溶蚀动力模拟及岩溶意义[J]. 中国岩溶, 2001, 20(1):1-4. doi: 10.3969/j.issn.1001-4810.2001.01.001

    CAO Jianhua, PAN Genxing, YUAN Daoxian. Simulation experiment on dissolution of calcite by citric and its karst importance[J]. Carsologica Sinica, 2001, 20(1):1-4. doi: 10.3969/j.issn.1001-4810.2001.01.001
    [4] 闫志为. 硫酸根离子对方解石和白云石溶解度的影响[J]. 中国岩溶, 2008, 27(1):26-33. doi: 10.3969/j.issn.1001-4810.2008.01.005

    YAN Zhiwei. Influences of SO42- on the solubility of calcite and dolomite[J]. Carsologica Sinica, 2008, 27(1):26-33. doi: 10.3969/j.issn.1001-4810.2008.01.005
    [5] 唐伟. 外源水对碳酸盐岩溶蚀速率与碳汇效应影响研究: 以毛村地下河流域为例[D]. 重庆: 西南大学, 2011.

    TANG Wei. A study on allogenic water for carbonate dissolution rate and karst carbon sink: An example from the Maocun subterranean river of Guilin[D]. Chongqing: Southwest University, 2011.
    [6] 于奭, 严毅萍, 张春来, 王翱宇, 刘齐, 李幼玲. 酸雨对碳酸盐岩溶蚀速率影响的试验研究[J]. 桂林理工大学学报, 2011, 31(4):539-544. doi: 10.3969/j.issn.1674-9057.2011.04.010

    YU Shi, YAN Yiping, ZHANG Chunlai, WANG Xiangyu, LIU Qi, LI Youling. Experimental study on carbonate dissolution rate influenced by acid rain[J]. Journal of Guilin University of Technology, 2011, 31(4):539-544. doi: 10.3969/j.issn.1674-9057.2011.04.010
    [7] 王晤岩, 李清光. 淡水碳酸盐湖泊中CaCO3-CO32--HCO3--CO2化学平衡对CO2的缓冲作用: 以贵州百花湖为例[J]. 中国岩溶, 2021, 40(4):572-579.

    WANG Wuyan, LI Qingguang. Buffering effect of chemical equilibrium of CaCO3-CO32--HCO3--CO2 on CO2 in freshwater carbonate lake: A case study of Baihua lake, Guizhou[J]. Carsologica Sinica, 2021, 40(4):572-579.
    [8] Jones A P, Genge M, Carmody L. Carbonate melts and carbonatites[J]. Reviews in Mineralogy and Geochemistry, 2013, 75(1):289-322. doi: 10.2138/rmg.2013.75.10
    [9] Hazen R M, Downs R T, Jones A P. Carbon mineralogy and crystal chemistry[J]. Reviews in Mineralogy and Geochemistry, 2013, 75(1):7-46.
    [10] Bech J, Abreu M M, Chon H-T , Roca N. Remediation of potentially toxic elements in contaminated soils[C]. PHEs, Environment and Human Health. Dordrecht: Springer, 2014, 253-308.
    [11] 王茂林, 吴世军, 杨永强, 陈繁荣. 微生物诱导碳酸盐沉淀及其在固定重金属领域的应用进展[J]. 环境科学研究, 2018, 31(2):206-214. doi: 10.13198/j.issn.1001-6929.2017.03.55

    WANG Maolin, WU Shijun, YANG Yongqiang, CHEN Fanrong. Microbial induced carbonate precipitation and its application for immobilization of heavy metals: A review[J]. Research of Environmental Sciences, 2018, 31(2):206-214. doi: 10.13198/j.issn.1001-6929.2017.03.55
    [12] Reeder R J. Crystal chemistry of the rhombohedral carbonates[J]. Reviews in Mineralogy and Geochemistry, 1983, 11(1):1-47.
    [13] Andersson M P, Sakuma H, Stipp S L S. Strontium, nickel, cadmium, and lead substitution into calcite, studied by density functional theory[J]. Langmuir, 2014, 30(21):6129-6133. doi: 10.1021/la500832u
    [14] Parkhurst D L, Appelo C A J. Description of input and examples for PHREEQC version 3, A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations[R]. Denver, Colorado: U. S. Geological Survey Techniques and Methods, book 6, chap. A43, 2013.
    [15] Allison J D, Brown D S, Novo-Gradac, K J. MINTEQA2/PRODEFA2, A geochemical assessment model for environmental systems: Version 3.0 user’s manual[R]. Athens, Georgia: Environmental Research Laboratory, Office of Research and Development, U. S. Environmental Protection Agency, 1991.
    [16] Stieglitz J. The relations of equilibrium between the carbon dioxide of the atmosphere and calcium sulphate, calcium carbonate and calcium bicarbonate in water solutions in contact with it[J]. Carnegie Institute Publication, 1909, 107:235-264.
    [17] McCoy H N, Smith H J. Equilibrium between alkali-earth carbonates, carbon dioxide and water[J]. Journal of the American Chemical Society, 1911, 33(4):468-473. doi: 10.1021/ja02217a003
    [18] Garrels R M, Christ C L. Solutions, minerals, and equilibria[M]. New York: Harper and Row, 1965.
    [19] Meng Z , Seinfeld J H, Saxena P, Kim Y P. Atmospheric gas-aerosol equilibrium: IV. Thermodynamics of carbonates[J]. Aerosol Science and Technology, 1995, 23(2):131-154. doi: 10.1080/02786829508965300
    [20] Nakayama F S. Calcium activity, complex and ion-pair in saturated CaCO3 solutions[J]. Soil Science, 1968, 106(6):429-434. doi: 10.1097/00010694-196812000-00004
    [21] Latimer W M. The oxidation states of the elements and their potentials in aqueous solutions[M]. Englewood Cliffs, New York: Prentice Hall, 1952.
    [22] Langmuir D. The Gibbs free energies of substances in the system Fe-O2-H2O-CO2 at 25°C [R]. Washington: U. S. Geological Survey, Professional Paper 650-B, 1969.
    [23] Millero F J, Milne P J, Thurmond V L. The solubility of calcite, strontianite and witherite in NaCl solutions at 25°C[J]. Geochimica et Cosmochimica Acta, 1984, 48(5):1141-1143. doi: 10.1016/0016-7037(84)90205-9
    [24] Jacobson R L, Langmuir D. Dissociation constants of calcite and CaHCO3+ from 0 to 50°C[J]. Geochimica et Cosmochimica Acta, 1974, 38(2):301-318. doi: 10.1016/0016-7037(74)90112-4
    [25] Jensen D L, Boddum J K, Tjell J C, Christensen T H. The solubility of rhodochrosite (MnCO3) and siderite (FeCO3) in anaerobic aquatic environments[J]. Applied Geochemistry, 2002, 17(4):503-511. doi: 10.1016/S0883-2927(01)00118-4
    [26] Plummer L N, Busenberg E. The solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0 and 90°C, and an evaluation of the aqueous model for the system CaCO3-CO2-H2O[J]. Geochimica et Cosmochimica Acta, 1982, 46(6):1011-1040. doi: 10.1016/0016-7037(82)90056-4
    [27] Stumm W, Morgan J J. Aquatic chemistry, chemical equilibria and rates in natural waters[M]. New York: John Wiley & Sons, Inc., 1996.
    [28] La Iglesia A, Félix J F. Estimation of thermodynamic properties of mineral carbonates at high and low temperatures from the sum of polyhedral contributions[J]. Geochimica et Cosmochimica Acta, 1994, 58(19):3983-3991. doi: 10.1016/0016-7037(94)90261-5
    [29] Naumov G B, Ryzhenko B N, Khodakovsky I L. Handbook of thermodynamic data[R]. Washington: U. S. Geological Survey, Report USGS-WRD-74-001, 1974.
    [30] Garrels R M, Thompson M E, Siever R. Stability of some carbonates at 25°C and one atmosphere total pressure[J]. American Journal of Science, 1960, 258(6):402-418. doi: 10.2475/ajs.258.6.402
    [31] Robie R A, Hemingway B S. Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures[R]. Washington: U. S. Geological Survey Bulletin 2131, 1995.
    [32] Zhuk N P. Thermodynamic constants of sulfates, carbonates, chromates, bromates, iodates, oxalates, and other salts slightly soluble in water[J]. Zhurnal Fizicheskoi Khimii, 1954, 28:1690-1697.
    [33] Rossini F D, Wagman D D, Evans W H, Levin S, Jaffe I. Selected values of chemical thermodynamical properties[R]. Washington, DC: NBS Circular 500, 1952.
    [34] Parker V B, Wagman D D, Evans W H. Selected values of chemical thermodynamic properties: Tables for alkaline earth elements (elements 92 through 97 in the standard order of arrangement[R]. Washington: National Bureau of Standards, NBS Technical Note 270-6, 1971.
    [35] Robie R A, Hemingway B S, Fisher J R. Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pa) pressure and at higher temperatures[R]. Washington: U. S. Geological Survey Bulletin 1452, 1978.
    [36] Wagman D D, Evans W H, Parker V B, Handhalow R, Schumm I,Bailey S M, Churney K L. The NBS tables of chemical thermodynamic properties: Selected values for inorganic and C1 and C2 organic substances in SI units[J]. Journal of Physical and Chemical Reference Data, 1982, 11(suppl.2):1-392.
    [37] Sangameshwar S R, Barnes H L. Supergene processes in zinc-lead-silver sulfide ores in carbonates[J]. Economic Geology, 1983, 78(7):1379-1397. doi: 10.2113/gsecongeo.78.7.1379
    [38] Holland T J B, Powell R. An internally consistent thermodynamic dataset for phases of petrological interest[J]. Journal of Metamorphic Geology, 1998, 16(3):309-343.
    [39] Robie R A. Thermodynamic properties of minerals[R]. Washington: U. S. Geological Survey Open File Report TEI-816, 1962.
    [40] Hummel W, Berner U, Curti E, Pearson F J,Thoenen T. Nagra/PSI chemical thermodynamic data base 01/01[J]. Radiochimica Acta, 2002, 90(9-11):805-813. doi: 10.1524/ract.2002.90.9-11_2002.805
    [41] Harvie C E, Møller N, Weare J H. The prediction of mineral solubilities in natural waters: The Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system to high ionic strengths at 25°C[J]. Geochimica et Cosmochimica Acta, 1984, 48(4):723-751. doi: 10.1016/0016-7037(84)90098-X
    [42] Helgeson H C, Delany J M, Nesbitt, Bird D K. Summary and critique of the thermodynamic properties of rock forming minerals[J]. American Journal of Science, 1978, 278A:1-229.
    [43] Christ C L, Hostetler P B, Siebert R M. Stabilities of calcite and aragonite[J]. U. S. Geological Survey Journal of Research, 1974, 2(2):175-184.
    [44] Robinson G R Jr, Haas J L Jr, Schafer C M, Haselton H T Jr. Thermodynamic and thermophysical properties of selected phases in the MgO-SiO2-H2O-CO2, CaO-A12O3-SiO2-H2O-CO2, and Fe-FeO-Fe2O3-SiO2 chemical systems, with special emphasis on the properties of basalts and their mineral components[R]. Reston, VA: U. S. Geological Survey Open File Report 83-79, 1982.
    [45] Barin I. Thermochemical data of pure substances[M]. Weinheim, Germany: VCH Velagsgesellschaft, 1993.
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  1181
  • HTML浏览量:  723
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-11
  • 刊出日期:  2023-02-25

目录

    /

    返回文章
    返回