Role of carbonic utilization of microalgae on rock weathering and carbon cycle
-
摘要: 岩溶碳汇呈现两种不同观点:(1)岩溶碳汇巨大,其机理在于岩溶区藻类及光合细菌利用碳酸氢根离子(
HCO−3 )实现光合作用,从动力学上加速了岩溶风化过程,促进大气CO2的溶解。(2)岩溶区碳酸盐岩的风化作用,产生HCO−3 ,随后产生等量的阳离子在海洋中进行碳酸盐岩的沉积作用,这仅仅体现的是碳酸盐岩的搬运作用,不能体现碳汇,在长期尺度上仅仅有硅酸盐岩风化产生净碳汇。文章抓住岩石风化产生HCO−3 与微藻光合作用利用HCO−3 的耦合点,分析了典型代表性水生生物——微藻在无机碳利用上对岩石风化及碳汇的影响。从微藻光合无机碳利用机制以及光合作用关键性酶-碳酸酐酶(CA)作用两方面,论证了微藻生长对岩石风化及其碳汇的的促进作用;同时论述高pH、高HCO−3 的风化环境对微藻生长影响。获得以下新认识:(1)微藻通过胞外碳酸酐酶(CAex) 利用了大量HCO−3 ,加速岩石风化,并促使风化朝着形成HCO−3 的方向进行;(2)微藻加速钙镁硅酸盐岩风化,风化溶出的Ca2+、Mg2+会促使碳酸盐岩的沉积,因此微藻加速硅酸盐岩风化形成净碳汇;(3)长时间尺度下,单纯的碳酸盐岩化学风化并不能直接产生净碳汇,但微藻对HCO−3 利用使得碳酸盐岩风化朝着HCO−3 转化方向进行,微藻参与碳酸钙沉积作用的同时转化无机碳为惰性有机碳,产生碳汇。故微藻通过CAex的作用,催化加速HCO−3 与CO2之间的转化,形成水体HCO−3 消耗的动力基础,微藻无机碳利用对岩石风化具有促进作用,从而调节大气CO2、浓度变化。基于当前研究,提出三点展望:(1)开展岩溶区区域水体系统的岩石风化、水生生物碳汇评估成为解决当前区域碳收支不平衡问题的关键;(2)查明岩石风化作用中生物作用碳转化机理及转化量,解决单纯的水化学径流法计算岩石风化碳汇精度不够问题;(3)构建光合生物参与下的新的评估方法,评估当前岩石风化在水生生物、水循环作用下的碳汇的时间尺度问题,厘清岩石风化碳汇在碳收支中的贡献。Abstract:The carbon sink on rock weathering is widely discussed for reducing global atmospheric carbon dioxide (CO2). Two different views on karst carbon sink are proposed. One is that the karst carbon sink is huge because bicarbonate ion ( HCO−3 ) is used by the photosynthesis of algae and photosynthetic bacteria in karst areas, which dynamically accelerates the process of karst weathering and subsequently promote the dissolution of atmospheric CO2. Another is that the weathering of carbonate rock generates HCO−3 , and then the equivalent calcium ions (Ca2+) and Magnesium ions (Mg2+) are produced for the deposition of carbonate rock on the sea floor as the river enters the ocean. This process only reflects the transport of carbonate rock instead of the carbon sink because only the weathering of silicate rock may generate the net carbon sink in the long term.By literature review in this paper, the effects of microalgae (a typical aquatic organism) on rock weathering and its carbon sink are discussed based on the coupling between inorganic carbon utilization of microalgae in photosynthesis and HCO−3 produced from rock-weathering. The facilitation on rock-weathering and its carbon sink by microalgae growth is demonstrated from two aspects, namely, the utilization mechanism of inorganic carbon and the action of carbonic anhydrase (the key enzyme of photosynthesis) in microalgae. Besides, the biomass of microalgae, in turn, is enhanced by the effects of weathering-environment, such as, higher pH value and higherHCO−3 . In this study, the following three arguments are proposed. Firstly, the weathering is accelerated because of the continuous consumption ofHCO−3 utilized by catalysis of extracellular carbonic anhydrase (CAex) in microalgae, which makes the weathering towards the direction on formingHCO−3 . Secondly, the microalgae can accelerate the weathering of calcium-magnesium silicate rocks, and Ca2+ and Mg2+ dissolved out by weathering may, in turn, facilitate the deposition of carbonate rock, hence a net carbon sink is generated. Thirdly, pure chemical weathering of carbonate rock cannot directly generate a net carbon sink at long time scale, but theHCO−3 utilization from CO2 in microalgae makes the weathering of carbonate rock proceed in the direction of HCO−3 conversion. In the process of calcium carbonate deposition involved by microalgae, inorganic carbon is converted into recalcitrant organic carbon and thus the carbon sink is generated.Research findings can be concluded that through the CAex effect, the catalysis and acceleration of conversion of HCO −3 to CO2 by microalgae will form the dynamic basis of water HCO−3 consumption. The utilization of inorganic carbon in microalgae can facilitate rock weathering, and hence the concentration of atmospheric CO2 will be regulated. In this study, three aspects of prospect are also put forward. Firstly, to address the regional unbalance of carbon budget, it is crucial to assess the carbon sink of rock weathering under aquatic organism in karst areas. Besides, to improve the precision of calculating carbon sink of rock-weathering by hydrochemical runoff method, the mechanism and amount of biological carbon conversion in rock weathering should be determined. Finally, it is urgent to establish a new method to assess the time scale of carbon sink of rock weathering under the effects of aquatic organisms by water-cycle, which can clarify the contribution of carbon sink of rock weathering to the carbon budget.-
Key words:
- microalgae /
- carbon sink of rock weathering /
- HCO−3 /
- carbonic anhydrase /
- CO2
-
0. 引 言
据政府间气候变化专门委员会(IPCC)第一工作组的报告《气候变化2021:自然科学基础》(AR6)统计,全球气候变暖(图1a),以1850年至1900年平均气温为基准,截至2020年全球地表平均温度升温已达到1.26 ℃[1]。IPCC发布第五次评估报告(AR5)后,国际科学界对气候变化的认识取得大量的研究进展,与AR5相比,AR6以更加有力的证据确证人类活动对全球变暖的贡献(图1a)[1-2]。Foote进行CO2对太阳供热的影响的实验表明更高的大气CO2浓度将增加地球表面的温度[3],Tyndall发现CO2能吸收长波辐射揭开其形成温室效应的机制[4]。有人类活动以来,大气CO2浓度不断上升(图1b),2019年, CO2浓度高达到409.9 (±0.4)×10-6,相比于1750年,CO2浓度增加了 131.6 ± 2.9×10-6 (47.3%)[1]。
地球系统的碳循环与全球气候变化共存,地球系统的碳循环系碳以不同的形式(CO2、碳酸盐岩、(CH2O)n等)在不同的库(大气圈、海洋、陆地生物界、海洋生物界等)之间循环[5]。气候系统通过海洋碳汇和陆地碳汇吸收大气CO2作为主要的负调节[1,6-7],其它的生物地球化学过程是通过影响海洋碳汇或者陆地碳汇来影响大气CO2浓度从而作用于气候变化[1,8-9]。Friedlingstei等通过对全球碳收支的计算(公式:EFOS + ELULUCF = Gatm + Socean + Sland. + BImb[1,10]; 其中,EFOS:化石燃料燃烧与碳排放;ELULUCF:陆地碳排放;Gatm:大气CO2存量;Socean:海洋碳汇量;Sland:陆地碳汇量;BImb:其它保持等式质量平衡的碳汇或碳源的量),发现目前碳收支存在不平衡(表1),不平衡碳收支成为全球碳循环研究关注的热点问题。
时间尺度上,将碳循环分为长期碳循环(Long-term carbon cycle,LTCC)与短期碳循环(Short-term carbon cycle,STCC),LTCC是指在岩石圈和表生系统(包括海洋、大气、生物、土壤)之间的碳交换过程,由火山作用释放到大气中的CO2通过硅酸盐岩风化,随后的深海沉积作用、海洋的吸收及生物体储存,并在百万年的时间尺度上演化形成煤、油、天然气的循环(图2a)[11-13];STCC是指人类活动尺度上碳在表生系统间的交换(2b)[13]。对产生不平衡碳汇的原因分析认为,1)当前计算碳收支是以STCC为基础,即认为人类活动排放的CO2在STCC的碳交换系统中形成源和汇,而LTCC间的碳交换是保持平衡的,因此,并不考虑两者之间的交互关系。然而,在过去50 Myr大气CO2 呈现每Myr 16 ppm 的下滑(图1b) [1,14-15],其原因未确证,AR6报告提出可能是长期的碳源(火山脱气作用)与长期的碳汇(有机物埋藏与硅酸盐岩风化)之间的碳不平衡有关。这种不确定性表明LTCC并不一定保持长期的碳平衡,也不一定不与STCC产生碳交换作用,因此把地质作用碳循环(包含岩溶、岩石风化作用)列为LTCC的慢速过程,把生物碳汇过程列为STCC,不考虑两者间的互相作用及岩石圈吸碳作用的动态变化可能是造成碳收支不平衡的原因之一。同时,当前计算碳收支不包括联结陆地和海洋之间的淡水域(湖泊、河流)、入海河口、近海岸等区域,然而湖泊、河流、入海河口等通过与大气的CO2交换[16-18],影响着碳收支平衡,研究发现从土壤到淡水系统的碳通量2.4~5.1 PgC·yr−1是巨大的[17,19],因此,不平衡的碳收支应该主要从内陆水体碳交换角度去考虑。
浮游植物是水环境CO2的主要生产者,浮游植物的光合作用是水体中碳循环的关键过程,尽管海洋中的生物量只占地球上生物的1%,但它们的光合作用约占全球的50%[20-21]。把地质风化作用列为长时间尺度的慢速过程,把生物碳汇过程列为短时间尺度上的变化,并没有考虑两者的互相作用及岩石圈吸碳作用的动态变化。故厘清水生光合生物对岩石圈的吸碳动态变化作用已成为亟需解决的科学问题。研究岩石圈的岩石风化(属于LTCC)在内陆水、海洋环境中浮游植物作用下(属于STCC)的碳效应,对完善全球碳循环模型以及寻找不平衡碳汇有着重要的意义。微藻(Microalgae)是一种生活在水生环境的单细胞或者多细胞的光合作用浮游植物,作为湖泊、海洋等水体最重要的初级生产力,其通过光合作用将CO2、水、光能转化为油脂、碳水化合物和蛋白质,是湖泊碳汇的主要来源,被广泛地称为“微型生物泵”[22]。本文通过调研前人文献、凝练本课题组的长期研究成果,对岩石圈的岩石风化在水环境中微藻作用下的碳效应进行综述,探讨LTCC与STCC之间的纽带关系,以期为全球碳循环模型及不平衡碳汇的相关研究提供新的思路。通过论述代表性的水生植物微藻在岩石风化中的影响及其岩石风化作用对微藻生长交的影响,为寻找不平衡碳收支提供科学依据,对讨论水生生物对风化作用的地质意义及整个碳循环具有深远的意义。
1. 岩石风化与碳汇
积极参与地质作用碳循环过程的岩石风化作用,主要由两大岩类风化组成:硅酸盐岩风化和碳酸盐岩风化。硅酸盐岩主要由硅酸盐类矿物组成,硅酸盐矿物占地壳岩石质量的80%以上,是主要的造岩矿物和土壤的主要成分,钙镁硅酸盐岩的风化消耗CO2(方程CO2+CaSiO3 ↔CaCO3+SiO2;CO2 + MgSiO3↔MgCO3 + SiO2)[23-24];碳酸盐岩作为全球最大的碳库[25],碳酸盐岩风化(方程2CO2 + CaMg(CO3)2 + 2H2O↔Ca2+ + Mg2++ 4HCO
−3 [23]速率受到矿物表面溶出动力学过程、边界层中溶蚀钙离子(Ca2+)、碳酸根离子(HCO−3 )、CO2、碳酸根离子(CO2−3 )的扩散速度和富集含量、CO2与HCO−3 之间的转换[26-29]。岩石风化和碳循环与CO2-H2O-CaCO3三相不平衡系统相互联系,在控制海水化学和气候发挥重要作用[30]。碳酸盐岩与硅酸盐岩的风化过程会影响大气 CO2 浓度。碳酸盐岩与 CO2 及水作用可吸收CO2 产生碳汇,在短时间尺度上碳酸岩风化效应产生较大的碳汇,占整个岩石风化作用的94%[24];但传统观点认为在长时间的尺度上,只有硅酸盐岩风化才能产生大气 CO2 的净碳汇,而碳酸盐岩对大气CO2 的汇、源效应各占一半[31],即碳酸盐岩溶解的
HCO−3 进入海洋之后将转变为碳酸盐成为海底沉积岩,同时释放出 CO2,因而碳酸盐岩从陆地的碳酸盐岩溶解到海洋沉积的地质过程中不会产生净碳汇。1.1 碳酸盐岩风化碳汇
采用水化学法对我国岩溶作用回收大气CO2的量进行初步评估,徐胜友等[32]估算回收CO2的量约为1.774×107 tCO2·yr−1,蒋忠诚等[33]估算回收CO2的量约为3.699×107 tCO2·yr−1,邱冬生等[34]估算回收CO2的量约为4.72×107 tCO2·yr−1。张之淦[35]将上述岩溶作用回收CO2的量外推至全球岩溶碳汇,得到全球岩溶碳汇结果分别为0.117 PgC·yr−1、0.131 PgC·yr−1、0.165 PgC·yr−1。然而,有研究以磨片溶蚀法得到全球岩溶碳汇量达0.608 PgC·yr−1 [36](表2)。以上数据表明各种方法评估的岩溶碳汇量差异较大。2010—2012年通过实施“中国地质碳汇潜力研究”项目,利用当时最新数据,将岩溶分区,采用水化学法计算出中国岩溶产生的大气CO2碳汇为3.699×107 tCO2·yr−1 [33],然而,研究认为这种计算方法因参数取值及运算过程考虑不全导致碳汇计算结果可能偏大一个数量级[35],计算的岩溶碳汇量存在争议。在IPCC的AR5和AR6报告中,将碳酸盐岩风化碳汇(岩溶作用)时间尺度视为103~104年,与后文提出碳酸盐岩风化时间尺度在CO2移除方法中属于百年至千年级相矛盾,但总体仍认为碳汇速率太慢,未纳入全球碳收支核算[1-2]。岩溶碳汇计算量与其时间尺度均存在较大争议。
刘再华等[37]从全球水循环和径流产生碳汇的角度出发,估算水循环产生的总碳汇量可能为0.801 3 PgC·yr−1。其中,0.158 PgC·yr−1再次释放到大气中,0.643 3 PgC·yr−1形成碳汇,包括进入海洋0.518 8 PgC·yr−1,储存在陆地水生生态系统中0.124 5 PgC·yr−1。在AR6报告中认为,陆地CO2汇分配过程仍然存在重大不确定性[1,38-39]。该报告认为,从内陆土到内陆水的总碳通量为2.4~5.1 PgC·yr−1 [17-18],其中大部分通过内陆水脱气作用重新释放至大气中[1,16-17],0.15 PgC埋藏在淡水水体里[40],通过内陆水到海洋的净碳汇通量约为0.80 PgC·yr−1 [1,41-42],仅有0.2 PgC 沉积于深海[1]。上述水循环产生碳汇包含了碳酸盐岩风化产生的碳汇,在一定程度上为计算碳酸盐岩风化碳汇提供了新的思路。
1.2 硅酸盐岩风化
硅酸盐岩风化作用促使原生矿物分解,风化产生的
HCO−3 随河流进入海洋,以方解石或白云石的形式沉积在海洋中,因此,大气CO2浓度和全球温度趋于下降,在长时间尺度上对全球大气CO2浓度具有重要的调节[23,28,43-47]。钙镁硅酸盐岩风化在长时间尺度是形成净碳汇的唯一机制[31],保持了对CO2的长期稳定吸收。目前研究认为,全球硅酸盐岩风化碳汇的规模、空间格局和演化特征尚不清楚[48-49],随着大气CO2浓度不段上升,硅酸盐岩风化不断加强[50-51]。对硅酸盐岩风化碳汇的研究方法主要有水化学方法[49,52-53]和模型模拟[49,54-55]两种;研究以全球60条主要河流的水化学汇编数据为基础,利用水化学法估算全球硅酸盐岩风化碳汇为0.104 PgC·yr−1 [52]。Suchet等通过全球大陆岩类型划分,并将六类岩性数据与GEM-CO2模型相结合,模拟全球其硅酸盐岩风化碳汇值为0.155 PgC·yr−1 [54]。 Hartmann进一步构建了“岩性多样性模型”,模拟日本各岛屿的CO2消耗并转换为全球尺度,发现全球大陆硅酸盐岩风化作用对大气CO2的年消耗范围为0.133~0.169 PgC·yr−1 [55]。研究基于水文气象和CMIP5数据,使用Celine模型,计算了1996-2017年全球硅酸盐岩风化的碳汇通量,发现全球年平均硅酸盐岩风化碳汇通量为1.67×103 g·(km2·yr)−1,硅酸盐岩风化碳汇为0.127 PgC·yr−1 [49]。全球硅酸盐岩石风化碳汇通量与硅酸盐风化速率高度相关[56],并受温度影响较大[57-58],化学风化与物理侵蚀之间存在着很强的耦合关系[59],碳汇影响因子间关系复杂,全球硅酸盐岩碳汇通量仍然存在很大的差异和不确定性[49,60]。
2. 微藻无机碳利用与岩石风化过程耦合
在计算海洋碳汇模型中,因为海水变暖,营养物质的变化,小型浮游植物通过改变碳汇速度,将会导致更加巨大及高效的生物碳泵[1,61-63]。在内陆水系统是否具有相同的规律?当前碳收支的不平衡碳汇被认为是全球碳循环中剩余的陆地碳汇[1],大量研究将不平衡碳汇指向岩石风化碳交换与水生光合植物的无机碳利用的耦合关系上,认为水生生物光合作用对溶解无机碳
HCO−3 的利用将会加速岩石风化,改变岩石风化的时间尺度,形成碳汇[64-67]。自然界和人为作用对全球土壤至淡水系统的碳转化通量为2.4~5.1 PgC·yr−1 [1,17,19],无机碳的转化通量极大,研究发现碳酸盐岩风化在水生环境中对外界环境的变化响应极其迅速[24,68]。硅酸盐岩及碳酸盐岩风化形成的HCO−3 被搬运到海洋或内陆湖泊,被浮游生物(特别是水生植物)利用来建造它们的骨骼和组织,这些浮游生物死亡以后,沉入海底或湖底,被海洋或湖泊沉积物掩埋,形成较长久的碳汇[37]。AR6报告给出全球岩石风化碳汇通量为0.4 PgC·yr−1,但报告认为岩石风化碳汇属于长时间尺度碳汇,并未将其列入当前的碳收支。因此,通过整合所有陆地碳循环过程,解决内陆水域的碳收支,可能会解决碳汇收支不确定性问题;同时,岩石风化碳汇在水生生物作用下是否改变其碳汇时间尺度,在人类时间尺度上形成有效的碳汇,也需重新评估。2.1 微藻无机碳利用策略
水体生物具有广泛的多样性,其中浮游藻类众多[69],微藻等浮游植物在各种水体中分布广、种类多、数量大[70-71],研究发现岩溶湖泊水体广泛分布各种微藻[72-74]。岩溶地区风化强烈,无机碳迁移转化活动强烈,岩石风化可能受到水生植物光合作用影响较为巨大。水体pH<6.4时,CO2占DIC的主体,6.4<pH<10.3时
HCO−3 占DIC的主体,pH>10.3时CO2−3 占DIC的主体[75-76](图3)。在岩溶湖泊中,表层水体pH值在8左右波动[77-79],此时水体环境缺乏CO2,溶解性无机碳(DIC)以HCO−3 为主[29]。Emerson等[80]发现一种海洋杉藻在CO2游离浓度达到360 μM时才启动光合作用,这一浓度相当于自然海水中游离CO2浓度的36倍;Tseng等[81]指出红藻软骨石花菜在CO2浓度达到110 μM时才使光饱和,这一CO2浓度高出海水的10倍;因此水生植物的生存,绝不仅仅依赖于吸收CO2,必定存在其它获取无机碳的途径。研究发现,微藻在低CO2、高HCO−3 生存环境中,形成了一种在细胞内提高CO2浓度的机制——无机碳浓缩机制(CCM机制)[82-86]:一方面CO2可通过自由扩散直接进入细胞,为微藻的光合作用所利用,称为二氧化碳途径[87],另一方面HCO−3 通过碳酸酐酶(CA,催化HCO−3 和CO2之间的相互转化,平衡时间从一分钟缩至10−6秒[88-90])催化的细胞区室化和生化代谢的偶联反应[91]被微藻光合作用利用,称为碳酸氢根离子途径[92-95](图4)。研究发现无外源添加的
HCO−3 、乙酰唑胺(AZ,含1,3,4-噻二唑环的杂环磺酰胺类碳酸酐酶胞外酶抑制剂,是能够专一地抑制碳酸酐酶胞外酶(CAex)的碳酸酐酶胞外酶抑制剂[97])的情况下,莱茵衣藻、蛋白核小球藻、以及野外采集的混合微藻,都优先通过碳酸氢根离子途径利用无机碳源,其比例高达81%~100%[98]。在外源添加NaHCO3培养条件下莱茵衣藻、蛋白核小球藻的碳酸氢根离子利用途径高达77%~100%[99-100](表3)。表明微藻主要通过HCO−3 吸收途径吸收利用环境中的无机碳,HCO−3 利用途径中的高利用份额表明微藻为适应岩溶岩溶湖泊环境进行了长期选择性的生存策略。Wu[99]提出植物光合作用应考虑是否碳酸盐直接作为底物参与了光合作用,微藻光合无机碳利用是否以碳酸盐直接作为底物急需求证。表 3 微藻的碳酸氢根离子利用途径份额Table 3. Proportion of bicarbonate utilization pathway to the whole carbon utilization pathway of microalgae2.2 微藻在岩石风化的促进作用
Xie等[66]在微藻对灰岩风化影响的实验中,通过不加藻体的对照实验,排除了其它因素对灰岩风化的影响,定量了微藻对岩石风化作用量,得到普通培养条件下莱茵衣藻单位时间单位藻体对灰岩风化镁离子释放量为3.37×10−4 mg·(μg·day)−1,蛋白核小球藻单位时间单位藻体的对灰岩风化镁离子释放量为2.44×10−4 mg·(μg·day)−1,表明两种微藻均促进了岩石风化。同时,通过模拟不同岩溶水体pH环境,研究微藻对方解石的风化作用,发现pH为6~9时,莱茵衣藻、蛋白核小球藻、铜绿微囊藻均能较大地促进含镁方解石溶解[67];实验中,以镁离子溶出表征方解石的风化,以叶绿素a表征微藻生物量,实验发现方解石在水中的平衡较快,在实验处理6 h达到平衡(图5a),然而,微藻处理均表现出打破这种风化平衡,相比对照组(图5a),微藻处理72 h后方解石释放的镁离子含量明显增加(图5b、图5c、图5d),这与生物量72 h大量增加呈现非常好的相关性(图5e、图5f、图5g)。在研究微藻对硅酸盐岩风化的影响的实验中[101],发现正常营养条件下添加莱茵衣藻,使得橄榄岩风化镁离子释放量增加了约4倍,添加蛋白核小球藻,使得橄榄岩风化镁离子释放量增加了约6倍;在缺镁条件下,添加莱茵衣藻,使得橄榄岩风化镁离子释放量增加了约1倍,添加蛋白核小球藻,使得橄榄岩风化镁离子释放量增加了约1.5倍。因此,系列证据表明水生生物微藻对岩石风化的促进作用。
图 5 不同时间下方解石的镁离子释放量(mg·L−1)和叶绿素a的含量(μg·L−1)(a)对照组;(b、e)莱茵衣藻;(c、f)蛋白核小球藻;(d、g)铜绿微囊藻(据Xie Tengxiang等,2017[67])Figure 5. Concentrations of Mg2+ from calcite (mg·L−1) and chl-a (μg·L−1) at different pH values after different hours of incubation (a) the treatment without microalgae (control group); (b, e) the treatment with C. reinhardtii (C.R.); (c, f) the treatment with C. pyrenoidosa (C.P.); and (d, g) the treatment with M. aeruginosa (M.A.) (revised from Xie Tengxiang et al., 2017[67] )2.3 微藻利用岩石风化产生的无机碳
在对微藻无机碳源的利用方法上,吴沿友等[102-103]提出了利用稳定碳同位素计算植物利用重碳酸氢根的能力的双同位素示踪技术(二端元模型)。谢腾祥等[104]通过双向同位素示踪技术定量描述了不同AZ浓度处理下莱茵衣藻和蛋白核小球藻对添加碳酸钙碳源的利用份额(表4),研究[96]在添加外源碳酸氢钠培养条件下,定量微藻无机碳源的利用份额(表5),结果均表明微藻可利用但却极少量地利用碳酸钙碳、碳酸氢钠碳等外加碳源,而更多利用大气CO2为主要碳源。研究通过定量微藻在岩石风化过程中所利用的无机碳,发现在pH=6~8时,微藻利用方解石风化产生的碳源为5%~20%[67],表明微藻在岩石风化过程中能够利用岩石风化产生的无机碳,但利用更多的却是大气CO2。微藻的无机碳利用途径主要是碳酸氢根离子途径(3.1已论证),因此本文提出“微藻主要的无机碳利用方式为通过碳酸氢根离子途径更多地利用大气CO2碳源”的观点。在岩石风化过程中,微藻能极大地促进岩石风化过程(3.2已论证)却极少量地利用到岩石风化产生的无机碳,那么微藻促进岩石风化的机理是什么呢?本文提出观点:微藻促进岩石风化作用机理,水环境CO2+H2O↔H++
HCO−3 是无机碳溶解的第一步,微藻利用了水体中HCO−3 ,从而改变反应的无机碳平衡,使得HCO−3 离子被消耗,形成生物碳泵的初始动力,随后一方面反作用CO2+H2O↔H++HCO−3 的无机碳溶解,促进大气CO2往水中溶解成HCO−3 ;另一方面通过消耗HCO−3 反作用于岩石风化,促进岩石风化吸收大气CO2产生HCO−3 ,这一过程使得大气中CO2被固定下来形成生物碳汇(图6)。2.4 微藻碳酸酐酶对岩石风化环境中无机碳的响应
CAex广泛存在于微藻中[105-111],且CAex的有无成为藻类利用环境中无机碳的限制因子之一,因此,探讨微藻无机碳利用在岩石风化过程中的作用时,CAex是关键因子。水体中
HCO−3 的含量变化对微藻碳酸酐酶基因表达具有决定性影响。在缺乏无机碳源的情况下,CAex活性较高,碳酸酐酶胞外酶基因受到诱导,促使编码CAH1(位于细胞周质的碳酸酐酶胞外酶基因,控制CAex的活性)基因表达上调[112-115]。当细胞要适应低浓度无机碳时,CAex活性在几个小时内会突然增加,这就是微藻CCM机制中CA催化的细胞区室化和生化代谢的偶联反应的高活性的诱导[106,108,116]。低浓度HCO−3 能够诱导CAex活性,造成编码CAH1表达量上调;而过高浓度的HCO−3 却抑制微藻CAex活性,造成编码CAH1表达量下调[103]。表明,水体中高浓度的HCO−3 会抑制微藻的CAex活性,低HCO−3 能够诱导微藻的CAex活性提高,低浓度HCO−3 环境下微藻更加依赖CAex来摄取无机碳。在岩溶风化水体中,微藻等代表性水生植物的CAex催化的
HCO−3 生物化学反应过程,加速了水体中HCO−3 消耗。从硅酸盐岩与碳酸盐岩风化的化学过程来看,因CAex能够影响CO2的通量,故很可能深刻地调节岩石的风化。刘再华等[117]在模拟岩溶系统中加入牛碳酸酐酶,在高CO2分压条件下,灰岩的溶解速率增加了10倍;在低CO2分压条件下,白云岩的溶解速率可增加至1.29~3.07倍[118]。虽然是CA生物体外实验,但对于生物体内CA对岩石风化作用具有指导性意义,研究表明微藻的CAex能促进灰岩的溶解(表6)。在实验室培养基培养条件下,莱茵衣藻加入10 mmol·L−1 AZ,单位时间单位藻体的镁离子释放量从3.37×10−4 mg·(μg·day)−1降低至1.99×10−4 mg·(μg·day)−1,蛋白核小球藻单位时间单位藻体的镁离子释放量从2.44×10−4 mg·(μg·day)−1降低至2.19×10−4 mg·(μg·day)−1,以上研究结果可看出,在体外CA以及微藻CAex,均能促进岩石风化。其他研究表明,能分泌CAex生物菌株可使灰岩溶出的导电离子总量和Ca2+ 提高40%以上[119-120],具有CA的生物在岩溶过程中发挥重要作用[119-121]。水体中的藻类以及光合细菌可通过CA的催化作用来实现利用HCO−3 进行光合作用,并通过水-岩-气作用影响全球碳循环模式[64-66]。随着mRNA差异表达等相关的分子生物学技术引入地球化学研究,发现黑曲霉在风化含钾硅酸盐矿物过程中,碳酸酐酶mRNA 表达提高,为CA在岩石风化中作用的分子生物学的直接证据[66,122-125]。目前微藻CA影响岩石风化的机制如图6所示,其通过影响微藻自身无机碳利用来影响外界HCO−3 与CO2之间的转化,形成碳汇动力。表 6 碳酸酐酶加速岩石风化的数据统计Table 6. Statistics of the acceleration of rock weathering by carbonic anhydrase岩石种类 岩石风化变化情况 生物种类 CA种类 数据来源 白云岩 在CO2分压低于5 000 Pa实验条件下,对白云岩的溶解速率促进倍数在1.29~3.07之间 体外实验 高分子催化剂-牛碳酸酐酶 刘再华,2001[117] 灰岩 加入CA后,在高CO2 分压时,其溶解速率可增加 10倍 体外实验 高分子催化剂-牛碳酸酐酶 刘再华,2001[117] 灰岩 在加入AZ后,单位时间单位藻体的镁离子释放量从3.37×10−4 mg·(μg·day)−1降低至1.99×10−4 mg·(μg·day)−1 莱茵衣藻 胞外碳酸酐酶 Xie等,2014[66] 灰岩 在加入AZ后,单位时间单位藻体的镁离子释放量从2.44×10−4 mg·(μg·day)−1降低至2.19×10−4 mg·(μg·day)−1 蛋白核小球藻 胞外碳酸酐酶 Xie等,2014[66] 3. 岩石风化对微藻生物碳汇影响
岩溶地区是典型的岩石风化活动最强区域,因此,研究岩溶湖泊环境对微藻碳汇能力影响的因素对评价各湖泊、流域的碳汇能力具有重要意义。岩溶湖泊水体pH和
HCO−3 浓度较高[96,126],研究这两个关键性因子对微藻生长的影响,可以反映出岩溶湖泊环境对微藻碳汇能力影响。湖泊pH对水体中各类物质的迁移和转化过程具有控制作用。湖泊中元素的溶解沉淀、吸附解析、迁移转化都受到pH的影响,pH对湖泊初级生产力也有影响。通过对云贵高原中部典型风化流域湖泊(阿哈湖、百花湖和红枫湖)的长期监测数据发现,水体的pH范围在8.2~9.2[103,127]。研究表明,随着pH在6.5~9.2之间不断升高,莱茵衣藻和小球藻的叶绿素a含量和蛋白质含量也不断上升,说明一定范围的高pH环境有利于微藻生物量增长[103,127]。当水体pH为8.0~9.0时,水体中
HCO−3 浓度较高,可作为微藻生长的无机碳源[96,98,103,128-129]。在实验室进行控制试验发现,当pH=6.5时,莱茵衣藻和小球藻CAex活性最大;而当pH=7.5~9.0时,莱茵衣藻和小球藻都生长得较好,此时的CAex活性较酸性环境中的低。在酸性环境中,pH影响无机碳存在形式,培养液中的无机碳主要以CO2形式存在,有足够的量进入细胞内,因此CAex活性低;在碱性环境中,随着pH的增高,CAex活性不断降低,水体碱性时无机碳主要以HCO−3 形式存在,培养液中的CO2源源不断地转化为HCO−3 ,使之成为微藻的碳源。因此CAex活性随pH增高而降低[103, 128-129],表明微藻CAex在响应水体pH变化时,能及时做出的调控,有效地保证了微藻体内无机碳的供给量。贵阳红枫湖、啊哈湖是学者研究岩溶湖泊的热点区域。研究发现水体主要阴离子以
HCO−3 为主[103,127],风化水体中HCO−3 的比例是非常高的。为了厘清风化环境HCO−3 对微藻生长的影响,通过在培养基中分别添加0、0.5、2.0、4.0、8.0和16.0 mmol·L−1的碳酸氢钠来研究其对莱茵衣藻和蛋白核小球藻碳酸酐酶基因的表达,3天后,用实时荧光定量PCR技术测定CAH1(位于细胞周质,控制碳酸酐酶胞外酶的活性)基因表达,发现低浓度碳酸氢钠能够诱导微藻碳酸酐酶胞外酶活性,造成编码CAH1表达量上调;而过高浓度的碳酸氢钠却抑制微藻碳酸酐酶胞外酶活性,造成编码CAH1表达量下调[103]。与已有研究相似,在缺乏无机碳源的情况下,碳酸酐酶胞外酶活性较高,相应地,碳酸酐酶胞外酶基因受到诱导,促使编码CAH1基因表达上调[112-115]。Fujiwara等[112]认为不同浓度CO2对编码CAH1的基因表达影响明显,在高浓度CO2的条件下,编码CAH1基因的表达量几乎为0,与提高CO2浓度对CAH1所产生的影响类似,添加的碳酸氢钠浓度升高也会造成编码CAH1基因表达量下降。同时,CAH5参与线粒体电子传递链,在添加低浓度碳酸氢钠条件下,首先造成编码胞外酶CAH1基因的表达上调,相应地,此时需要线粒体呼吸作用提供更多的能量和生成CO2供微藻生长所需要,由此带来编码CAH5基因表达上调,因此,编码CAH5的基因表达具有与CAH1相似的趋势[103],这也与相关研究结果类似[114,130]。表明,水体中缺乏可溶性无机碳能够诱导微藻的编码CAH1基因表达量上调,相应地,碳酸酐酶胞外酶活性提高;而可溶性无机碳含量过高则下调编码 CAH1基因表达,相应地,碳酸酐酶胞外酶活性下降,从机理上阐明了微藻碳酸酐酶胞外酶对不同环境碳源浓度的响应及其在水体缺乏无机碳条件下的适应机制。高浓度的HCO−3 会抑制微藻的CAex活性,而低浓度的HCO−3 能诱导微藻的CAex活性,低浓度HCO−3 环境下微藻更加依赖CAex来摄取无机碳[96, 103,128]。在研究HCO−3 对微藻生物量的影响的实验中发现,更高的HCO−3 环境下微藻的生物量有更高的响应(表7);当微藻CAex被抑制,HCO−3 的利用降低,微藻的生物量大大降低(表7),表明微藻CAex在响应水体HCO−3 浓度变化时及时做出的调控,即有效地保证微藻体内CO2的供给量。因此,微藻通过CAex的作用,催化加速CO2不断地转化为
HCO−3 ,形成水体HCO−3 消耗的动力基础,是微藻对风化碳汇作用重要的初始动力。不管是相对较高的pH、还是一定范围内较高HCO−3 浓度,都通过增加HCO−3 转化成微藻体内CO2供应量来增加生物转化,形成生物碳汇(图7)。4. 结论与展望
4.1 结 论
本文从岩石风化产生的
HCO−3 、微藻等水生植物光合作用对HCO−3 的利用机制入手,抓住岩石风化产生HCO−3 与微藻光合利用HCO−3 这一耦合点,依据现有文献和理论,提出以HCO−3 为中心的碳循环研究模式,总结当前研究得到流域岩石风化与微藻生长的耦合关系(图8),获得三点主要认识:(1)微藻在水体低CO2、高
HCO−3 生存环境中,形成了一种在细胞内提高无机碳浓度的CCM机制,微藻可通过CAex大大提高HCO−3 的利用效率以供光合作用形成生物碳汇;当HCO−3 不断的消耗会加速硅酸盐岩风化,使得硅酸盐岩风化朝着碳汇方向进行;这两部分形成了大气CO2净碳汇;(2)当水体
HCO−3 不断的消耗也会加速碳酸盐岩风化,但碳酸盐岩风化并不能直接产生净碳汇,通过微藻对其风化HCO−3 源源不断的利用,导致风化继续进行并朝着有机碳汇方向进行,故碳酸盐岩风化作用并不完全产生CO2源。在水生植物微藻对HCO−3 的利用下,碳酸盐岩风化过程产生一定的碳汇;(3)微藻通过CAex的作用,催化加速
HCO−3 与CO2之间的转化,形成水体HCO−3 消耗的动力基础,是微藻对岩石风化碳汇作用重要的初始动力。4.2 展 望
(1)中国岩溶地貌分布之广泛,类型之多, 以西南地区岩溶连片分布为世界所罕见。这种岩溶地貌的岩石风化产生碳汇将可能对整个碳循环系统产生巨大影响,极有可能在遗失碳汇中占比突出,探究西南地区流域中水生植物等对岩石风化的影响将变得意义重大。开展岩溶区区域水体系统的岩石风化、水生生物碳汇评估成为当前区域碳收支问题的关键;
(2)厘清岩石风化作用中生物碳汇的增加量、无机碳转化为水体有机碳的转化量、溶解性有机碳、颗粒态的有机物等不同形态碳的转化量,探究其随着水循环的迁移和转化规律,成为解决当前从水化学径流法计算碳酸盐岩、硅酸盐岩风化碳汇精度不够的重要问题;
(3)评估当前岩石风化在水系统、水生生物作用下的碳汇时间尺度,是解决当前学者对岩石风化碳汇在不平衡碳收支贡献观点不一致的关键。
-
图 5 不同时间下方解石的镁离子释放量(mg·L−1)和叶绿素a的含量(μg·L−1)(a)对照组;(b、e)莱茵衣藻;(c、f)蛋白核小球藻;(d、g)铜绿微囊藻(据Xie Tengxiang等,2017[67])
Figure 5. Concentrations of Mg2+ from calcite (mg·L−1) and chl-a (μg·L−1) at different pH values after different hours of incubation (a) the treatment without microalgae (control group); (b, e) the treatment with C. reinhardtii (C.R.); (c, f) the treatment with C. pyrenoidosa (C.P.); and (d, g) the treatment with M. aeruginosa (M.A.) (revised from Xie Tengxiang et al., 2017[67] )
表 1 1850-2019年全球人为累计碳收支情况(引自AR6[1,10])
Table 1. Global accumulated anthropogenic CO2 budget from 1850 to 2019(revised from AR6[1,10])
碳排放量/PgC 总量/PgC 收支不平衡量/PgC 排放(源) 化石燃料燃烧及水泥生产 445±20 685±65 20 净通量土地使用 240±60 分配(汇) 大气增加CO2 265±5 635±80 海洋碳汇 160±20 陆地碳汇 210±55 表 3 微藻的碳酸氢根离子利用途径份额
Table 3. Proportion of bicarbonate utilization pathway to the whole carbon utilization pathway of microalgae
表 4 微藻对碳酸钙碳源的利用份额(fB)(谢腾祥等,2014[104])
Table 4. Proportion of calcium carbonate-carbon source utilized by microalgae (Xie Tengxiang et al., 2014[104])
藻种 AZ/mmol·L−1 fB 莱茵衣藻 0 0.02 0.1 0.03 1 0.08 10 0.30 蛋白核小球藻 0 0.02 0.1 0.02 1 0.10 10 0.15 表 5 野外湖泊微藻利用添加的碳酸氢钠与总无机碳碳源的占比(Li Haitao等,2018[96])
Table 5. Proportion of NaHCO3-carbon source utilized by lake microalgae (Li Haitao et al., 2018[96])
NaHCO3/
mmol·L−1AZ /mmol·L−1 0 1.0 10.0 1.0 0.06±0.03 0.06±0.04 0.03±0.03 2.5 0.08±0.02 0.08±0.05 0.09±0.03 5.0 0.09±0.04 0.17±0.05 0.12±0.05 表 6 碳酸酐酶加速岩石风化的数据统计
Table 6. Statistics of the acceleration of rock weathering by carbonic anhydrase
岩石种类 岩石风化变化情况 生物种类 CA种类 数据来源 白云岩 在CO2分压低于5 000 Pa实验条件下,对白云岩的溶解速率促进倍数在1.29~3.07之间 体外实验 高分子催化剂-牛碳酸酐酶 刘再华,2001[117] 灰岩 加入CA后,在高CO2 分压时,其溶解速率可增加 10倍 体外实验 高分子催化剂-牛碳酸酐酶 刘再华,2001[117] 灰岩 在加入AZ后,单位时间单位藻体的镁离子释放量从3.37×10−4 mg·(μg·day)−1降低至1.99×10−4 mg·(μg·day)−1 莱茵衣藻 胞外碳酸酐酶 Xie等,2014[66] 灰岩 在加入AZ后,单位时间单位藻体的镁离子释放量从2.44×10−4 mg·(μg·day)−1降低至2.19×10−4 mg·(μg·day)−1 蛋白核小球藻 胞外碳酸酐酶 Xie等,2014[66] -
[1] IPCC. Climate Change 2021: The Physical Science Basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change[R]. Cambridge and New York: Cambridge University Press, 2021. [2] IPCC. Climate Change 2013: The Physical Science Basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change[R]. Cambridge and New York: Cambridge University Press, 2013. [3] Foote E. Circumstances affecting the heat of the sun’s rays[J]. American Journal of Science and Arts, 1856: 382–383. [4] Tyndall J. The Bakerian Lecture: On the absorption and radiation of heat by gases and vapours, and on the physical connexion of radiation, absorption, and conduction[J]. Philosophical Transactions of the Royal Society of London, 1861, 151:1-36. doi: 10.1098/rstl.1861.0001 [5] 袁道先, 蒋勇军, 沈立成, 蒲俊兵, 肖琼. 现代岩溶学[M]. 北京: 科学出版社, 2016.YUAN Daoxian, JIANG Yongjun, SHEN Licheng, PU Junbing, XIAO Qiong. Modern karstology[M]. Beijing: Science Press, 2016. [6] Friedlingstein P, Cox P, Betts R, Bopp L, Von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I, Bala G, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews H D, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler K G, Schnur R, Strassmann K, Weaver A J, Yoshikawa C, Zeng N. Climate–carbon cycle feedback analysis: Results from the C4MIP model intercomparison[J]. Journal of Climate, 2006, 19(14):3337-3353. doi: 10.1175/JCLI3800.1 [7] Jones C D, Friedlingstein P. Quantifying process-level uncertainty contributions to TCRE and carbon budgets for meeting Paris Agreement climate targets[J]. Environmental Research Letters, 2020, 15(7):1-20. [8] Raupach M R, Gloor M, Sarmiento J L, Canadell J G, Frölicher T L, Gasser T, Houghton R A, QuéréC L, Trudinger C M. The declining uptake rate of atmospheric CO2 by land and ocean sinks[J]. Biogeosciences, 2014, 11(13):3453-3475. doi: 10.5194/bg-11-3453-2014 [9] Williams R G, Katavouta A, Goodwin P. Carbon-cycle feedbacks operating in the climate system[J]. Current Climate Change Reports, 2019, 5(4):282-295. doi: 10.1007/s40641-019-00144-9 [10] Friedlingstein P, O'Sullivan M, Jones M W, Andrew R M, Zaehle S. Global carbon budget 2020[J]. Earth System Science Data, 2020, 12(4):3269-3340. doi: 10.5194/essd-12-3269-2020 [11] Chamberlin T C. A group of hypotheses bearing on climatic changes[J]. Journal of Geology, 1897, 5(7):653-683. doi: 10.1086/607921 [12] Ekholm N. On the variations of the climate of the geological and historical past and their causes[J]. Quarterly Journal of the Royal Meteorological Society, 1901, 27(117):1-62. doi: 10.1002/qj.49702711702 [13] Berner R A. A new look at the long-term carbon cycle[J]. Gsa Today, 1999, 9(11):1-6. [14] Foster G L, Royer D L, Lunt D J. Future climate forcing potentially without precedent in the last 420 million years[J]. Nature Communications, 2017, 8:14845. doi: 10.1038/ncomms14845 [15] Gutjahr M, Ridgwell A, Sexton P F, Anagnostou E, Pearson P N, Pälike H, Norris R D, Thomas E, Foster G L. Very large release of mostly volcanic carbon during the Palaeocene–Eocene Thermal Maximum[J]. Nature, 2017, 548(7669):573-577. doi: 10.1038/nature23646 [16] Raymond P A, Hartmann J, Lauerwald R, Sobek S, McDonald C, Hoover M, Butman D, Striegl R, Mayorga E, Humborg C, Kortelainen P, Dürr H, Meybeck M, Ciais P, Guth P. Global carbon dioxide emissions from inland waters[J]. Nature, 2013, 503(7476):355-359. doi: 10.1038/nature12760 [17] Regnier P, Friedlingstein P, Ciais P, Mackenzie F T, Gruber N, Janssens I A, Laruelle G G, Lauerwald R, Luyssaert S, Andersson A J, Arndt S, Arnosti C, Borges A V, Dale A W, Gallego-Sala A, Goddéris Y, Goossens N, Hartmann J, Heinze C, Ilyina T, Joos F, LaRowe D E, Leifeld J, Meysman F J R, Munhoven G, Raymond P A, Spahni R, Suntharalingam P, Thullner M. Anthropogenic perturbation of the carbon fluxes from land to ocean[J]. Nature Geoscience, 2013, 6(8):597-607. doi: 10.1038/ngeo1830 [18] Lauerwald R, Laruelle G G, Hartmann J, Ciais P, Regnier P A. Spatial patterns in CO2 evasion from the global river network[J]. Global Biogeochemical Cycles, 2015, 29(5):534-554. doi: 10.1002/2014GB004941 [19] Drake J E, Macdonald C A, Tjoelker M G, Reich P B, Singh B K, Anderson I C, Ellsworth D S. Three years of soil respiration in a mature eucalypt woodland exposed to atmospheric CO2 enrichment[J]. Biogeochemistry, 2018, 139(1):85-101. doi: 10.1007/s10533-018-0457-7 [20] Behrenfeld M J. Climate-mediated dance of the plankton[J]. Nature Climate Change, 2014, 4(10):880-887. doi: 10.1038/nclimate2349 [21] Cavicchioli R, Ripple W J, Timmis K N, Azam F, Bakken L R, Baylis M, Behrenfeld M J, Boetius A, Boyd P W, Classen A T, Crowther T W, Danovaro R, Foreman C M, Huisman J, Hutchins D A, Jansson J K, Karl D M, Koskella B, Mark Welch D B, Martiny J B H, Moran M A, Orphan V J, Reay D S, Remais J V, Rich V I, Singh B K, Stein L Y, Stewart F J, Sullivan M B, Van Oppen M J H, Weaver S C, Webb E A, Webster N S. Scientists' warning to humanity: Microorganisms and climate change[J]. Nature Reviews Microbiology, 2019, 17(9):569-586. doi: 10.1038/s41579-019-0222-5 [22] Stone R. The invisible hand behind a vast carbon reservoir[J]. Science, 2010, 328(5985):1476-1477. doi: 10.1126/science.328.5985.1476 [23] Berner R A, Lasaga A C, Garrels R M. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years[J]. American Journal of Science, 1983, 283(7):641-683. doi: 10.2475/ajs.283.7.641 [24] 刘再华, Dreybrodt W, 刘洹. 大气 CO2 汇: 硅酸盐风化还是碳酸盐风化的贡献?[J]. 第四纪研究, 2011, 31(3):426-430. doi: 10.3969/j.issn.1001-7410.2011.03.04LIU Zaihua, Dreybrodt W, LIU Huan. Atmospheric CO2 sink: Silicate weathering or carbonate weathering[J]. Quaternary Sciences, 2011, 31(3):426-430. doi: 10.3969/j.issn.1001-7410.2011.03.04 [25] Bricker O P. The global water cycle geochemistry, and environment[J]. Eos, Transactions American Geophysical Union, 1988, 69(4):51-51. [26] Yadav S K, Chakrapani G J, Gupta M K. An experimental study of dissolution kinetics of calcite, dolomite, leucogranite and gneiss in buffered solutions at temperature 25 and 5 C[J]. Environmental Geology, 2008, 53(8):1683-1694. doi: 10.1007/s00254-007-0775-x [27] Wallin M, Bjerle I. A mass transfer model for limestone dissolution from a rotating cylinder[J]. Chemical engineering science, 1989, 44(1):61-67. doi: 10.1016/0009-2509(89)85233-9 [28] Walker J C G, Hays P B, Kasting J F. A negative feedback mechanism for the long‐term stabilization of Earth's surface temperature[J]. Journal of Geophysical Research Oceans, 1981, 86(C10):9776-9782. doi: 10.1029/JC086iC10p09776 [29] 刘再华, W Dreybrodt, 韩军, 李华举. CaCO3-CO2-H2O岩溶系统的平衡化学及其分析[J]. 中国岩溶, 2005, 24(1):3-16. doi: 10.3969/j.issn.1001-4810.2005.01.001LIU Zaihua, Dreybrodt Wolfgang, HAN Jun, LI Huaju. Equilibrium chemistry of the CaCO3-CO2-H2O system and discussions[J]. Carsologica Sinica, 2005, 24(1):3-16. doi: 10.3969/j.issn.1001-4810.2005.01.001 [30] Misra S, Froelich P N. Lithium isotope history of Cenozoic seawater: Changes in silicate weathering and reverse weathering[J]. Science, 2012, 335(6070):818-823. doi: 10.1126/science.1214697 [31] Gaillardet J, Galy A. Atmospheric science. Himalaya-carbon sink or source?[J]. Science, 2008, 320(5884):1727-1728. doi: 10.1126/science.1159279 [32] 徐胜友, 蒋忠诚. 我国岩溶作用与大气温室气体CO2源汇关系的初步估算[J]. 科学通报, 1997, 42(9):953-956. doi: 10.3321/j.issn:0023-074X.1997.09.019XU Shengyou, JIANG Zhongcheng. Preliminary estimation of the relationship between karst and atmospheric greenhouse gas CO2 source and sink in China[J]. Chinese Science Bulletin, 1997, 42(9):953-956. doi: 10.3321/j.issn:0023-074X.1997.09.019 [33] 蒋忠诚, 覃小群, 曹建华, 蒋小珍, 何师意, 罗为群. 中国岩溶作用产生的大气CO2碳汇的分区计算[J]. 中国岩溶, 2011, 30(4):363-367. doi: 10.3969/j.issn.1001-4810.2011.04.002JIANG Zhongcheng, QIN Xiaoqun, CAO Jianhua, JIANG Xiaozhen, HE Shiyi, LUO Weiqun. Calculation of atmospheric CO2 sink formed in karst progresses of the karst divided regions in China[J]. Carsologica Sinica, 2011, 30(4):363-367. doi: 10.3969/j.issn.1001-4810.2011.04.002 [34] 邱冬生, 庄大方, 胡云锋, 姚锐. 中国岩石风化作用所致的碳汇能力估算[J]. 地球科学:中国地质大学学报, 2004, 29(2):177-190.QIU Dongsheng, ZHUANG Dafang, HU Yunfeng, YAO Rui. Estimation of carbon sink capacity caused by rock weathering in China[J]. Earth Science-Journal of China University of Geosciences, 2004, 29(2):177-190. [35] 张之淦. 对《中国岩溶作用产生的大气CO2碳汇的分区计算》一文的商榷[J]. 中国岩溶, 2012, 31(3):339-344. doi: 10.3969/j.issn.1001-4810.2012.03.017ZHANG Zhigan. Discussion on article "Calculation of atmospheric CO2 sink formed in karst processes of karst-divided regions in China"[J]. Carsologica Sinica, 2012, 31(3):339-344. doi: 10.3969/j.issn.1001-4810.2012.03.017 [36] Yuan D X. The carbon cycle in karst[J]. Zeitschrift fur Geomorphologie, 1997, 108(Suppl.):91-102. [37] 刘再华, Wolfgang D, 王海静. 一种由全球水循环产生的可能重要的CO2汇[J]. 科学通报, 2007, 52(20):2418-2422. doi: 10.3321/j.issn:0023-074x.2007.20.013LIU Zaihua, Wolfgang D, WANG Haijing. A potentially important CO2 sink generated by the global water cycle[J]. Chinese Science Bulletin, 2007, 52(20):2418-2422. doi: 10.3321/j.issn:0023-074x.2007.20.013 [38] Fatichi S, Pappas C, Zscheischler J, Leuzinger S. Modelling carbon sources and sinks in terrestrial vegetation[J]. New Phytologist, 2019, 221(2):652-668. doi: 10.1111/nph.15451 [39] Walker A P, De Kauwe M G, Bastos A, Belmecheri S, Georgiou K, Keeling R F, Zuidema P A. Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2[J]. New Phytologist, 2021, 229(5):2413-2445. doi: 10.1111/nph.16866 [40] Mendonça R, Müller R A, Clow D, Verpoorter C, Raymond P, Tranvik L J, Sobek S. Organic carbon burial in global lakes and reservoirs[J]. Nature communications, 2017, 8(1):1-6. doi: 10.1038/s41467-016-0009-6 [41] Jacobson A R, Mikaloff Fletcher S E, Gruber N, Sarmiento J L, Gloor M. A joint atmosphere-ocean inversion for surface fluxes of carbon dioxide: 1. Methods and global-scale fluxes[J]. Global Biogeochemical Cycles, 2007, 21(1):1-13. [42] Resplandy L, Keeling R F, Rödenbeck C, Stephens B B, Khatiwala S, Rodgers K B, Tans P P. Revision of global carbon fluxes based on a reassessment of oceanic and riverine carbon transport[J]. Nature Geoscience, 2018, 11(7):504-509. doi: 10.1038/s41561-018-0151-3 [43] Bolin B, Degens E T, Kempe S. The global carbon cycle-scope. Carbon in the rock cycle[J]. Amercian Science, 1980, 13:317-342. [44] Garrels R M, Mackenzie F T, Hunt C. Chemical cycles and the global environment: Assessing human influences[J]. La Revue Du Praticien, 1975, 37(23):1321-1325. [45] Kempe S, Degens E T. An early soda ocean?[J]. Chemical geology, 1985, 53(1-2):95-108. doi: 10.1016/0009-2541(85)90023-3 [46] Lenton T M, Britton C. Enhanced carbonate and silicate weathering accelerates recovery from fossil fuel CO2 perturbations[J]. Global Biogeochemical Cycles, 2006, 20, GB3009:1-13. [47] Wallmann K. Controls on the cretaceous and cenozoic evolution of seawater composition, atmospheric CO2 and climate[J]. Geochimica et Cosmochimica Acta, 2001, 65(18):3005-3025. doi: 10.1016/S0016-7037(01)00638-X [48] Caldeira K. Long-term control of atmospheric carbon dioxide; low-temperature seafloor alteration or terrestrial silicate-rock weathering?[J]. American Journal of Science, 1995, 295(9):1077-1114. doi: 10.2475/ajs.295.9.1077 [49] Zhang S, Bai X, Zhao C, Tan Q, Luo G, Wang J, Xi H. Global CO2 consumption by silicate rock chemical weathering: Its past and future[J]. Earth's Future, 2021, 9(5):1-20. [50] Liu C Q, Jiang Y K, Tao F X, Lang Y C, Li S L. Chemical weathering of carbonate rocks by sulfuric acid and the carbon cycling in Southwest China[J]. Geochimica et Cosmochimica Acta, 2008, 4:404-414. [51] Xie C, Gao Q, Tao Z. Reviewed and perspectives of the study on chemical weathering and hydro-chemistry in river basin[J]. Tropical Geography, 2012, 32(4):331-337. [52] Gaillardet J, Dupréb B, Louvata P, Allègrea C J. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology, 1999, 159(1-4):3-30. doi: 10.1016/S0009-2541(99)00031-5 [53] Veizer J, Mackenzie F T. Evolution of sedimentary rocks[J]. Treatise on Geochemistry, 2003, 271(1551):369-407. [54] Amiotte Suchet P, Probst J L, Ludwig W. Worldwide distribution of continental rock lithology: Implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans[J]. Global Biogeochemical Cycles, 2003, 17(2):1038. [55] Hartmann J. Bicarbonate-fluxes and CO2-consumption by chemical weathering on the Japanese Archipelago—application of a multi-lithological model framework[J]. Chemical Geology, 2009, 265(3-4):237-271. doi: 10.1016/j.chemgeo.2009.03.024 [56] Dessert C, Dupré B, François L M, Schott J, Gaillardet J, Chakrapani G, Bajpai S. Erosion of deccan traps determined by river geochemistry: Impact on the global climate and the 87Sr/86Sr ratio of seawater[J]. Earth and Planetary Science Letters, 2001, 188(3-4):459-474. doi: 10.1016/S0012-821X(01)00317-X [57] Berner R A, Kothavala Z. GEOCARB III: A revised model of atmospheric CO2 over Phanerozoic time[J]. American Journal of Science, 2001, 301(2):182-204. doi: 10.2475/ajs.301.2.182 [58] Zhang C, Jiang Z C, He S Y, Jiang Y J, Li L L, Wang J L. The karst dynamic system of vertical zoned climate region: A case study of the Jinfo Mountain state nature reserve in Chongqing[J]. Acta Geoscientica Sinica, 2006(5):510-514. [59] Pu J B, Liu W, Jiang G H, Zhang C. Karst dissolution rate and implication under the impact of rainfall in a typical subtropic karst dynamic system: A Strontium isotope method[J]. Geological Review, 2017, 63:165-176. [60] Liao H, Zhu Y D. Global carbon cycle and climate change in China over the past century[J]. Quaternary Sciences, 2010, 30(3):445-455. [61] Cabré A, Marinov I, Leung S. Consistent global responses of marine ecosystems to future climate change across the IPCC AR5 earth system models[J]. Climate Dynamics, 2015, 45(5):1253-1280. [62] Fu W, Randerson J T, Moore J K. Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in the CMIP5 models[J]. Biogeosciences, 2016, 13(18):5151-5170. doi: 10.5194/bg-13-5151-2016 [63] Flombaum P, Wang W L, Primeau F W, Martiny A C. Martiny, 2020: Global picophytoplankton niche partitioning predicts overall positive response to ocean warming[J]. Nature Geoscience, 2020, 13(2):116-120. doi: 10.1038/s41561-019-0524-2 [64] Wu Y Y, Wang B L, Liu C Q. Chlamydomonas reinhardtii's influence on the corrosion of rocks[C]. First International Conference on Monitoring, Management, Simulation and Remediation of the Geological Environment (Geo-Environment), Segovia, Spain, 2004. WIT Press. [65] Liu Z, Dreybrodt W, Wang H. A new direction in effective accounting for the atmospheric CO2 budget: Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms[J]. Earth-Science Reviews, 2010, 99(3):162-172. [66] Xie T X, Wu Y Y. The role of microalgae and their carbonic anhydrase on the biological dissolution of limestone[J]. Environmental Earth Sciences, 2014, 71(12):5231-5239. doi: 10.1007/s12665-013-2925-7 [67] Xie T X, Wu Y Y. The biokarst system and its carbon sinks in response to pH changes: A simulation experiment with microalgae[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(3):827-843. doi: 10.1002/2016GC006628 [68] 刘再华. 岩石风化碳汇研究的最新进展和展望[J]. 科学通报, 2012, 57(2):95-102.LIU Zaihua. New progress and prospects in the study of rock-weathering-related carbon sinks[J]. Chinese Science Bulletin, 2012, 57(2):95-102. [69] 刘建康. 高级水生生物学[M]. 北京: 科学出版社, 2000: 1-402.LIU Jiankang. Advanced aquatic biology[M]. Beijing: Science Press, 2000: 1-402. [70] Han G, Liu C Q. Water geochemistry controlled by carbonate dissolution: A study of the river waters draining karst-dominated terrain, Guizhou Province, China[J]. Chemical Geology, 2004, 204(1-2):1-21. doi: 10.1016/j.chemgeo.2003.09.009 [71] 刘丛强. 生物地球化学过程与地表物质循环: 西南喀斯特流域侵蚀与生源要素循环[M]. 北京: 科学出版社, 2007.LIU Congqiang. Biogeochemical processes and surface material cycling: Erosion and biomass cycling in a karst basin in Southwest China[M]. Beijing: Science Press, 2007. [72] 周玉婵, 曹建华, 李小方. 水化学对水体着生微型生物群落组成与丰度的影响: 以桂林毛村表层岩溶泉、砂页岩裂隙泉为例[J]. 中国岩溶, 2008, 3:261-265. doi: 10.3969/j.issn.1001-4810.2008.03.011ZHOU Yuchan, CAO Jianhua, LI Xiaofang. Comparison of periphyton community composition and abundance under different hydro-chemical influences between epikarst spring and sand-shale fissure spring in Maocun, Guilin[J]. Carsologica Sinica, 2008, 3:261-265. doi: 10.3969/j.issn.1001-4810.2008.03.011 [73] 王培, 曹建华, 李亮, 杨慧, 李光超. 不同来源小球藻对岩溶水Ca2+, HCO3-利用的初步研究[J]. 水生生物学报, 2013, 37(4):626-631.WANG Pei, CAO Jianhua, LI Liang, YANG Hui, LI Guangchao. Utilization of Ca2+ and HCO3- in karst water by chlorella from different sources[J]. Acta hydrobiologica Sinica, 2013, 37(4):626-631. [74] 王培, 胡清菁, 王朋辉, 李斌, 曹建华. 桂林寨底地下河沉水植物群落结构调查及影响因子分析[J]. 水生态学杂志, 2015, 36(1):34-39.WANG Pei, HU Qingjing, WANG Penghui, LI Bin, CAO Jianhua. Effect of karst geology on the submerged macrophyte community in Zhaidi river, Guilin[J]. Journal of Hydroecology, 2015, 36(1):34-39. [75] Whitfield M, Riley J, Skirrow G. Chemical Oceanography[M]. IP Riley and G. Skirrow (eds. ), 1975: 1-233. [76] Larkum A W, Larkum A W, McComb A J, Shephard S A. Gaseous movement in seagrasses. Biology of seagrasses. A treatise on the biology of seagrasses with special reference to the Australian region[M]. Amsterdam: Elsevier Science Publishers BV, 1989, 1(2) : 105-112. [77] 任启飞, 陈椽, 李荔, 王叁, 龙胜兴. 红枫湖秋季浮游植物群落与环境因子关系研究[J]. 环境科学与技术, 2010, 33(12F):59-64.REN Qifei, CHEN Chuan, LI Li, WANG San, LONG Shengxing. Phytoplankton community and its relationship with environmental factors in Hongfeng lake[J]. Environmental Science and Technology, 2010, 33(12F):59-64. [78] 龙胜兴, 陈椽, 郭云, 晏妮, 俞振兴. 红枫湖水库水体富营养化及浮游植物群落结构特征[J]. 中国环境监测, 2013(1):23-29. doi: 10.3969/j.issn.1002-6002.2013.01.005LONG Shengxing, CHEN Chuan, GUO Yun, YAN Ni, YU Zhenxing. Phytoplankton's characteristics of community structure and eutrophication in Hongfeng Lake Reservoir of Guizhou[J]. Environmental Monitoring in China, 2013(1):23-29. doi: 10.3969/j.issn.1002-6002.2013.01.005 [79] 彭希, 刘丛强, 王宝利, 赵颜创, 汪福顺. 河流-水库体系水体表层 pCO2时空变化特征及其扩散通量L以六冲河、洪家渡水库、红枫湖为例[J]. 地球与环境, 2013, 41(2):4-10.PENG Xi, LIU Congqiang, WANG Baoli, ZHAO Yanchuang, WANG Fushun. Spatiotemporal characteristics and diffusion flux of partial pressure of dissolved carbon dioxide (pCO2) in the river-reservoir system as exemplified by the Liuchonghe river, Hongjiadu reservoir and Hongfenghu lake[J]. Earth and Environment, 2013, 41(2):4-10. [80] Emerson R, Green L. Manometric measurements of photosynthesis in the marine alga Gigartina[J]. The Journal of General Physiology, 1934, 17(6):817-842. doi: 10.1085/jgp.17.6.817 [81] Tseng C K, Sweeney B M. Physiological studies of Gelidium cartilagineum. I. Photosynthesis, with special reference to the carbon dioxide factor[J]. American Journal of Botany, 1946, 33(9):706-715. doi: 10.1002/j.1537-2197.1946.tb12929.x [82] Badger M R, Andrews T J, Whitney S M, Ludwig M, Yellowlees D C, Leggat W, Price G D. The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-based CO2-concentrating mechanisms in algae[J]. Canadian Journal of Botany, 1998, 76(6):1052-1071. doi: 10.1139/b98-074 [83] Badger M R, Hanson D, Price G D. Evolution and diversity of CO2 concentrating mechanisms in cyanobacteria[J]. Functional Plant Biology, 2002, 29(3):161-173. doi: 10.1071/PP01213 [84] Bozzo G G, Colman B. The induction of inorganic carbon transport and external carbonic anhydrase in Chlamydomonas reinhardtii is regulated by external CO2 concentration[J]. Plant, Cell & Environment, 2000, 23(10):1137-1144. [85] Badger M R, Price G D. CO2 concentrating mechanisms in cyanobacteria: Molecular components, their diversity and evolution[J]. Journal of Experimental Botany, 2003, 54(383):609-622. doi: 10.1093/jxb/erg076 [86] Giordano M, Beardall J, Raven J A. CO2 concentrating mechanisms in algae: Mechanisms, environmental modulation, and evolution[J]. Annual Reviews of Plant Biology, 2005, 56:99-131. doi: 10.1146/annurev.arplant.56.032604.144052 [87] Sültemeyer D. Carbonic anhydrase in eukaryotic algae: Characterization, regulation, and possible function during photosynthesis[J]. Canadian Journal of Botany, 1998, 76(6):962-972. doi: 10.1139/b98-082 [88] Khalifah R G. The carbon dioxide hydration activity of carbonic anhydrase: I. Stop-flow kinetic studies on the native human isoenzymes B and C[J]. Journal of Biological Chemistry, 1971, 246(8):2561-2573. doi: 10.1016/S0021-9258(18)62326-9 [89] Fukuzawa H, Suzuki E, Komukai Y, Miyachi S. A gene homologous to chloroplast carbonic anhydrase (icfA) is essential to photosynthetic carbon dioxide fixation by Synechococcus PCC7942[J]. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(10):4437-4441. doi: 10.1073/pnas.89.10.4437 [90] Funke R P, Kovar J L, Weeks D P. Intracellular carbonic anhydrase is essential to photosynthesis in chlamydomonas reinhardtii at atmospheric levels of CO2 (demonstration via genomic complementation of the high-CO2-requiring mutant Ca-1)[J]. Plant Physiology, 1997, 114(1):237-244. doi: 10.1104/pp.114.1.237 [91] McNevin D B, Badger M R, Whitney S M, Von Caemmerer S, Tcherkez G G, Farquhar G D. Differences in carbon isotope discrimination of three variants of d-ribulose-1, 5-bisphosphate carboxylase/oxygenase reflect differences in their catalytic mechanisms[J]. Journal of Biological Chemistry, 2007, 282(49):36068-36076. doi: 10.1074/jbc.M706274200 [92] Tsuzuki M, Miyachi S. The function of carbonic anhydrase in aquatic photosynthesis[J]. Aquatic Botany, 1989, 34(1):85-104. [93] Sharkia R, Beer S, Cabantchik Z I. A membrane-located polypeptide of Ulva sp. which may be involved in HCO3- uptake is recognized by antibodies raised against the human red-blood-cell anion-exchange protein[J]. Planta, 1994, 194(2):247-249. doi: 10.1007/BF01101684 [94] Invers O, Pérez M, Romero J. Bicarbonate utilization in seagrass photosynthesis: Role of carbonic anhydrase in Posidonia oceanica (L.) Delile and Cymodocea nodosa (Ucria) Ascherson[J]. Journal of Experimental Marine Biology and Ecology, 1999, 235(1):125-133. doi: 10.1016/S0022-0981(98)00172-5 [95] 吴沿友. 植物碳酸酐酶对稳定碳同位素分馏作用的影响[J]. 矿物岩石地球化学通报, 2008, 2:175-179. doi: 10.3969/j.issn.1007-2802.2008.02.011WU Yanyou. The effect of plant carbonic anhydrase on the fractionation of stable carbon isotope[J]. Bulletin of Mineralogy‚ Petrology and Geochemistry, 2008, 2:175-179. doi: 10.3969/j.issn.1007-2802.2008.02.011 [96] Li H T, Wu Y Y, Zhao L H. Effects of carbon anhydrase on utilization of bicarbonate in microalgae: A case study in Lake Hongfeng[J]. Acta Geochimica, 2018, 37(4):519-525. doi: 10.1007/s11631-018-0277-4 [97] Moroney J V, Tolbert N E. Inorganic carbon uptake by Chlamydomonas reinhardtii[J]. Plant Physiology, 1985, 77(2):253-258. doi: 10.1104/pp.77.2.253 [98] 赵丽华, 吴沿友, 谢腾祥, 李海涛, 张开艳, 杭洪涛. 微藻CO2同化过程的稳定碳同位素分馏值[J]. 中国岩溶, 2016, 35(4):357-362.ZHAO Lihua, WU Yanyou, XIE Tengxiang, LI Haitao, ZHANG Kaiyan, HANG Hongtao. Stable carbon isotope fraction (δ13C) of microalgae on CO2 assimilation[J]. Carsologica Sinica, 2016, 35(4):357-362. [99] Wu Y Y. Bicarbonate use and carbon dioxide concentrating mechanisms in photosynthetic organisms[J]. Acta Geochimica, 2021, 40:846-853. doi: 10.1007/s11631-021-00488-w [100] Wu Y Y, Li H T, Xie T X. The regulation on carbon source and carbon sequestration by microalgal carbonic anhydrase. Biogeochemical action of microalgal carbonic anhydrase[M]. Beijing: Science Press, 2015: 76–111. [101] 赵丽华. 两种微藻对橄榄岩的生物溶蚀作用及其碳汇效应[D]. 贵阳: 中国科学院地球化学研究所, 2017.ZHAO Lihua. Biological dissolution of the two kinds of microalgae on the peridotite and the carbon sink[D]. Guiyang: Institute of Geochemistry, Chinese Academy of Sciences, 2017. [102] 吴沿友, 邢德科, 刘莹. 植物利用碳酸氢根离子的特征分析[J]. 地球与环境, 2011, 39(2):273-277.WU Yanyou‚ XING Deke‚ LIU Ying. The characteristics of bicarbonate used by plants[J]. Earth and Environment, 2011, 39(2):273-277. [103] 吴沿友, 李海涛, 谢腾祥. 微藻碳酸酐酶生物地球化学作用[M]. 北京: 科学出版社, 2015.WU Yanyou, LI Haitao, XIE Tengxiang. Biogeochemistry of carbonic anhydrase in microalgae[M]. Beijing: Science Press, 2015. [104] 谢腾祥, 吴沿友. 碳酸钙中的碳能被微藻利用吗[J]. 地球与环境, 2014, 42(2):168-173.XIE Tengxiang, WU Yanyou. The characteristics of bicarbonate used by plants[J]. Earth and Environment, 2014, 42(2):168-173. [105] Aizawa, K. Carbonic anhydrase and CO2 concentrating mechanisms in microalgae and cyanobacteria[J]. Fems Microbiology Letters, 1986, 39(3):215-233. doi: 10.1111/j.1574-6968.1986.tb01860.x [106] Badger M R, Price G D. The CO2 concentrating mechanism in cyanobacteria and microalgae[J]. Physiologia Plantarum, 1992, 84:606-615. doi: 10.1111/j.1399-3054.1992.tb04711.x [107] Pesheva I, Kodama M, Dionisio-Sese M L. Changes in photosynthetic characteristics induced by transferring air-grown cells of Chlorococcum littorale to high-CO2 conditions.[J]. Plant and Cell Physiology, 1994, 35(3):379-387. [108] Sülteméyer D, Schmidt C, Fock H P. Carbonic anhydrase in higher plants and aquatic microorganisms[J]. Physiologia Plantarum, 1995, 88(1):179-190. [109] Suzuki K, Ikawa T. Oxygen enhancement of photosynthetic 14CO2 fixation in a freshwater diatom Nitzschia ruttneri[J]. The Japanese Journal of Phycology, 1993, 41:19-28. [110] Williams T G, Colman B. Rapid separation of carbonic anhydrase isozymes using cellulose acetate membrane electrophoresis[J]. Journal of Experimental Botany, 1994, 45:153-158. doi: 10.1093/jxb/45.1.153 [111] Williams T G, Colman B. Quantification of the contribution of CO2, HCO3-, and external carbonic anhydrase to photosynthesis at low dissolved inorganic carbon in Chlorella saccharophila[J]. Plant Physiology, 1995, 107(1):245-251. doi: 10.1104/pp.107.1.245 [112] Fujiwara S, Fukuzawa H, Tachiki A, Miyachi S. Structure and differential expression of two genes encoding carbonic anhydrase in Chlamydomonas reinhardtii[J]. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(24):9779-9783. doi: 10.1073/pnas.87.24.9779 [113] Fukuzawa H, Fujiwara S, Tachiki A, Miyachi S. Nucleotide sequences of 2 genes CAH1 and CAH2 which encode carbonic anhydrase polypeptides in Chlamydomonas reinhardtii[J]. Nucleic Acids Research, 1990, 18(21):6441-6442. doi: 10.1093/nar/18.21.6441 [114] Moroney J V, Ma Y, Frey W D, Fusilier K A, Pham T T, Simms T A, Mukherjee B. The carbonic anhydrase isoforms of Chlamydomonas reinhardtii: Intracellular location, expression, and physiological roles[J]. Photosynthesis Research, 2011, 109(1):133-149. [115] Yoshioka S, Taniguchi F, Miura K, Inoue T, Yamano T, Fukuzawa H. The novel Myb transcription factor LCR1 regulates the CO2-responsive gene Cah1, encoding a periplasmic carbonic anhydrase in Chlamydomonas reinhardtii[J]. The Plant Cell, 2004, 16(6): 1466-1477. [116] Badger M R, Price G D. The role of carbonic anhydrase in photosynthesis[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1994, 45:369-392. doi: 10.1146/annurev.pp.45.060194.002101 [117] 刘再华. 碳酸酐酶对碳酸盐岩溶解的催化作用及其在大气CO2沉降中的意义[J]. 地球学报, 2001, 22(5):477-480. doi: 10.3321/j.issn:1006-3021.2001.05.018LIU Zaihua. The role of carbonic anhydrase as an activator in carbonate rock dissolution and its significance in atmospheric CO2 precipitation[J]. Acta Geoscientia Sinica, 2001, 22(5):477-480. doi: 10.3321/j.issn:1006-3021.2001.05.018 [118] 刘再华, Dreybrodt W. 不同CO2分压条件下的白云岩溶解动力学机理[J]. 中国科学(B辑化学), 2001, 31(4):377-384.LIU Zaihua, Dreybrodt W. Kinetic mechanism of dolomite dissolution under different CO2 partial pressures[J]. Science in China (Series B), 2001, 31(4):377-384. [119] 曾宪东. 植物碳酸酐酶对石灰岩岩溶的驱动作用研究[D]. 武汉: 华中科技大学, 2004.Zeng Xiandong. Study on driving effect of plant carbonic anhydrase on dissolution of the limestone[D]. Wuhan: Huazhong University of Science & Technology, 2004. [120] 余龙江, 吴云, 李为, 曾宪东, 付春华. 微生物碳酸酐酶对石灰岩的溶蚀驱动作用研究[J]. 中国岩溶, 2004, 23(3):225-228. doi: 10.3969/j.issn.1001-4810.2004.03.008YU Longjiang, WU Yun, LI Wei, ZENG Xiandong, FU Chunhua. Study on the driving effects on limestone corrosion by microbial carbonic anhydrase[J]. Carsologica Sinica, 2004, 23(3):225-228. doi: 10.3969/j.issn.1001-4810.2004.03.008 [121] 申泰铭, 邢必果, 李为, 余龙江. 不同种类微生物及其碳酸酐酶对CO2-H2O-碳酸盐系统中碳酸盐岩的溶蚀作用[J]. 矿物岩石地球化学通报, 2014, 33(6):797-800. doi: 10.3969/j.issn.1007-2802.2014.06.007SHEN Taiming, XIN Biguo, LI Wei, YU Longjiang. Characteristics of carbonate rock corrosion by different kinds of microbes and their carbonic anhydras in the CO2-H2O-Carbonate system[J]. Bulletin of Mineralogy‚ Petrology and Geochemistry, 2014, 33(6):797-800. doi: 10.3969/j.issn.1007-2802.2014.06.007 [122] Xiao B, Lian B, Sun L, Shao W. Gene transcription response to weathering of K-bearing minerals by Aspergillus fumigatus[J]. Chemical Geology, 2012, 306:1-9. [123] Xiao L, Lian B. Heterologously expressed carbonic anhydrase from Bacillus mucilaginosus promoting CaCO3 formation by capturing atmospheric CO2[J]. Carbonates Evaporites, 2015, 31:39-45. [124] Xiao L, Lian B, Hao J, Liu C, Wang S. Effect of carbonic anhydrase on silicate weathering and carbonate formation at present day CO2 concentrations compared to primordial values[J]. Scientific Reports, 2015, 5: 7733. [125] 孙蕾蕾, 肖雷雷, 肖波, 王伟英, 潘辰, 王世杰, 连宾. 黑曲霉风化含钾矿石过程中碳酸酐酶和半胱氨酸合成酶基因表达量的差异[J]. 中国科学:地球科学, 2013, 11:1828-1833.SUN Leilei, XIAO Leilei, XIAO Bo, WANG Weiying, PAN Chen, WANG Shijie, LIAN Bin. Differences in the gene expressive quantities of carbonic anhydrase and cysteine synthase in the weathering of potassium-bearing minerals by Aspergillus niger[J]. Science China: Earth Sciences, 2013, 11:1828-1833. [126] WU Yanyou, LI Pingping, WANG Baoli, LIU Congqiang. Variation in trophic status of three karst reservoirs in the Yunnan-Guizhou Plateau in China[J]. Cryptogamie Algologie, 2008, 29(1):81-93. [127] 谢腾祥. 微藻对碳酸盐矿物的生物溶蚀和沉淀作用及其碳汇效应[D]. 贵阳: 中国科学院地球化学研究所, 2014.XIE Tengxiang. Microalgae's biological dissolution and precipitation on carbonate minerals and carbon sink[D]. Guiyang: Institute of Geochemistry, Chinese Academy of Sciences, 2014. [128] 李海涛. 碳酸酐酶对微藻碳汇组成的影响[D]. 贵阳. 中国科学院地球化学研究所, 2013.LI Haitao. The effect of carbonic anhydrase in microalgae on carbon sequestion[D]. Guiyang: Institute of Geochemistry, Chinese Academy of Sciences, 2013. [129] 李海涛, 吴沿友, 谢腾祥. 微藻利用不同无机碳途径的定量方法[J]. 地球与环境, 2014, 42(1):116-121.LI Haitao, WU Yanyou, XIE Tengxiang. The method of quantifying inorganic carbon pathways in microalgae[J]. Earth and Environment, 2014, 42(1):116-121. [130] Sunderhaus S, Dudkina N V, Jansch L, Klodmann J, Heinemeyer J, Perales M, Zabaleta E, Boekema E J, Braun H P. Carbonic anhydrase subunits form a matrix-exposed domain attached to the membrane arm of mitochondrial complex I in plants[J]. Journal of Biological Chemistry, 2006, 281(10):6482-6488. doi: 10.1074/jbc.M511542200 期刊类型引用(2)
1. 钟亮,张春来,胡芬,曹建华. 基于Web of Science的岩溶碳循环及碳汇效应研究动态分析. 中国岩溶. 2024(04): 766-779+809 . 本站查看
2. 杨晓艳,任世川,田文锐,马能伟,宋增宏,李国瑞,张高引. 40年来昆明盆地碳酸盐岩风化溶解过程对大气中CO_2浓度变化的响应. 中国岩溶. 2024(06): 1341-1349 . 本站查看
其他类型引用(1)
-