• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

喀斯特小流域地表水碳酸盐系统化学平衡对酸性矿山废水的缓冲作用

黄江浔 李清光 安丽 杜双雪 郭兴强

黄江浔,李清光,安 丽,等. 喀斯特小流域地表水碳酸盐系统化学平衡对酸性矿山废水的缓冲作用[J]. 中国岩溶,2023,42(1):19-28 doi: 10.11932/karst2022y20
引用本文: 黄江浔,李清光,安 丽,等. 喀斯特小流域地表水碳酸盐系统化学平衡对酸性矿山废水的缓冲作用[J]. 中国岩溶,2023,42(1):19-28 doi: 10.11932/karst2022y20
HUANG Jiangxun, LI Qingguang, AN Li, DU Shuangxue, GUO Xingqiang. Buffering effect of chemical equilibrium of surface water carbonate system on acid mine drainage in small karst watershed[J]. CARSOLOGICA SINICA, 2023, 42(1): 19-28. doi: 10.11932/karst2022y20
Citation: HUANG Jiangxun, LI Qingguang, AN Li, DU Shuangxue, GUO Xingqiang. Buffering effect of chemical equilibrium of surface water carbonate system on acid mine drainage in small karst watershed[J]. CARSOLOGICA SINICA, 2023, 42(1): 19-28. doi: 10.11932/karst2022y20

喀斯特小流域地表水碳酸盐系统化学平衡对酸性矿山废水的缓冲作用

doi: 10.11932/karst2022y20
基金项目: 国家自然科学基金项目(41867050);国家重点研发计划 (2019YFC1805300);贵州省基础研究计划([2019]1096);贵州省人才基地项目 (RCJD2018-21)
详细信息
    作者简介:

    黄江浔(1998−),男,硕士研究生,从事矿山环境过程研究。E-mail:2431033709@qq.com

    通讯作者:

    李清光(1984−),男,副教授,从事环境地球化学研究。E-mail:leeqg12@163.com

  • 中图分类号: P342;X751

Buffering effect of chemical equilibrium of surface water carbonate system on acid mine drainage in small karst watershed

  • 摘要: Revelle因子不仅能反映弱碱性水体对吸收大气CO2的缓冲能力,还能体现水体酸化过程中CO2去气对H+的缓冲作用。本研究通过对多个缓冲因子的分析,探讨喀斯特中高硫煤矿区地表水碳酸盐系统对酸性矿山废水的缓冲作用,有助于进一步理解喀斯特地区流域水体中DIC循环过程和CO2源汇关系特征。结果表明,地表水碳酸盐系统内车田河流域Revelle因子变化区间在1.00~51.96之间,能有效揭示地表水碳酸盐系统内CO2去气对H+的缓冲过程,其敏感区间为pH=7.0~8.38的弱碱性水体。γDIC、βDIC、ωDIC、γAlk、βAlk、ωAlk等缓冲因子是基于pH和DIC浓度的二元方程。这些因子进一步细化了CO2(aq)、H+${\rm{CO}}_3^{2-}$等组分对DIC浓度和碱度的相对变化关系。在pH>7.0的DIC碳酸盐体系内,6个缓冲因子对水体酸化过程中碳酸盐组分的动态转化具有很好的响应。当pH<7.0以后,水−气界面和水−岩界面的碳传输过程增强,当CO2去气过程占主导,则缓冲因子绝对值变大;当H+对碳酸盐岩溶蚀过程占主导,则缓冲因子绝对值变小。

     

  • 图  1  车田河流域区域地质和采样点分布图

    Figure  1.  Regional geology and distribution of sampling point of the Chetian river basin

    图  2  海水碳酸盐系统和喀斯特河流碳酸盐系统Revelle因子对pH的响应

    Figure  2.  Responses of Revelle factor to pH in marine and karst water carbonate system

    图  3  Revelle因子对CO2(aq)、${\rm{HCO}}_3^{-}$和碳酸盐饱和度的响应

    Figure  3.  Response of Revelle factor to CO2(aq), ${\rm{HCO}}_3^{-}$ and carbonate saturation

    图  4  缓冲因子(γDIC、βDIC、ωDIC、γAlk、βAlk、ωAlk)相对于pH的变化特征

    Figure  4.  Variation characteristics of buffering factors (γDICDICDICAlkAlk and ωAlk ) relative to pH

    图  5  车田河流域缓冲因子(γDIC、βDIC、ωDIC、γAlk、βAlk、ωAlk)对pH的响应关系

    Figure  5.  Response of buffering factors (γDIC, βDIC, ωDIC, γAlk, βAlk and ωAlk) of the Chetian river basin to pH

    图  6  车田河流域βDIC和βAlk分别对CO2(aq)、${\rm{HCO}}_3^{-}$、碳酸盐饱和度的响应

    Figure  6.  Responses of βDIC and βAlk to CO2(aq), ${\rm{HCO}}_3^{-}$ and carbonate saturation in the Chetian river basin

    表  1  缓冲因子计算方法

    Table  1.   Calculation method of buffering factors

    缓冲因子对DIC变化的响应缓冲因子对Alk变化的响应
    $ {\mathrm{\gamma }}_{\mathrm{D}\mathrm{I}\mathrm{C}}={\left(\dfrac{\partial \mathrm{l}\mathrm{n}\left[{\mathrm{C}\mathrm{O}}_{2}\right]}{\partial \mathrm{D}\mathrm{I}\mathrm{C}}\right)}^{-1}=\mathrm{D}\mathrm{I}\mathrm{C}-\dfrac{{\mathrm{A}\mathrm{l}\mathrm{k}}_{\mathrm{C}}^{2}}{\mathrm{S}} $$ {\mathrm{\gamma }}_{\mathrm{A}\mathrm{l}\mathrm{k}}={\left(\dfrac{\partial \mathrm{l}\mathrm{n}\left[{\mathrm{C}\mathrm{O}}_{2}\right]}{\partial \mathrm{A}\mathrm{l}\mathrm{k}}\right)}^{-1}=\dfrac{{\mathrm{A}\mathrm{l}\mathrm{k}}_{\mathrm{C}}^{2}-\mathrm{D}\mathrm{I}\mathrm{C}\times \mathrm{S}}{{\mathrm{A}\mathrm{l}\mathrm{k}}_{\mathrm{C}}} $
    $ {\mathrm{\beta }}_{\mathrm{D}\mathrm{I}\mathrm{C}}={\left(\dfrac{\partial \mathrm{l}\mathrm{n}\left[{\mathrm{H}}^{+}\right]}{\partial \mathrm{D}\mathrm{I}\mathrm{C}}\right)}^{-1}=\dfrac{\mathrm{D}\mathrm{I}\mathrm{C}\times \mathrm{S}-{\mathrm{A}\mathrm{l}\mathrm{k}}_{\mathrm{C}}^{2}}{{\mathrm{A}\mathrm{l}\mathrm{k}}_{\mathrm{C}}} $$ {\mathrm{\beta }}_{\mathrm{A}\mathrm{l}\mathrm{k}}={\left(\dfrac{\partial \mathrm{l}\mathrm{n}\left[{\mathrm{H}}^{+}\right]}{\partial \mathrm{A}\mathrm{l}\mathrm{k}}\right)}^{-1}=\dfrac{{\mathrm{A}\mathrm{l}\mathrm{k}}_{\mathrm{C}}^{2}}{\mathrm{D}\mathrm{I}\mathrm{C}}-\mathrm{S} $
    $ {\mathrm{\omega }}_{\mathrm{D}\mathrm{I}\mathrm{C}}={\left(\dfrac{\partial \mathrm{l}\mathrm{n}\mathrm{\Omega }}{\partial \mathrm{D}\mathrm{I}\mathrm{C}}\right)}^{-1}=\mathrm{D}\mathrm{I}\mathrm{C}-\dfrac{{\mathrm{A}\mathrm{l}\mathrm{k}}_{\mathrm{C}}\times \mathrm{P}}{\left[{\mathrm{H}\mathrm{C}\mathrm{O}}_{3}^{-}\right]} $$ {\mathrm{\omega }}_{\mathrm{A}\mathrm{l}\mathrm{k}}={\left(\dfrac{\partial \mathrm{l}\mathrm{n}\mathrm{\Omega }}{\partial \mathrm{A}\mathrm{l}\mathrm{k}}\right)}^{-1}={\mathrm{A}\mathrm{l}\mathrm{k}}_{\mathrm{C}}-\dfrac{\mathrm{D}\mathrm{I}\mathrm{C}\times \left[{\mathrm{H}\mathrm{C}\mathrm{O}}_{3}^{-}\right]}{\mathrm{P}} $
    注:$ \mathrm{S}=\left[{\mathrm{H}\mathrm{C}\mathrm{O}}_{3}^{-}\right]+4\left[{\mathrm{C}\mathrm{O}}_{3}^{2-}\right]+\left[{\mathrm{H}}^{+}\right]-\left[{\mathrm{O}\mathrm{H}}^{-}\right],{\mathrm{A}\mathrm{l}\mathrm{k}}_{\mathrm{C}}=\left[{\mathrm{H}\mathrm{C}\mathrm{O}}_{3}^{-}\right]+2\left[{\mathrm{C}\mathrm{O}}_{3}^{2-}\right], $$ \mathrm{D}\mathrm{I}\mathrm{C}=\left[{\mathrm{C}\mathrm{O}}_{2}\right]+\left[{\mathrm{H}\mathrm{C}\mathrm{O}}_{3}^{-}\right]+\left[{\mathrm{C}\mathrm{O}}_{3}^{2-}\right],A\mathrm{l}\mathrm{k}=\left[{\mathrm{H}\mathrm{C}\mathrm{O}}_{3}^{-}\right]+2\left[{\mathrm{C}\mathrm{O}}_{3}^{2-}\right]-\left[{\mathrm{H}}^{+}\right]+\left[{\mathrm{O}\mathrm{H}}^{-}\right], $$\mathrm{P}=2\left[\mathrm{C}{\mathrm{O} }_{2}\right]+\left[\mathrm{H}\mathrm{C}{\mathrm{O} }_{3}^{-}\right]。$
    下载: 导出CSV
  • [1] Sabine C L, Feely R A, Gruber N, Key R M, Lee K, Bullister J L, Wanninkhof R, Wong C S, Wallace D W, Tilbrook B, Millero F J, Peng T H, Kozyr A, Ono T, Rios AF. The oceanic sink for anthropogenic CO2[J]. Science, 2004, 305(5682):367-371. doi: 10.1126/science.1097403
    [2] Thomas H, Friederike Prowe A E, van Heuven S, Bozec Y, de Baar H J, Schiettecatte L S, Suykens K, Kone M, Borges A V, Lima I D, Doney S C. Rapid decline of the CO2 buffering capacity in the North Sea and implications for the North Atlantic Ocean[J]. Global Biogeochemical Cycles, 2007, 21(4): GB4001.
    [3] Egleston E S, Sabine C L, Morel F M M. Revelle revisited: Buffer factors that quantify the response of ocean chemistry to changes in DIC and alkalinity[J]. Global Biogeochemical Cycles, 2010, 24(1): GB1002.
    [4] Shaw E C, McNeil B I, Tilbrook B, Richard M, Michael L B. Anthropogenic changes to seawater buffer capacity combined with natural reef metabolism induce extreme future coral reef CO2 conditions[J]. Global Change Biology, 2013, 19(5):1632-1641. doi: 10.1111/gcb.12154
    [5] 杨永亮, 李悦, 潘静. 海洋碳循环系统:开放的复杂巨系统的特点[J]. 复杂系统与复杂性科学, 2004(1):68-77. doi: 10.3969/j.issn.1672-3813.2004.01.011

    YANG Yongliang, LI Yue, PAN Jing. Characteristics of an open complex giant system: Carbon cycling system in the ocean[J]. Complex Systems and Complexity Science, 2004(1):68-77. doi: 10.3969/j.issn.1672-3813.2004.01.011
    [6] 邓雪, 胡玉斌, 刘春颖, 杨桂朋, 陆小兰, 张洪海. 胶州湾表层海水碳酸盐体系的季节变化[J]. 海洋与湖沼, 2016, 47(1):234-244.

    DENG Xue, HU Yubin, LIU Chunying, YANG Guipeng, LU Xiaolan, ZHANG Honghai. Distributions and seasonal variations of carbonate system in the Jiaozhou bay, China[J]. Oceanologia et Limnologia Sinica, 2016, 47(1):234-244.
    [7] 王俊洋, 王斌, 李德望, 徐忠胜, 苗燕熠, 杨志, 金海燕, 陈建芳. 海气交换与呼吸作用调控下杭州湾碳酸盐体系的特征[J]. 海洋学报, 2021, 43(9):21-32.

    WANG Junyang, WANG Bin, LI Dewang, XU Zhongsheng, MIAO Yanyi, YANG Zhi, JIN Haiyan, CHEN Jianfang. Characteristics of carbonate system in the Hangzhou bay: Under the regulation of air-sea exchange and respiration[J]. Haiyang Xuebao, 2021, 43(9):21-32.
    [8] Cai Weijun. Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration?[J]. Annual Review of Marine Science, 2011, 3(1):123-145. doi: 10.1146/annurev-marine-120709-142723
    [9] Zhong Jun, Li Siliang ,Tao Faxiang ,Yue Fujun, Liu Congqiang. Sensitivity of chemical weathering and dissolved carbon dynamics to hydrological conditions in a typical karst river[J]. Scientific Reports, 2017, 7(1):1-9. doi: 10.1038/s41598-016-0028-x
    [10] Wang Wanfa, Li Siliang, Zhong Jun, Li Cai , Yi Yuanbi, Chen Sainan, Ren Yimeng. Understanding transport and transformation of dissolved inorganic carbon (DIC) in the reservoir system using δ13CDIC and water chemistry[J]. Journal of Hydrology, 2019, 574:193-201. doi: 10.1016/j.jhydrol.2019.04.036
    [11] Wang Wanfa, Li Siliang, Zhong Jun, Wang Lichun, Yang Hong, Xiao Huayun, Liu Congqiang. CO2 emissions from karst cascade hydropower reservoirs: Mechanisms and reservoir effect[J]. Environmental Research Letters, 2021, 16(4):044013. doi: 10.1088/1748-9326/abe962
    [12] Liu Jinke, Han Guilin. Effects of chemical weathering and CO2 outgassing on δ13CDIC signals in a karst watershed[J]. Journal of Hydrology, 2020, 589:125192. doi: 10.1016/j.jhydrol.2020.125192
    [13] 刘再华. 碳酸盐岩岩溶作用对大气CO2沉降的贡献[J]. 中国岩溶, 2000, 8(4):3-10.

    LIU Zaihua. Contribution of carbonate rock weathering to the atmospheric CO2 sink[J]. Carsologica Sinica, 2000, 8(4):3-10.
    [14] Liu Zaihua, Dreybrodt Wolfgang, Wang Haijing. A new direction in effective accounting for the atmospheric CO2 budget: Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms[J]. Earth Science Reviews, 2010, 99(3):162-172.
    [15] Liu Zaihua, G. L. Macpherson, Chris Groves, Jonathan B. Martin, Yuan Daoxian, Zeng Sibo. Large and active CO2 uptake by coupled carbonate weathering[J]. Earth-Science Reviews, 2018, 182:42-49.
    [16] 吴水木, 翁全南, 唐孝谦. 桂林市岩溶地下水对酸、碱的缓冲作用[J]. 广西地质, 1991(4):69-73.

    WU Shuimu, WENG Quannan, TANG Xiaoqian. The buffering process of karst underground water to acid and alkali in Guilin City[J]. Geology of Guangxi, 1991(4):69-73.
    [17] 敖子强, 瞿丽雅, 林文杰, 赵宇中, 彭世寿. 贵州鹿冲关和雷公山酸雨化学特征的对比研究[J]. 中国岩溶, 2007(1):61-66. doi: 10.3969/j.issn.1001-4810.2007.01.010

    AO Ziqiang, QU Liya, LIN Wenjie, ZHAO Yuzhong, PENG Shishou. Study on chemical features of acid rain in Luchongguan and Leigongshan regions, Guizhou Province[J]. Carsologica Sinica, 2007(1):61-66. doi: 10.3969/j.issn.1001-4810.2007.01.010
    [18] 周长松, 邹胜章, 朱丹尼, 谢浩, 陈宏峰, 俞建国. 岩溶地下水样品Ca2+、HCO3- 野外测试值与实验室测试值对比研究[J]. 中国岩溶, 2017, 36(5):684-690.

    ZHOU Changsong, ZOU Shengzhang, ZHU Danni, XIE Hao, CHEN Hongfeng, YU Jianguo. Contrast study of Ca2+ and HCO3- concentration in karst-water samples between field test and laboratory test values[J]. Carsologica Sinica, 2017, 36(5):684-690.
    [19] 黄奇波, 覃小群, 程瑞瑞, 李腾芳, 刘朋雨. 硫酸型酸雨参与碳酸盐岩溶蚀的研究进展[J]. 中国岩溶, 2019, 38(2):149-156.

    HUANG Qibo, QIN Xiaoqun, CHENG Ruirui, LI Tengfang, LIU Pengyu. Research progress of sulfuric acid rain participating in the dissolution of carbonate rocks[J]. Carsologica Sinica, 2019, 38(2):149-156.
    [20] 吴泽燕, 罗为群, 蒋忠诚, 章程, 胡兆鑫, 曹建华. 土壤改良对土壤水水化学及碳酸盐岩溶蚀的CO2净消耗量的影响[J]. 中国岩溶, 2019, 38(1):60-69.

    WU Zeyan, LUO Weiqun, JIANG Zhongcheng, ZHANG Cheng, HU Zhaoxin, CAO Jianhua. Effects of filter sludge and organic manure soil improvement on soil hydrochemistry and net CO2 consumption of dissolution of carbonate rocks[J]. Carsologica Sinica, 2019, 38(1):60-69.
    [21] Li Qingguang, Wu Pan, Zha Xuefang, Li Xuexian, Wu Linna, Gu Shangyi. Effects of mining activities on evolution of water chemistry in coal-bearing aquifers in karst region of midwestern Guizhou, China: Evidences from δ13C of dissolved inorganic carbon and δ34S of sulfate[J]. Environmental Science and Pollution Research, 2018, 25(18):18038-18048. doi: 10.1007/s11356-018-1969-3
    [22] 刘朋雨, 张连凯, 黄奇波, 覃小群. 外源水和外源酸对万华岩地下河系统岩溶碳汇效应的影响[J]. 中国岩溶, 2020, 39(1):17-23.

    LIU Pengyu, ZHANG Liankai, HUANG Qibo, QIN Xiaoqun. Effect of exogenous water and acid on karst carbon sink in the Wanhuayan underground river system[J]. Carsologica Sinica, 2020, 39(1):17-23.
    [23] 石维芝, 赵春红, 梁永平, 韩占涛, 谢浩, 唐春雷. 煤矿酸性“老窑水”低Ca/Mg成因机制[J]. 中国岩溶, 2022,41(4):511-521.

    SHI Weizhi, ZHAO Chunhong, LIANG Yongping, HAN Zhantao, XIE Hao, TANG Chunlei. Genetic mechanism analysis of low Ca/Mg value of acid goaf water in coal mine drainage[J]. Carsologica Sinica, 2022, 41(4): 511-521.
    [24] Revelle R, Suess H E. Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades[J]. Tellus, 1957, 9(1):18-27. doi: 10.3402/tellusa.v9i1.9075
    [25] Hagens M, Middelburg J J. Generalised expressions for the response of pH to changes in ocean chemistry[J]. Geochimica et Cosmochimica Acta, 2016, 187(2):334-349. doi: 10.1016/j.gca.2016.04.012
    [26] Yuan Jianfei, Xu Fen, Deng Guoshi, Tang Yeqi, Li Pengyue. Hydrogeochemistry of shallow groundwater in a karst aquifer system of Bijie City, Guizhou Province[J]. Water, 2017, 9(8): 1-16.
    [27] 韩绪山, 谢波, 张心彬. 贵州省金沙煤田龙潭组岩煤层测井对比方法[J]. 中国煤田地质, 2006(3):62-64.

    HAN Xushan, XIE Bo, ZHANG Xinbin. Longtan formation coal and correlation well logging in Jinsha coalfield, Guizhou Province[J]. Coal Geology of China, 2006(3):62-64.
    [28] Omta A W, Goodwin P, Follows M J. Multiple regimes of air‐sea carbon partitioning identified from constant‐alkalinity buffer factors[J]. Global Biogeochemical Cycles, 2010, 24(3): 1-9.
    [29] 王晤岩, 李清光. 淡水碳酸盐湖泊中CaCO3−CO3 2−−HCO3 −CO2化学平衡对CO2的缓冲作用:以贵州百花湖为例[J]. 中国岩溶, 2021, 40(4):572-579.

    WANG Wuyan, LI Qingguang. Buffering effect of chemical equilibrium of CaCO3-CO3 2−−HCO3 −CO2 on CO2 in freshwater carbonate lake:A case study of Baihua lake, Guizhou[J]. Carsologica Sinica, 2021, 40(4):572-579.
    [30] Cai Weijun, Hu Xinping, Huang Weijen, Murrell M C, Lehrter J C, Lohrenz S E, Chou Wenchen, Zhai Weidong, Hollibaugh J T, Wang Yongchen, Zhao Pingsan, Guo Xianghui, Gundersen K, Dai Minhan, Gong G-C. Acidification of subsurface coastal waters enhanced by eutrophication[J]. Nature Geoscience, 2011, 4(11):766-770. doi: 10.1038/ngeo1297
    [31] Jiang Liqing, Carter B R, Feely R A, Lauvset S K, Olsen A. Surface ocean pH and buffer capacity: Past, present and future[J]. Scientific Reports, 2019, 9(1):18624. doi: 10.1038/s41598-018-37186-2
    [32] Hu Xinping, Cai Weijun. Estuarine acidification and minimum buffer zone: A conceptual study[J]. Geophysical Research Letters, 2013, 40(19):5176-5181. doi: 10.1002/grl.51000
    [33] Zhang Tao, Li Jianhong, Pu Junbing, Yuan Daoxian. Carbon dioxide exchanges and their controlling factors in Guijiang river, SW China[J]. Journal of Hydrology, 2019, 578:124073. doi: 10.1016/j.jhydrol.2019.124073
    [34] Frankignoulle M. A complete set of buffer factors for acid/base CO2 system in seawater[J]. Journal of Marine Systems, 1994, 5(2):111-118. doi: 10.1016/0924-7963(94)90026-4
    [35] Huang Jiangxun, Li Qingguang, Wu Pan, Wang Shilu, Guo Mingwei, Liu Kun. The effects of weathering of coal-bearing stratum on the transport and transformation of DIC in karst watershed[J]. The Science of the total environment, 2022, 838(4)-15436.
    [36] Feely R A, Okazaki R R, Cai W J, Bednaršek N, Alin S R , Byrne R H, Fassbender A. The combined effects of acidification and hypoxia on pH and aragonite saturation in the coastal waters of the California current ecosystem and the northern Gulf of Mexico[J]. Continental Shelf Research, 2018, 152(1):50-60. doi: 10.1016/j.csr.2017.11.002
    [37] Huang Jiangxun, Li Qingguang, Wu Pan, Wang Shilu, Gu Shangyi, Guo Mingwei, Fu Yong. The buffering of a riverine carbonate system under the input of acid mine drainage: Example from a small karst watershed, southwest China[J]. Frontiers in Environmental Science, 2022(10):1020452.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  1294
  • HTML浏览量:  790
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-13
  • 网络出版日期:  2023-02-14
  • 刊出日期:  2023-02-25

目录

    /

    返回文章
    返回