Buffering effect of chemical equilibrium of surface water carbonate system on acid mine drainage in small karst watershed
-
摘要: Revelle因子不仅能反映弱碱性水体对吸收大气CO2的缓冲能力,还能体现水体酸化过程中CO2去气对H+的缓冲作用。本研究通过对多个缓冲因子的分析,探讨喀斯特中高硫煤矿区地表水碳酸盐系统对酸性矿山废水的缓冲作用,有助于进一步理解喀斯特地区流域水体中DIC循环过程和CO2源汇关系特征。结果表明,地表水碳酸盐系统内车田河流域Revelle因子变化区间在1.00~51.96之间,能有效揭示地表水碳酸盐系统内CO2去气对H+的缓冲过程,其敏感区间为pH=7.0~8.38的弱碱性水体。γDIC、βDIC、ωDIC、γAlk、βAlk、ωAlk等缓冲因子是基于pH和DIC浓度的二元方程。这些因子进一步细化了CO2(aq)、H+和
${\rm{CO}}_3^{2-}$ 等组分对DIC浓度和碱度的相对变化关系。在pH>7.0的DIC碳酸盐体系内,6个缓冲因子对水体酸化过程中碳酸盐组分的动态转化具有很好的响应。当pH<7.0以后,水−气界面和水−岩界面的碳传输过程增强,当CO2去气过程占主导,则缓冲因子绝对值变大;当H+对碳酸盐岩溶蚀过程占主导,则缓冲因子绝对值变小。Abstract: The dynamic changes of different components in water carbonate system (CO2+HCO$_3^{-}$ +CO$_3^{2-}$ ) can be characterized by Revelle factor which can not only reflect the buffering capacity of weak-basicity water to absorb atmospheric CO2, but also reflect the buffering effect of CO2 degassing on H+ during water acidification. Compared with the marine system, the Revelle factor in the surface water carbonate system has a larger variation range. However, the study on the variation of buffering factors in the dynamic transformation of carbonate components in freshwater system is still very limited. This study selected the Chetian river located in Eastern Jinsha county, Guizhou Province as the research area. Through the analysis of multiple buffering factors, the buffering effect of the surface water carbonate system on AMD input was discussed. The results will help to further understand the DIC cycle process and the CO2 source-sink relationship in surface water in the karst area of medium-high sulfur coal mine. Based on the 13-month sampling analysis from November 2020 to November 2021, the equations of Revelle factor—γDIC, βDIC, ωDIC, γAlk, βAlk and ωAlk—were established to characterize the relationship between acid-base chemical balance of water and the dynamic variation of carbonate components. Results show that when the Revelle factor is at the maximum, the buffering capacity of the water carbonate system is the weakest. In the marine system, the maximum value of Revelle factor appears at pH 7.50, and the seawater sample data are mainly distributed on the right side of this factor, reflecting the absorption and buffering capacity of the ocean to atmospheric CO2. When the pH is in the range of 6.35-8.38, the carbonate balance in surface water mainly reflects the conversion between CO2 (aq) and HCO$_3^{-}$ , and CO$_3^{2}$ − is almost negligible. Due to the influence of AMD input, all data in the Chetian river fall on the left side of the maximum value, with a variation range of 1.00-51.96, which is shown as the buffering of CO2 degassing on H+. In acidic water with pH<6.35, DIC is gradually dominated by CO2 (aq), and the sensitivity of Revelle factor is reduced. The buffering factors such as γDIC, βDIC, ωDIC, γAlk, βAlk and ωAlk, based on the binary equations of pH and DIC concentration, can be used to further elaborate the relative variation of CO2 (aq), H+ and CO$_3^{2}$ − on DIC concentration and alkalinity. It can be found that the six buffering factors show a good response to the dynamic transformation of carbonate components during water acidification. When pH is equal to 8.38, the six factors have extreme values, reflecting the low buffering capacity of water carbonate system. At pH>6.35, βAlk is linearly related to the concentration of CO2 (aq). With the improvement of acidification degree, βDIC can respond well to the buffering of chemical equilibrium of carbonate system to H+. When pH is less than 6.35, with the gradual increase of the proportion of CO2 (aq), the water carbonate system is no longer in a closed environment, and the carbon transport at the water-gas interface and water-rock interface is enhanced. When the CO2 degassing is dominant, the absolute value of these buffering factors becomes larger; when the erosion of carbonate rocks by H+ is the dominate process, the absolute value of these buffering factors become smaller.-
Key words:
- surface water carbonate system /
- Revelle factor /
- buffering effect /
- CO2 degassing /
- carbonate erosion
-
表 1 缓冲因子计算方法
Table 1. Calculation method of buffering factors
缓冲因子对DIC变化的响应 缓冲因子对Alk变化的响应 $ {\mathrm{\gamma }}_{\mathrm{D}\mathrm{I}\mathrm{C}}={\left(\dfrac{\partial \mathrm{l}\mathrm{n}\left[{\mathrm{C}\mathrm{O}}_{2}\right]}{\partial \mathrm{D}\mathrm{I}\mathrm{C}}\right)}^{-1}=\mathrm{D}\mathrm{I}\mathrm{C}-\dfrac{{\mathrm{A}\mathrm{l}\mathrm{k}}_{\mathrm{C}}^{2}}{\mathrm{S}} $ $ {\mathrm{\gamma }}_{\mathrm{A}\mathrm{l}\mathrm{k}}={\left(\dfrac{\partial \mathrm{l}\mathrm{n}\left[{\mathrm{C}\mathrm{O}}_{2}\right]}{\partial \mathrm{A}\mathrm{l}\mathrm{k}}\right)}^{-1}=\dfrac{{\mathrm{A}\mathrm{l}\mathrm{k}}_{\mathrm{C}}^{2}-\mathrm{D}\mathrm{I}\mathrm{C}\times \mathrm{S}}{{\mathrm{A}\mathrm{l}\mathrm{k}}_{\mathrm{C}}} $ $ {\mathrm{\beta }}_{\mathrm{D}\mathrm{I}\mathrm{C}}={\left(\dfrac{\partial \mathrm{l}\mathrm{n}\left[{\mathrm{H}}^{+}\right]}{\partial \mathrm{D}\mathrm{I}\mathrm{C}}\right)}^{-1}=\dfrac{\mathrm{D}\mathrm{I}\mathrm{C}\times \mathrm{S}-{\mathrm{A}\mathrm{l}\mathrm{k}}_{\mathrm{C}}^{2}}{{\mathrm{A}\mathrm{l}\mathrm{k}}_{\mathrm{C}}} $ $ {\mathrm{\beta }}_{\mathrm{A}\mathrm{l}\mathrm{k}}={\left(\dfrac{\partial \mathrm{l}\mathrm{n}\left[{\mathrm{H}}^{+}\right]}{\partial \mathrm{A}\mathrm{l}\mathrm{k}}\right)}^{-1}=\dfrac{{\mathrm{A}\mathrm{l}\mathrm{k}}_{\mathrm{C}}^{2}}{\mathrm{D}\mathrm{I}\mathrm{C}}-\mathrm{S} $ $ {\mathrm{\omega }}_{\mathrm{D}\mathrm{I}\mathrm{C}}={\left(\dfrac{\partial \mathrm{l}\mathrm{n}\mathrm{\Omega }}{\partial \mathrm{D}\mathrm{I}\mathrm{C}}\right)}^{-1}=\mathrm{D}\mathrm{I}\mathrm{C}-\dfrac{{\mathrm{A}\mathrm{l}\mathrm{k}}_{\mathrm{C}}\times \mathrm{P}}{\left[{\mathrm{H}\mathrm{C}\mathrm{O}}_{3}^{-}\right]} $ $ {\mathrm{\omega }}_{\mathrm{A}\mathrm{l}\mathrm{k}}={\left(\dfrac{\partial \mathrm{l}\mathrm{n}\mathrm{\Omega }}{\partial \mathrm{A}\mathrm{l}\mathrm{k}}\right)}^{-1}={\mathrm{A}\mathrm{l}\mathrm{k}}_{\mathrm{C}}-\dfrac{\mathrm{D}\mathrm{I}\mathrm{C}\times \left[{\mathrm{H}\mathrm{C}\mathrm{O}}_{3}^{-}\right]}{\mathrm{P}} $ 注:$ \mathrm{S}=\left[{\mathrm{H}\mathrm{C}\mathrm{O}}_{3}^{-}\right]+4\left[{\mathrm{C}\mathrm{O}}_{3}^{2-}\right]+\left[{\mathrm{H}}^{+}\right]-\left[{\mathrm{O}\mathrm{H}}^{-}\right],{\mathrm{A}\mathrm{l}\mathrm{k}}_{\mathrm{C}}=\left[{\mathrm{H}\mathrm{C}\mathrm{O}}_{3}^{-}\right]+2\left[{\mathrm{C}\mathrm{O}}_{3}^{2-}\right], $$ \mathrm{D}\mathrm{I}\mathrm{C}=\left[{\mathrm{C}\mathrm{O}}_{2}\right]+\left[{\mathrm{H}\mathrm{C}\mathrm{O}}_{3}^{-}\right]+\left[{\mathrm{C}\mathrm{O}}_{3}^{2-}\right],A\mathrm{l}\mathrm{k}=\left[{\mathrm{H}\mathrm{C}\mathrm{O}}_{3}^{-}\right]+2\left[{\mathrm{C}\mathrm{O}}_{3}^{2-}\right]-\left[{\mathrm{H}}^{+}\right]+\left[{\mathrm{O}\mathrm{H}}^{-}\right], $$\mathrm{P}=2\left[\mathrm{C}{\mathrm{O} }_{2}\right]+\left[\mathrm{H}\mathrm{C}{\mathrm{O} }_{3}^{-}\right]。$ -
[1] Sabine C L, Feely R A, Gruber N, Key R M, Lee K, Bullister J L, Wanninkhof R, Wong C S, Wallace D W, Tilbrook B, Millero F J, Peng T H, Kozyr A, Ono T, Rios AF. The oceanic sink for anthropogenic CO2[J]. Science, 2004, 305(5682):367-371. doi: 10.1126/science.1097403 [2] Thomas H, Friederike Prowe A E, van Heuven S, Bozec Y, de Baar H J, Schiettecatte L S, Suykens K, Kone M, Borges A V, Lima I D, Doney S C. Rapid decline of the CO2 buffering capacity in the North Sea and implications for the North Atlantic Ocean[J]. Global Biogeochemical Cycles, 2007, 21(4): GB4001. [3] Egleston E S, Sabine C L, Morel F M M. Revelle revisited: Buffer factors that quantify the response of ocean chemistry to changes in DIC and alkalinity[J]. Global Biogeochemical Cycles, 2010, 24(1): GB1002. [4] Shaw E C, McNeil B I, Tilbrook B, Richard M, Michael L B. Anthropogenic changes to seawater buffer capacity combined with natural reef metabolism induce extreme future coral reef CO2 conditions[J]. Global Change Biology, 2013, 19(5):1632-1641. doi: 10.1111/gcb.12154 [5] 杨永亮, 李悦, 潘静. 海洋碳循环系统:开放的复杂巨系统的特点[J]. 复杂系统与复杂性科学, 2004(1):68-77. doi: 10.3969/j.issn.1672-3813.2004.01.011YANG Yongliang, LI Yue, PAN Jing. Characteristics of an open complex giant system: Carbon cycling system in the ocean[J]. Complex Systems and Complexity Science, 2004(1):68-77. doi: 10.3969/j.issn.1672-3813.2004.01.011 [6] 邓雪, 胡玉斌, 刘春颖, 杨桂朋, 陆小兰, 张洪海. 胶州湾表层海水碳酸盐体系的季节变化[J]. 海洋与湖沼, 2016, 47(1):234-244.DENG Xue, HU Yubin, LIU Chunying, YANG Guipeng, LU Xiaolan, ZHANG Honghai. Distributions and seasonal variations of carbonate system in the Jiaozhou bay, China[J]. Oceanologia et Limnologia Sinica, 2016, 47(1):234-244. [7] 王俊洋, 王斌, 李德望, 徐忠胜, 苗燕熠, 杨志, 金海燕, 陈建芳. 海气交换与呼吸作用调控下杭州湾碳酸盐体系的特征[J]. 海洋学报, 2021, 43(9):21-32.WANG Junyang, WANG Bin, LI Dewang, XU Zhongsheng, MIAO Yanyi, YANG Zhi, JIN Haiyan, CHEN Jianfang. Characteristics of carbonate system in the Hangzhou bay: Under the regulation of air-sea exchange and respiration[J]. Haiyang Xuebao, 2021, 43(9):21-32. [8] Cai Weijun. Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration?[J]. Annual Review of Marine Science, 2011, 3(1):123-145. doi: 10.1146/annurev-marine-120709-142723 [9] Zhong Jun, Li Siliang ,Tao Faxiang ,Yue Fujun, Liu Congqiang. Sensitivity of chemical weathering and dissolved carbon dynamics to hydrological conditions in a typical karst river[J]. Scientific Reports, 2017, 7(1):1-9. doi: 10.1038/s41598-016-0028-x [10] Wang Wanfa, Li Siliang, Zhong Jun, Li Cai , Yi Yuanbi, Chen Sainan, Ren Yimeng. Understanding transport and transformation of dissolved inorganic carbon (DIC) in the reservoir system using δ13CDIC and water chemistry[J]. Journal of Hydrology, 2019, 574:193-201. doi: 10.1016/j.jhydrol.2019.04.036 [11] Wang Wanfa, Li Siliang, Zhong Jun, Wang Lichun, Yang Hong, Xiao Huayun, Liu Congqiang. CO2 emissions from karst cascade hydropower reservoirs: Mechanisms and reservoir effect[J]. Environmental Research Letters, 2021, 16(4):044013. doi: 10.1088/1748-9326/abe962 [12] Liu Jinke, Han Guilin. Effects of chemical weathering and CO2 outgassing on δ13CDIC signals in a karst watershed[J]. Journal of Hydrology, 2020, 589:125192. doi: 10.1016/j.jhydrol.2020.125192 [13] 刘再华. 碳酸盐岩岩溶作用对大气CO2沉降的贡献[J]. 中国岩溶, 2000, 8(4):3-10.LIU Zaihua. Contribution of carbonate rock weathering to the atmospheric CO2 sink[J]. Carsologica Sinica, 2000, 8(4):3-10. [14] Liu Zaihua, Dreybrodt Wolfgang, Wang Haijing. A new direction in effective accounting for the atmospheric CO2 budget: Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms[J]. Earth Science Reviews, 2010, 99(3):162-172. [15] Liu Zaihua, G. L. Macpherson, Chris Groves, Jonathan B. Martin, Yuan Daoxian, Zeng Sibo. Large and active CO2 uptake by coupled carbonate weathering[J]. Earth-Science Reviews, 2018, 182:42-49. [16] 吴水木, 翁全南, 唐孝谦. 桂林市岩溶地下水对酸、碱的缓冲作用[J]. 广西地质, 1991(4):69-73.WU Shuimu, WENG Quannan, TANG Xiaoqian. The buffering process of karst underground water to acid and alkali in Guilin City[J]. Geology of Guangxi, 1991(4):69-73. [17] 敖子强, 瞿丽雅, 林文杰, 赵宇中, 彭世寿. 贵州鹿冲关和雷公山酸雨化学特征的对比研究[J]. 中国岩溶, 2007(1):61-66. doi: 10.3969/j.issn.1001-4810.2007.01.010AO Ziqiang, QU Liya, LIN Wenjie, ZHAO Yuzhong, PENG Shishou. Study on chemical features of acid rain in Luchongguan and Leigongshan regions, Guizhou Province[J]. Carsologica Sinica, 2007(1):61-66. doi: 10.3969/j.issn.1001-4810.2007.01.010 [18] 周长松, 邹胜章, 朱丹尼, 谢浩, 陈宏峰, 俞建国. 岩溶地下水样品Ca2+、HCO3- 野外测试值与实验室测试值对比研究[J]. 中国岩溶, 2017, 36(5):684-690.ZHOU Changsong, ZOU Shengzhang, ZHU Danni, XIE Hao, CHEN Hongfeng, YU Jianguo. Contrast study of Ca2+ and HCO3- concentration in karst-water samples between field test and laboratory test values[J]. Carsologica Sinica, 2017, 36(5):684-690. [19] 黄奇波, 覃小群, 程瑞瑞, 李腾芳, 刘朋雨. 硫酸型酸雨参与碳酸盐岩溶蚀的研究进展[J]. 中国岩溶, 2019, 38(2):149-156.HUANG Qibo, QIN Xiaoqun, CHENG Ruirui, LI Tengfang, LIU Pengyu. Research progress of sulfuric acid rain participating in the dissolution of carbonate rocks[J]. Carsologica Sinica, 2019, 38(2):149-156. [20] 吴泽燕, 罗为群, 蒋忠诚, 章程, 胡兆鑫, 曹建华. 土壤改良对土壤水水化学及碳酸盐岩溶蚀的CO2净消耗量的影响[J]. 中国岩溶, 2019, 38(1):60-69.WU Zeyan, LUO Weiqun, JIANG Zhongcheng, ZHANG Cheng, HU Zhaoxin, CAO Jianhua. Effects of filter sludge and organic manure soil improvement on soil hydrochemistry and net CO2 consumption of dissolution of carbonate rocks[J]. Carsologica Sinica, 2019, 38(1):60-69. [21] Li Qingguang, Wu Pan, Zha Xuefang, Li Xuexian, Wu Linna, Gu Shangyi. Effects of mining activities on evolution of water chemistry in coal-bearing aquifers in karst region of midwestern Guizhou, China: Evidences from δ13C of dissolved inorganic carbon and δ34S of sulfate[J]. Environmental Science and Pollution Research, 2018, 25(18):18038-18048. doi: 10.1007/s11356-018-1969-3 [22] 刘朋雨, 张连凯, 黄奇波, 覃小群. 外源水和外源酸对万华岩地下河系统岩溶碳汇效应的影响[J]. 中国岩溶, 2020, 39(1):17-23.LIU Pengyu, ZHANG Liankai, HUANG Qibo, QIN Xiaoqun. Effect of exogenous water and acid on karst carbon sink in the Wanhuayan underground river system[J]. Carsologica Sinica, 2020, 39(1):17-23. [23] 石维芝, 赵春红, 梁永平, 韩占涛, 谢浩, 唐春雷. 煤矿酸性“老窑水”低Ca/Mg成因机制[J]. 中国岩溶, 2022,41(4):511-521.SHI Weizhi, ZHAO Chunhong, LIANG Yongping, HAN Zhantao, XIE Hao, TANG Chunlei. Genetic mechanism analysis of low Ca/Mg value of acid goaf water in coal mine drainage[J]. Carsologica Sinica, 2022, 41(4): 511-521. [24] Revelle R, Suess H E. Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades[J]. Tellus, 1957, 9(1):18-27. doi: 10.3402/tellusa.v9i1.9075 [25] Hagens M, Middelburg J J. Generalised expressions for the response of pH to changes in ocean chemistry[J]. Geochimica et Cosmochimica Acta, 2016, 187(2):334-349. doi: 10.1016/j.gca.2016.04.012 [26] Yuan Jianfei, Xu Fen, Deng Guoshi, Tang Yeqi, Li Pengyue. Hydrogeochemistry of shallow groundwater in a karst aquifer system of Bijie City, Guizhou Province[J]. Water, 2017, 9(8): 1-16. [27] 韩绪山, 谢波, 张心彬. 贵州省金沙煤田龙潭组岩煤层测井对比方法[J]. 中国煤田地质, 2006(3):62-64.HAN Xushan, XIE Bo, ZHANG Xinbin. Longtan formation coal and correlation well logging in Jinsha coalfield, Guizhou Province[J]. Coal Geology of China, 2006(3):62-64. [28] Omta A W, Goodwin P, Follows M J. Multiple regimes of air‐sea carbon partitioning identified from constant‐alkalinity buffer factors[J]. Global Biogeochemical Cycles, 2010, 24(3): 1-9. [29] 王晤岩, 李清光. 淡水碳酸盐湖泊中CaCO3−CO3 2−−HCO3 −−CO2化学平衡对CO2的缓冲作用:以贵州百花湖为例[J]. 中国岩溶, 2021, 40(4):572-579.WANG Wuyan, LI Qingguang. Buffering effect of chemical equilibrium of CaCO3-CO3 2−−HCO3 −−CO2 on CO2 in freshwater carbonate lake:A case study of Baihua lake, Guizhou[J]. Carsologica Sinica, 2021, 40(4):572-579. [30] Cai Weijun, Hu Xinping, Huang Weijen, Murrell M C, Lehrter J C, Lohrenz S E, Chou Wenchen, Zhai Weidong, Hollibaugh J T, Wang Yongchen, Zhao Pingsan, Guo Xianghui, Gundersen K, Dai Minhan, Gong G-C. Acidification of subsurface coastal waters enhanced by eutrophication[J]. Nature Geoscience, 2011, 4(11):766-770. doi: 10.1038/ngeo1297 [31] Jiang Liqing, Carter B R, Feely R A, Lauvset S K, Olsen A. Surface ocean pH and buffer capacity: Past, present and future[J]. Scientific Reports, 2019, 9(1):18624. doi: 10.1038/s41598-018-37186-2 [32] Hu Xinping, Cai Weijun. Estuarine acidification and minimum buffer zone: A conceptual study[J]. Geophysical Research Letters, 2013, 40(19):5176-5181. doi: 10.1002/grl.51000 [33] Zhang Tao, Li Jianhong, Pu Junbing, Yuan Daoxian. Carbon dioxide exchanges and their controlling factors in Guijiang river, SW China[J]. Journal of Hydrology, 2019, 578:124073. doi: 10.1016/j.jhydrol.2019.124073 [34] Frankignoulle M. A complete set of buffer factors for acid/base CO2 system in seawater[J]. Journal of Marine Systems, 1994, 5(2):111-118. doi: 10.1016/0924-7963(94)90026-4 [35] Huang Jiangxun, Li Qingguang, Wu Pan, Wang Shilu, Guo Mingwei, Liu Kun. The effects of weathering of coal-bearing stratum on the transport and transformation of DIC in karst watershed[J]. The Science of the total environment, 2022, 838(4)-15436. [36] Feely R A, Okazaki R R, Cai W J, Bednaršek N, Alin S R , Byrne R H, Fassbender A. The combined effects of acidification and hypoxia on pH and aragonite saturation in the coastal waters of the California current ecosystem and the northern Gulf of Mexico[J]. Continental Shelf Research, 2018, 152(1):50-60. doi: 10.1016/j.csr.2017.11.002 [37] Huang Jiangxun, Li Qingguang, Wu Pan, Wang Shilu, Gu Shangyi, Guo Mingwei, Fu Yong. The buffering of a riverine carbonate system under the input of acid mine drainage: Example from a small karst watershed, southwest China[J]. Frontiers in Environmental Science, 2022(10):1020452.