Progress in reconstruction of karst rocky desertification by stalagmite δ13C
-
摘要: 岩溶石漠化的形成演化机制是被关注的科学问题,对脆弱的岩溶区生态环境恢复具有重要的现实意义。洞穴石笋δ13C受到多种因素影响,能敏感响应地表生态环境以及岩溶水文条件的变化。因此,利用石笋δ13C研究岩溶地区生态环境演变历史成为一个重要方向。本文从地表环境和洞穴沉积两个方面梳理了影响石笋δ13C的主要因素。结合现代洞穴监测及模型模拟研究,分析整理了影响洞穴滴水和沉积物中δ13C的主要因素和机理。在多重因素的影响下,石笋δ13C的环境意义具有多解性,文章从时间尺度、空间分布、沉积环境三方面归纳了石笋δ13C的指示意义。为了准确解释石笋δ13C环境意义,提出了综合分析、现代监测以及模型模拟的解决方案。通过对岩溶石漠化概念、成因、发展过程、以及环境效应的讨论,分析了地表石漠化与石笋δ13C记录的密切联系。总结了已经发表的利用石笋δ13C重建区域石漠化的研究成果,讨论了目前研究中面临的主要问题:(1) 如何正确解译石笋δ13C的指示意义?这是石笋δ13C能够用于重建区域石漠化历史的前提;(2) 在空间上,石笋δ13C记录反映上覆地表的面积是有限的,需考虑石笋能否代表目标研究区域的环境变迁;(3) 石漠化可在年—十年际时间尺度上快速发展,而石笋测年存在一定的年龄误差,石笋δ13C是否能够敏感记录地表的石漠化过程?为了准确重建区域岩溶环境以及石漠化演变历史,提出以下主要建议:(1) 为了避免石笋δ13C重建古环境的不确定性,可加强石笋δ13C与δ18O、微量元素、矿物结构等指标的综合对比分析,与现代监测以及模型模拟的解决方案综合集成,能更加准确重建研究区岩溶水文变化过程,判定石漠化的演化历史;(2) 通过区域和同一洞穴的多根石笋记录对比,减少单一石笋记录的区域代表性问题;(3) 高精度年代控制的高分辨率多指标石笋记录,有助于捕捉快速发生的石漠化过程。Abstract: The formation and evolution mechanism of karst rocky desertification is a scientific problem that has been paid increasing attention, and the ecological environment in karst areas is not only fragile, but also unstable. Therefore, the study of karst rocky desertification is of practical significance for the restoration of ecological environment in karst areas. Cave stalagmite δ13C is affected by many factors and can respond sensitively to the changes of surface ecological environment and karst hydrological conditions. Hence, the use of stalagmites δ13C on the study of evolution history of ecological environment in karst areas has become an important direction. In this paper, we discuss the main factors affecting stalagmite δ13C from two aspects, i.e., the overlying surface environment and cave deposition. Combining the results of modern cave monitoring with model simulation, we analyze the main factors and mechanisms affecting δ13C in cave drop water and sediment. Under the influence of multiple factors, the environmental significance of stalagmites δ13C has multiple implications. According to the published research results, in this paper, we summarize the indicative significance of stalagmite δ13C from three aspects, different time scales, different regional distribution, and different cave sedimentary environments. In order to accurately interpret the environmental significance of stalagmite δ13C, we put forward the solutions-comprehensive analysis, modern monitoring and model simulation. In this paper, we discuss the concept, genesis, development process and environmental effects of karst rocky desertification, and analyze the close relationship between surface rocky desertification and stalagmite δ13C records in caves. We also summarize published research results about the application of stalagmites δ13C to the reconstruction of regional rocky desertification. Meanwhile, we discuss main problems faced in the current research, (1) How to interpret the indicative meaning of stalagmite δ13C correctly? This problem is the premise that stalagmite δ13C can be used to reconstruct the history of regional rocky desertification. (2) Spatially, the area of the overlying surface reflected by stalagmites δ13C records is limited, so it is necessary for us to carefully consider whether the selected stalagmite region reflects the same spatial distribution as that of the study area, and whether it represents the environmental changes of the target study area, when using stalagmite δ13C to reconstruct the evolution history of rocky desertification in a certain region. (3) Karst rocky desertification can develop rapidly on the decadal time scale, while a certain age error may occur in stalagmite dating. Can stalagmite δ13C record sensitively record the changes of surface environment in such a short period and reconstruct the process of regional rocky desertification? In order to accurately reconstruct the regional karst environment and the evolution history of rocky desertification, we put forward the following suggestions, (1) In order to avoid the uncertainty of stalagmite δ13C in paleo-environment reconstruction, the comparative analysis of stalagmite δ13C and δ18O, trace elements and mineral structure can be integrated with modern monitoring and model simulation to correctly interpret the indicative significance of stalagmite δ13C. On this basis, the karst hydrological process can be reconstructed more accurately and the evolution history of rocky desertification can be determined. (2) By comparing the evolution process of rocky desertification recorded by stalagmites from multiple caves in the study area and multiple stalagmites from the same cave, the regional representativeness of single stalagmite record can be reduced. (3) Multi-index stalagmite records with high resolution and high precision chronological control can accurately record the changes of the land surface environment during the rapid occurrence and development of the rocky desertification process.
-
图 1 洞内过程对石笋δ13C的影响
注:(A),(B) 贵州省竹蹓坪洞石笋ZLP1(蓝色曲线)、ZLP2(粉色曲线)δ13C对比,黄色条带表示同一沉积时间段;(C) 贵州省雾露洞石笋Wu23(绿色曲线)、Wu26(红色曲线) δ13C对比;(D) 河北省天鹅洞Sw4(深蓝色曲线)、Sw5(紫色曲线) δ13C对比; (A),(B)引自参考文献[94];(C)、(D)分别修改自参考文献[12]、[95]
Figure 1. Influence of cave process on δ13C value of stalagmite
(A), (B) Comparison of ZLP1(blue curve) and ZLP2(pink curve) δ13C of Zhuliuping cave, Yellow bands indicate the same deposition period; (C) Comparison of Wu23(green curve) and Wu26(red curve) δ13C in the Stalagmite of Wulu cave; (D) Sw4(dark blue curve) and Sw5(purple curve) δ13C of Tian’e cave; (A), (B) cited from references [94]; (C) and (D) are revised from references [12] and [95]
图 3 洞穴石笋氧碳同位素记录在不同时段的模态组合差异
注:(A)莲花洞A1石笋δ18O (绿色曲线)、δ13C(黄色曲线)记录,灰色虚线表示δ13C平均值;(B)珍珠洞PS1石笋1δ18O(蓝色曲线)、δ13C(紫色曲线)。(A)、(B)分别修改自参考文献[20]、[110]
Figure 3. Variation of oxygen and carbon isotope records of stalagmites from different caves
(A) A1 Stalagmite δ18O (green curve) δ13C (yellow curve) records of Lianhua cave, the gray dotted line represents the average value of δ13C; (B) PS1 Stalagmite δ18O (blue curve) δ13C (purple curve) of Zhenzhu cave. (A) and (B) revised from references [20] and [110]
表 1 中国利用石笋δ13C重建区域石漠化历史研究实例
Table 1. Case studies on the reconstruction of regional rocky desertification in China, based on stalagmite δ13C
洞穴名称 省区 经纬度 海拔/m 时间跨度 指示意义 其他指标 参考文献 丰鱼洞 广西 24°30′N,110°20′E 380 1 500 年以来 C3/C4 石笋δ18O Zhu等, 2006[85] 响水洞 广西 25°15′N, 110°55′E 400 1 500 年以来 C3/C4 石笋δ18O Zhu等, 2006[85] 石将军洞 贵州 26°12′N, 105°30′E 1 300 2 000 年以来 植被状况/
水文状况大气CO2浓度,
历史文献陈朝军等, 2021[108] 董哥洞 贵州 25°17′N, 108°5′E 680 1 500 年以来 C3/C4 石笋δ18O Zhu等, 2006[85] 织金洞 贵州 26°46′27.31″′N,
105°5′13.90″E1 330 100 年以来 植被状况 石笋δ18O,器测数据,
历史文献刘子琦, 2013[106] 1 500 年以来 水文状况 石笋δ18O,鹅管δ18O、δ13C,
器测数据,历史文献刘子琦, 2014[105] 1 100 年以来 植被状况 石笋δ18O,历史文献 Kuo等, 2011[107] 董家洞 云南 24°7′52″N, 104°6′11′E 1476 1 200 年以来 植被状况 石笋δ18O、微量元素,
器测数据,历史文献李媛媛, 2017[103] -
[1] 王世杰. 喀斯特石漠化概念演绎及其科学内涵的探讨[J]. 中国岩溶, 2002, 21(2):101-105. doi: 10.3969/j.issn.1001-4810.2002.02.006WANG Shijie. Concept dduction and its connotation of karst rocky desertification[J]. Carsologica Sinica, 2002, 21(2):101-105. doi: 10.3969/j.issn.1001-4810.2002.02.006 [2] 王德炉, 朱守谦, 黄宝龙. 石漠化的概念及其内涵[J]. 南京林业大学学报(自然科学版), 2004, 28(6):87-90.WANG Delu,ZHU Shouqian, HUANG Baolong. Discussion on the conception and connotation of rocky desertification[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2004, 28(6):87-90. [3] 中国自然资源公报. 我国岩溶地区石漠化状况公报[N]. 中国自然资源报, 2019. [4] 但新球, 李梦先, 吴协保,吴照柏,彭长清,贺东北,屠志方. 中国岩溶地区石漠化现状[J]. 中南林业调查规划, 2019, 38(1):4-9,37.DAN Xinqiu,LI Mengxian,WU Xiebao,WU Zhaobai,PENG Changqing,HE Dongbei ,TU Zhifang. The present situation of rocky desertification in karst areas of China[J]. Central South Forst Inventory and Planning, 2019, 38(1):4-9,37. [5] 马华, 王云琦, 王力, 王益坤. 近20 a广西石漠化区植被覆盖度与气候变化和农村经济发展的耦合关系[J]. 山地学报, 2014, 32(1):38-54. doi: 10.3969/j.issn.1008-2786.2014.01.005MA Hua,WANG Yunqi,WANG Li,WANG Yikun. Vegetation cover and climate change and rural economic development in relations during last 20 years in karst region of Guangxi,China[J]. Mountain Research, 2014, 32(1):38-54. doi: 10.3969/j.issn.1008-2786.2014.01.005 [6] Jiang Z, Lian Y, Qin X. Rocky desertification in southwest China: Impacts, causes, and restoration[J]. Earth-Science Reviews, 2014, 132:1-12. doi: 10.1016/j.earscirev.2014.01.005 [7] 程海, 张海伟,赵景耀,李瀚瑛, 宁有丰,Kathayat G. 中国石笋古气候研究的回顾与展望[J]. 中国科学:地球科学, 2019, 49(10):1565-1589.CHENG Hai, ZHANG Haiwei, ZHAO Jingyao, LI Haiying, NING Youfeng, Kathayat G. Chinese stalagmite paleoclimate researches: A review and perspective[J]. Science China Earth Sciences, 2019, 49(10):1565-1589. [8] 薛刚, 蔡演军, 程鹏, 马乐,成星. 石笋有机质碳同位素组成研究的进展与挑战[J]. 地球环境学报, 2019, 10(2):105-115.XUE Gang, CAI Yanjun, CHENG Peng, MA Le, CHENG Xing. Progress and challenge of organic carbon isotope composition research in stalagmite[J]. Journal of Earth Environment, 2019, 10(2):105-115. [9] Yuan D X, Cheng H, Edwards R L, et al. Timing, duration, and transitions of the last interglacial Asian monsoon[J]. Science, 2004, 304(5670):575-578. doi: 10.1126/science.1091220 [10] Wu J Y, Wang Y J, Cheng H, et al. Stable isotope and trace element investigation of two contemporaneous annually-laminated stalagmites from northeastern China surrounding the “8.2 ka event”[J]. Climate of the Past, 2012, 8(5):1497-1507. doi: 10.5194/cp-8-1497-2012 [11] Zhang H W, Cai Y J, Tan L C, et al. Large variations of δ13C values in stalagmites from southeastern China during historical times: implications for anthropogenic deforestation[J]. Boreas, 2015, 44(3):511-525. doi: 10.1111/bor.12112 [12] Liu D B, Wang Y J, Cheng H, et al. Strong coupling of centennial-scale changes of Asian monsoon and soil processes derived from stalagmite δ18O and δ13C records, southern China[J]. Quaternary Research, 2016:333-346. [13] 张美良, 朱晓燕, 林玉石, 覃嘉铭,章程,罗贵荣,杨琰. 洞穴石笋的13C记录研究[J]. 广西科学, 2006, 13:48-57. doi: 10.3969/j.issn.1005-9164.2006.01.016ZHANG Meiliang,ZHU Xiaoyan,LIN Yushi,QIN Jiaming,ZHANG Cheng,LUO Guirong,YANG Yan. Study on13C isotope records from stalagmites[J]. Guangxi Sciences, 2006, 13:48-57. doi: 10.3969/j.issn.1005-9164.2006.01.016 [14] 李廷勇, 李红春, 向晓晶, 郭子兴, 李俊云, 周福莉, 陈虹利, 彭玲莉. 碳同位素δ13C在重庆岩溶地区植被-土壤-基岩-洞穴系统运移特征研究[J]. 中国科学:地球科学, 2012, 55(4):526-535.LI Tingyong, LI Hongchun, XIANG Xiaojing, GUO Zixing, LI Junyun, ZHOU Fuli, PENG Lingli. Transportation characteristics of δ13C in the plants-soil-bedrock-cave system in Chongqing karst area[J]. Scientia Sinica(Terrae), 2012, 55(4):526-535. [15] Li J Y, Li T Y. Seasonal and annual changes in soil/cave air pCO2 and the δ13CDIC of cave drip water in response to changes in temperature and rainfall[J]. Applied Geochemistry, 2018, 93:94-101. doi: 10.1016/j.apgeochem.2018.04.002 [16] Lyu Y, Luo W J, Wang Y W, et al. Geochemical responses of cave drip water to vegetation restoration[J]. Journal of Hydrology, 2020:590. [17] Hendy C H. The isotopic geochemistry of speleothems—I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators[J]. Geochimica et Cosmochimica Acta, 1971, 35(8):801-824. doi: 10.1016/0016-7037(71)90127-X [18] Baskaran M, Krishnamurthy R V. Speleothems as proxy for the carbon isotope composition of atmospheric CO2[J]. Geophysical Research Letters, 1993, 20(24):2905-2908. doi: 10.1029/93GL02690 [19] Genty D, Blamart D, Ouahdi R, et al. Precise dating of Dansgaard–Oeschger climate oscillations in western Europe from stalagmite data[J]. Nature, 2003, 421(6925):833-837. doi: 10.1038/nature01391 [20] Cosford J, Qing H, Mattey D, et al. Climatic and local effects on stalagmite δ13C values at Lianhua cave, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 280(1-2):235-244. doi: 10.1016/j.palaeo.2009.05.020 [21] Tripati A k, Roberts C D, Eagle R A. Coupling of CO2 and ice sheet stability over major climate transitions of the last 20 million years[J]. Science, 2009, 326:1394-1397. doi: 10.1126/science.1178296 [22] Bauska T K, Brook E J, Marcott S A, et al. Controls on millennial‐scale atmospheric CO2 variability during the last glacial period[J]. Geophysical Research Letters, 2018, 45(15):7731-7740. doi: 10.1029/2018GL077881 [23] Francey R J, Allison C E, Etheridge D M, et al. A 1000-year high precision record of δ13C in atmospheric CO2[J]. Tellus B:Chemical and Physical Meteorology, 1999, 51(2):170-193. doi: 10.3402/tellusb.v51i2.16269 [24] 李亚翠, 季宏兵, 张涛, 郝亚婷. 石林地区典型土壤剖面有机碳、氮含量分布特征研究[J]. 地球与环境, 2018, 46(5):437-443.LI Yacui,JI Hongbing,ZHANG Tao,HAO Yating. Distribution characteristics of organic carbon and nitrogen contents in typical soil profiles in the Shilin area[J]. Earth and Environment, 2018, 46(5):437-443. [25] 章程. 不同土地利用土下溶蚀速率季节差异及其影响因素:以重庆金佛山为例[J]. 地质论评, 2010, 56(1):136-140.ZHANG Cheng. Seasonal variation of dissolution rate under the soil at different land uses and its influence factors a case study of Jinfo mountain, Chongqing[J]. Geological Review, 2010, 56(1):136-140. [26] Sheng H, Yang Y S, Yang Z J, et al. The dynamic response of soil respiration to land-use changes in subtropical China[J]. Gobal Change Biology, 2010, 16:1107-1121. doi: 10.1111/j.1365-2486.2009.01988.x [27] Genty D, Baker A, Massault M, et al. Dead carbon in stalagmites: carbonate bedrock paleodissolution vs. ageing of soil organic matter. Implications for 13C variations in speleothems[J]. Geochimica et Cosmochimica Acta, 2001, 65(20):2443-3457. [28] Vogel J C, Kronfeld J. Calibration of radiocarbon dates for the late Pleistocene using U/Th dates on stalagmites[J]. Radiocarbon, 1997, 39:27-32. doi: 10.1017/S003382220004087X [29] Genty D, Massault M. Carbon transfer dynamics from bomb-14C and δ13C time series of a laminated stalagmite from SW France:modelling and comparison with other stalagmite records[J]. Geochimica et Cosmochimica Acta, 1999, 63(10):1537-1548. doi: 10.1016/S0016-7037(99)00122-2 [30] Genty D, Blamart D, Ghaleb B, et al. Timing and dynamics of the last deglaciation from European and North African δ13C stalagmite profiles:comparison with Chinese and South Hemisphere stalagmites[J]. Quaternary Science Reviews, 2006, 25(17-18):2118-2142. doi: 10.1016/j.quascirev.2006.01.030 [31] Amundson R G, Davidson E A. Carbon dioxide and nitrogenous gases in the soil atmosphere[J]. Journal of Geochemical Exploration, 1990, 38:13-41. doi: 10.1016/0375-6742(90)90091-N [32] 刘再华, 何师意, 袁道先,赵景波. 土壤中的CO2及其对岩溶作用的驱动[J]. 水文地质工程地质, 1998, 4:44-47.LIU Zaihua, HE Shiyi, YUAN Daoxian, ZHAO Jingbo. CO2 in soil and its driving force to karstification[J]. Hydrogeology & Engineering Geology, 1998, 4:44-47. [33] Meyer K W, Feng W, Breecker D O, et al. Interpretation of speleothem calcite δ 13C variations: Evidence from monitoring soil CO2, drip water, and modern speleothem calcite in central Texas[J]. Geochimica et Cosmochimica Acta, 2014, 142:281-298. doi: 10.1016/j.gca.2014.07.027 [34] Wainer K, Genty D, Blamart D, et al. A new stage 3 millennial climatic variability record from a SW France speleothem[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 271(1-2):130-139. doi: 10.1016/j.palaeo.2008.10.009 [35] Genty D, Ghaleb B, Plagnes V, et al. Datations U/Th (TIMS) et 14C (AMS) des stalagmites de la grotte Chauvet (Ardèche, France): intérêt pour la chronologie des événements naturels et anthropiques de la grotte[J]. Comptes Rendus Palevol, 2004, 3(8):629-642. doi: 10.1016/j.crpv.2004.06.005 [36] Rudzka D, McDermott F, Baldini L M, et al. The coupled δ13C-radiocarbon systematics of three Late Glacial/early Holocene speleothems; insights into soil and cave processes at climatic transitions[J]. Geochimica et Cosmochimica Acta, 2011, 75(15):4321-4339. doi: 10.1016/j.gca.2011.05.022 [37] Hartman G, Danin A. Isotopic values of plants in relation to water availability in the Eastern Mediterranean region[J]. Oecologia, 2010, 162(4):837-852. doi: 10.1007/s00442-009-1514-7 [38] 曹建华, 周莉, 杨慧, 卢茜,康志强. 桂林毛村岩溶区与碎屑岩区林下土壤碳迁移对比及岩溶碳汇效应研究[J]. 第四纪研究, 2011, 31(3):431-437. doi: 10.3969/j.issn.1001-7410.2011.03.05CAO Jianhua,ZHOU Li,YANG Hui,LU Qian,KANG Zhiqiang. Comparison of carbon transfer between forest soils in karst and the karst and clastite areas and thekarst carbon sink effect in maocun village of Guilin[J]. Quaternary Kciences, 2011, 31(3):431-437. doi: 10.3969/j.issn.1001-7410.2011.03.05 [39] Cerling T E. The stable isotopic composition of modern soil carbonate and its relationship to climate[J]. Earth and Planetary Science Letters, 1984, 71:229-240. doi: 10.1016/0012-821X(84)90089-X [40] Uchida S, Kurisaki K, Ishihara Y, et al. Anthropogenic impact records of nature for past hundred years extracted from stalagmites in caves found in the Nanatsugama Sandstone Formation, Saikai, Southwestern Japan[J]. Chemical Geology, 2013, 347:59-68. doi: 10.1016/j.chemgeo.2013.04.006 [41] McDermott F. Palaeo-climate reconstruction from stable isotope variations in speleothems: a review[J]. Quaternary Science Reviews, 2004, 23(7-8):901-918. doi: 10.1016/j.quascirev.2003.06.021 [42] 闫志为, 刘辉利, 张志卫. 温度及CO2对方解石、白云石溶解度影响特征分析[J]. 中国岩溶, 2009, 28(1):7-10. doi: 10.3969/j.issn.1001-4810.2009.01.002YAN Zhiwei, LIU Huili, ZHANG Zhiwei. Influences of temperature and pCO2 on the solubility of calcite and dolomite[J]. Carsologica Sinica, 2009, 28(1):7-10. doi: 10.3969/j.issn.1001-4810.2009.01.002 [43] B. C T, J. W I. 500, 000-year stable carbon isotopic record form Devils Hole, Nevada[J]. Science, 1994, 263:361-365. doi: 10.1126/science.263.5145.361 [44] Fohlmeister J, Scholz D, Kromer B, et al. Modelling carbon isotopes of carbonates in cave drip water[J]. Geochimica et Cosmochimica Acta, 2011, 75(18):5219-5228. doi: 10.1016/j.gca.2011.06.023 [45] Griffiths M L, Fohlmeister J, Drysdale R N, et al. Hydrological control of the dead carbon fraction in a Holocene tropical speleothem[J]. Quaternary Geochronology, 2012, 14:81-93. doi: 10.1016/j.quageo.2012.04.001 [46] Dorale J A, Gonzalez L A, Reagan M K, et al. A high-resolution record of Holocene climate change in speleothem calcite from Cold Water Cave, Northeast Lowa[J]. Science, 1992, 258:1626-1630. doi: 10.1126/science.258.5088.1626 [47] Bond-Lamberty B, Thomson A. Temperature-associated increases in the global soil respiration record[J]. Nature, 2010, 464(7288):579-582. doi: 10.1038/nature08930 [48] Sherwin C M, Baldini J U L. Cave air and hydrological controls on prior calcite precipitation and stalagmite growth rates: Implications for palaeoclimate reconstructions using speleothems[J]. Geochimica et Cosmochimica Acta, 2011, 75(14):3915-3929. doi: 10.1016/j.gca.2011.04.020 [49] Lambert W J, Aharon P. Controls on dissolved inorganic carbon and δ13C in cave waters from DeSoto Caverns: Implications for speleothem δ13C assessments[J]. Geochimica et Cosmochimica Acta, 2011, 75(3):753-768. doi: 10.1016/j.gca.2010.11.006 [50] Day C C, Henderson G M. Oxygen isotopes in calcite grown under cave-analogue conditions[J]. Geochimica Et Cosmochimica Acta, 2011, 75(14):3956-3972. doi: 10.1016/j.gca.2011.04.026 [51] Scholz D, Mühlinghaus C, Mangini A. Modelling δ13C and δ18O in the solution layer on stalagmite surfaces[J]. Geochimica et Cosmochimica Acta, 2009, 73(9):2592-2602. doi: 10.1016/j.gca.2009.02.015 [52] Verheyden S, Genty D, Deflandre G, et al. Monitoring climatological, hydrological and geochemical parameters in the Père Noël cave (Belgium): implication for the interpretation of speleothem isotopic and geochemical time-series[J]. International Journal of Speleology, 2008, 37(3):221-234. doi: 10.5038/1827-806X.37.3.6 [53] Baker A, Ito E, Smart P L, et al. Elevated and variable values of 13C in speleothems in a British cave system[J]. Chemical Geology, 1997, 136:263-270. doi: 10.1016/S0009-2541(96)00129-5 [54] Deininger M, Fohlmeister J, Scholz D, et al. Isotope disequilibrium effects: The influence of evaporation and ventilation effects on the carbon and oxygen isotope composition of speleothems – A model approach[J]. Geochimica et Cosmochimica Acta, 2012, 96:57-79. doi: 10.1016/j.gca.2012.08.013 [55] Treble P C, Fairchild I J, Griffiths A, et al. Impacts of cave air ventilation and in-cave prior calcite precipitation on Golgotha Cave dripwater chemistry, southwest Australia[J]. Quaternary Science Reviews, 2015, 127:61-72. doi: 10.1016/j.quascirev.2015.06.001 [56] Tan L C, Cai Y J, An Z S, et al. A Chinese cave links climate change, social impacts, and human adaptation over the last 500 years[J]. Sci Rep, 2015, 5:12284. doi: 10.1038/srep12284 [57] Li T Y, Huang C X, Tian L J, et al. Variation of δ13C in plant-soil-cave systems in karst regions with different degrees of rocky desertification in southwest China[J]. Journal of Cave and Karst Studies, 2018, 80(4):212-228. doi: 10.4311/2018ES0107 [58] 张海伟, 蔡演军, 谭亮成. 石笋矿物类型、成因及其对气候和环境的指示[J]. 中国岩溶, 2010, 29(3):222-228. doi: 10.3969/j.issn.1001-4810.2010.03.002ZHANG Haiwei, CAI Yanjun, TAN Liangcheng. Phase composition and formation of stalagmite minerals: Indications of climate and environment[J]. Carsologica Sinica, 2010, 29(3):222-228. doi: 10.3969/j.issn.1001-4810.2010.03.002 [59] Scroxton N, Burns S J, McGee D, et al. Hemispherically in-phase precipitation variability over the last 1700 years in a Madagascar speleothem record[J]. Quaternary Science Reviews, 2017, 164:25-36. doi: 10.1016/j.quascirev.2017.03.017 [60] Tarutani T, Clayton R N, Mayeda T K. The effect of polymorphism and magnesium substitution on oxygen isotope fractionation between calcium carbonate and water[J]. Geochimica et Cosmochimica Acta, 1969, 33:987-996. doi: 10.1016/0016-7037(69)90108-2 [61] 林玉石, 张美良, 覃家铭, 姜光辉,舒丽,刘玉,杨琰,彭稳,黄新跃,黄芬. 论洞穴石笋结构构造转变[J]. 西北地质, 2009, 42(2):36-46.LIN Yushi,ZHANG Meiliang,QIN Jiaming,JIANG Guanghui, SHU Li,LIU Yu,YANG Yan,PENG Wen,HUANG Xinyue,HUANG Fen. On the transformation of stalagmite texture and structure[J]. Northwestern Geology, 2009, 42(2):36-46. [62] Morse J W, Bender M L. Partition coefficients in calcite: Examination of factors influencing the validity of experimental results and their application to natural systems[J]. Chemical Geology, 1990, 82(90):265-277. [63] Frisia S. Microstratigraphic logging of calcite fabrics in speleothems as tool for palaeoclimate studies[J]. International Journal of Speleology, 2015, 44(1):1-16. [64] Domínguez-Villar D, Krklec K, Pelicon P, et al. Geochemistry of speleothems affected by aragonite to calcite recrystallization: Potential inheritance from the precursor mineral[J]. Geochimica et Cosmochimica Acta, 2017, 200:310-329. doi: 10.1016/j.gca.2016.11.040 [65] Wassenburg J A, Immenhauser A, Richter D K, et al. Climate and cave control on Pleistocene/Holocene calcite-to-aragonite transitions in speleothems from Morocco: Elemental and isotopic evidence[J]. Geochimica et Cosmochimica Acta, 2012, 92:23-47. doi: 10.1016/j.gca.2012.06.002 [66] 张海伟, 蔡演军, 安芷生, 秦世江. 石笋矿物由文石转变为方解石后碳、氧同位素组成的变化[J]. 矿物岩石地球化学通报, 2014, 33(1):31-37. doi: 10.3969/j.issn.1007-2802.2014.01.004ZHANG Haiwei ,CAI Yanjun, AN Zhisheng,QIN Shijiang. Variation of Oxygen and Carbon Isotope Compositions in Transformation of Speleothem Primary Aragonite to Secondary Calcite[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2014, 33(1):31-37. doi: 10.3969/j.issn.1007-2802.2014.01.004 [67] Spötl C, Fohlmeister J, Cheng H, et al. Modern aragonite formation at near-freezing conditions in an alpine cave, Carnic Alps, Austria[J]. Chemical Geology, 2016, 435:60-70. doi: 10.1016/j.chemgeo.2016.04.017 [68] Holmgren K, Lee-Thorp J A, Cooper G R J, et al. Persistent millennial-scale climatic variability over the past 25, 000 years in Southern Africa[J]. Quaternary Science Reviews, 2003, 22(21-22):2311-2326. doi: 10.1016/S0277-3791(03)00204-X [69] Springer G S, Rowe H D, Hardt B, et al. East central North America climates during marine isotope stages 3-5[J]. Geophysical Research Letters, 2014, 41(9):3233-3237. doi: 10.1002/2014GL059884 [70] Cruz F W, Burns S J, Jercinovic M, et al. Evidence of rainfall variations in Southern Brazil from trace element ratios (Mg/Ca and Sr/Ca) in a Late Pleistocene stalagmite[J]. Geochimica et Cosmochimica Acta, 2007, 71(9):2250-2263. doi: 10.1016/j.gca.2007.02.005 [71] Duan W H, Tan M, Ma Z B, et al. The palaeoenvironmental significance of δ13C of stalagmite BW-1 from Beijing, China during Younger Dryas intervals inferred from the grey level profile[J]. Boreas, 2014, 43(1):243-250. doi: 10.1111/bor.12034 [72] Martín-Chivelet J, Muñoz-García M B, Edwards R L, et al. Land surface temperature changes in Northern Iberia since 4,000 yr BP, based on δ13C of speleothems[J]. Global and Planetary Change, 2011, 77(1-2):1-12. doi: 10.1016/j.gloplacha.2011.02.002 [73] 文丽, 宋同清, 杜虎, 王克林, 彭晚霞, 曾馥平, 曾昭霞, 何铁光. 中国西南喀斯特植物群落演替特征及驱动机制[J]. 生态学报, 2015, 35(17):5822-5833.WEN Li,SONG Tongqing,DU Hu,WANG Kelin,PENG Wanxia,ZENG Fuping,ZENG Zhaoxia,HE Tieguang. The succession characteristics and its driving mechanism of plant community in karst region, southwest China[J]. Acta Ecologica Sinica, 2015, 35(17):5822-5833. [74] Ridley H E, Asmerom Y, Baldini J U L, et al. Aerosol forcing of the position of the intertropical convergence zone since AD 1550[J]. Nature Geoscience, 2015, 8(3):195-200. doi: 10.1038/ngeo2353 [75] Yadava M G, Ramesh R. Monsoon reconstruction from radiocarbon dated tropical Indian speleothems[J]. The Holocene, 2005, 15(1):48-59. doi: 10.1191/0959683605h1783rp [76] Frappier A, Sahagian D, Gonza´lez L A, et al. El Nio Events Recorded by Stalagmite Carbon Isotopes[J]. Science, 2002, 298:565. doi: 10.1126/science.1076446 [77] 吴秀平, 丁明虎, 侯典炯, 孙维君, 杜文涛, 张德忠, 季顺川. 末次冰期晚期黄土高原西部万象洞高分辨率石笋δ13C记录时频分析[J]. 干旱区资源与环境, 2012, 26(11):42-47.WU Xiuping, DING Minghu, HOU Dianjiong, SUN Weijun, DU Wentao, ZHANG Dezhong, JI Shunchuan. Time-frequency analysis of carbon isotope record of stalagmite from Wanxiang Cave,western Loess Plateau,during the late of last Glacial[J]. Journal of Arid Land Resources and Environment, 2012, 26(11):42-47. [78] Dansgaard W, Johnsen S J, Clausen H B, et al. Evidence for general instability of past climate from a 250-kyr ice-core record[J]. Nature, 1993, 364:218-220. doi: 10.1038/364218a0 [79] Kong X G, Wang Y J, Wu J Y, et al. Complicated responses of stalagmite δ13C to climate change during the last glaciation from Hulu Cave, Nanjing, China[J]. Science in China Series D:Earth Sciences, 2005, 48(12):2174-2181. doi: 10.1360/04yd0140 [80] Cheng H, Zhang H W, Spotl C, et al. Timing and structure of the Younger Dryas event and its underlying climate dynamics[J]. Proceedings of the National Academy of Sciences, 2020, 117(38):23408-23417. doi: 10.1073/pnas.2007869117 [81] Zhu X Y, Zhang M L, Cheng H, et al. Centennial-scale monsoon climate fluctuations from a stalagmite record during the mid-Holocene Epoch in Fulu cave of Huaping, Yunnan, China[J]. Environmental Earth Sciences, 2015, 74(2):929-935. doi: 10.1007/s12665-014-3984-0 [82] Wolff E W, Chappellaz J, Blunier T, et al. Millennial-scale variability during the last glacial: The ice core record[J]. Quaternary Science Reviews, 2010, 29(21-22):2828-2838. doi: 10.1016/j.quascirev.2009.10.013 [83] Li T Y, Xiao S Y, Shen C C, et al. Little Ice Age climate changes in Southwest China from a stalagmite δ18O record[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 67(1):56-68. [84] Fohlmeister J, Voarintsoa N R G, Lechleitner F A, et al. Main controls on the stable carbon isotope composition of speleothems[J]. Geochimica et Cosmochimica Acta, 2020, 279:67-87. doi: 10.1016/j.gca.2020.03.042 [85] Zhu X Y, Zhang M L, Lin Y S, et al. Carbon isotopic records from stalagmites and the signification of paleo-ecological environment in the area of Guangxi-Guizhou, China[J]. Environmental Geology, 2006, 51(2):267-273. doi: 10.1007/s00254-006-0324-z [86] 程珂, 谢宇, 刘粤峰, 李汉杰, 潘晨光, 彭小桃, 刘淑华, 陈琼, 周厚云. 东亚季风区石笋13C是否记录植被变化: 从川东北石笋记录的Heinrich事件说起[J]. 第四纪研究, 2019, 39(4):837-844. doi: 10.11928/j.issn.1001-7410.2019.04.05CHENG Ke, XIE Yu, LIU Yuefeng, LI Hanjie, PAN Chenguang, PENG Xiaotao, LIU Shuhua, CHEN Qiong, ZHOU Houyun. Can speleothem δ13C record vegetation changes in the East Asia summer monsoon regime? A story starting from Heinrich events recorded by speleothems from northeast Sichuan in Central China[J]. Quaternary Sciences, 2019, 39(4):837-844. doi: 10.11928/j.issn.1001-7410.2019.04.05 [87] Mattey D, Lowry D, Duffet J, et al. A 53 year seasonally resolved oxygen and carbon isotope record from a modern Gibraltar speleothem: Reconstructed drip water and relationship to local precipitation[J]. Earth and Planetary Science Letters, 2008, 269(1-2):80-95. doi: 10.1016/j.jpgl.2008.01.051 [88] Wong C I, Banner J L, Musgrove M. Holocene climate variability in Texas, USA: An integration of existing paleoclimate data and modeling with a new, high-resolution speleothem record[J]. Quaternary Science Reviews, 2015, 127:155-173. doi: 10.1016/j.quascirev.2015.06.023 [89] Meyer M C, Spötl C, Mangini A. The demise of the Last Interglacial recorded in isotopically dated speleothems from the Alps[J]. Quaternary Science Reviews, 2008, 27(5-6):476-496. doi: 10.1016/j.quascirev.2007.11.005 [90] Demény A, Kern Z, Czuppon G, et al. Stable isotope compositions of speleothems from the last interglacial – Spatial patterns of climate fluctuations in Europe[J]. Quaternary Science Reviews, 2017, 161:68-80. doi: 10.1016/j.quascirev.2017.02.012 [91] Xia Q K, Zhao J X, K. D. Collerson. Early-Mid Holocene climatic variations in Tasmania, Australia: multi-proxy records in a stalagmite from Lynds Cave[J]. Earth and Planetary Science Letters, 2001, 194:177-187. doi: 10.1016/S0012-821X(01)00541-6 [92] Johnston V E, Borsato A, Spötl C, et al. Stable isotopes in caves over altitudinal gradients: fractionation behaviour and inferences for speleothem sensitivity to climate change[J]. Climate of the Past, 2013, 9(1):99-118. doi: 10.5194/cp-9-99-2013 [93] 李红春, 顾德隆,陈文寄,袁道先,李铁英. 高分辨率洞穴石笋中稳定同位素应用:北京元大都建立后对森林资源的破坏: δ13C记录[J]. 地质论评, 1998, 44(5):456-463. doi: 10.3321/j.issn:0371-5736.1998.05.002LI Hongchun, GU Delong, CHEN Wenji, YUAN Daoxian, LI Tieying. Application of high-resolution carbon isotope record of a stalagmite from the Shihua cave,Beijing:δ13C record of deforestation after the establishment of the grand capital[J]. Geological Review, 1998, 44(5):456-463. doi: 10.3321/j.issn:0371-5736.1998.05.002 [94] Huang W, Wang Y J, Cheng H, et al. Multi-scale Holocene Asian monsoon variability deduced from a twin-stalagmite record in southwestern China[J]. Quaternary Research, 2016, 86(1):34-44. doi: 10.1016/j.yqres.2016.05.001 [95] Zhang J, Liu S S, Liu D B, et al. Correlation between oxygen and carbon isotopes of speleothems from Tian’e Cave, central China: Insights into the phase relationship between Asian summer and winter monsoons[J]. Journal of Asian Earth Sciences, 2019, 180:103884. doi: 10.1016/j.jseaes.2019.103884 [96] 谭亮成, 刘文, 王甜莉, 程鹏, 臧婧杰, 王曦谦, 马乐, 李东, 蓝江湖, 艾思本, 程海, 徐海, 艾莉, 高永利, 蔡演军. 石笋多指标记录揭示的山东中部森林采伐历史[J]. 中国科学:地球科学, 2020, 50(11):1643-1654.TAN Liangcheng, LIU Wen, WANG Tianli, CHENG Peng, ZANG Jingjie, WANG Xiqian, MA Le, LI Dong, LAN Jianghu, Edwards R L, CHENG Hai, XU Hai, AI Li, GAO Yongli, CAI Yanjun. A multiple-proxy stalagmite record reveals historical deforestation in central Shandong, northern China[J]. Science China Earth Sciences, 2020, 50(11):1643-1654. [97] Bar-Matthews M, Ayalon A, Kaufman A, et al. The Eastern Mediterranean paleoclimate as a reflection of regional events: Soreq cave, Israe[J]. Earth and Planetary Science Letters, 1999, 166:85-95. doi: 10.1016/S0012-821X(98)00275-1 [98] Riechelmann D F C, Deininger M, Scholz D, et al. Disequilibrium carbon and oxygen isotope fractionation in recent cave calcite: Comparison of cave precipitates and model data[J]. Geochimica et Cosmochimica Acta, 2013, 103:232-244. doi: 10.1016/j.gca.2012.11.002 [99] 王庆, 周厚云, 迟宏,程珂,王红艳,马倩倩,王常山. 最近千年来山东半岛西部气候环境变化的石笋δ18O、δ13C记录(Ⅰ)[J]. 海洋地质与第四纪地质, 2015, 35(5):135-142.WANG Qing,ZHOU Houyun,CHI Hong,CHENG Ke,WANG Hongyan,MA Qianqian,WANG Changshan. The stalagmite records of climate and environmentchange on the western shandong peninsuladuring the past 1 000years:18O and13C values(Ⅰ)[J]. Marine Geology & Quaternary Geology, 2015, 35(5):135-142. [100] Burns S J, Godfrey L R, Faina P, et al. Rapid human-induced landscape transformation in Madagascar at the end of the first millennium of the Common Era[J]. Quaternary Science Reviews, 2016, 134:92-99. doi: 10.1016/j.quascirev.2016.01.007 [101] Yin J J, Li H C, Tang W, et al. Rainfall variability and vegetation recovery in rocky desertification areas recorded in recently-deposited stalagmites from Guilin, South China[J]. Quaternary International, 2019, 528:109-119. doi: 10.1016/j.quaint.2019.01.039 [102] Cheng J, Wu H B, Liu Z Y, et al. Vegetation feedback causes delayed ecosystem response to East Asian Summer Monsoon Rainfall during the Holocene[J]. Nat Commun, 2021, 12(1):1843. doi: 10.1038/s41467-021-22087-2 [103] 李媛媛. 滇东南近千年来石漠化过程的石笋记录[D]. 昆明: 云南师范大学, 2017.LI Yuanyuan.The process of rocky desertification from the stalagmites records in last 1,000 years in the southeast of Yunnan[D].Kunming:Yunnan Normal University, 2017 [104] 薛治国, 陈浒, 李晓娜, 王仙攀. 云贵高原石漠化与古气候演变分析[J]. 安徽农业科学, 2010, 23:12303-12305. doi: 10.3969/j.issn.0517-6611.2010.23.001XUE Zhiguo,CHEN Hu,LI Xiaona,WANG Xianpan. Analysis of paleoclimatic evolution and rocky desertification in Yunnan-Guizhou Plateau[J]. Journal of Anhui Agricultural Sciences, 2010, 23:12303-12305. doi: 10.3969/j.issn.0517-6611.2010.23.001 [105] 刘子琦, 王宏远, 张乾柱. 基于洞穴沉积物记录的石漠化演变重要历史事件相关研究[J]. 科学技术与工程, 2014, 14(4):18-21. doi: 10.3969/j.issn.1671-1815.2014.04.004LIU Ziqi,WANG Hongyuan,ZHANG Qianzhu. The research for historical events of development of rocky desertification based on speleothems records[J]. Science Technology and Engineering, 2014, 14(4):18-21. doi: 10.3969/j.issn.1671-1815.2014.04.004 [106] 刘子琦. 利用石笋记录探究贵州织金地区近百年气候环境变化[J]. 西南大学报(自然科学版), 2013, 35(5):165-171.LIU Ziqi. The record of stalagmite ZJD-21 reflects the climate and environmental changes in Zhijin during the past 100years[J]. Journal of Southwest University(Natural Science Edition), 2013, 35(5):165-171. [107] Kuo T S, Liu Z Q, Li H C, et al. Climate and environmental changes during the past millennium in central western Guizhou, China as recorded by Stalagmite ZJD-21[J]. Journal of Asian Earth Sciences, 2011, 40(6):1111-1120. doi: 10.1016/j.jseaes.2011.01.001 [108] 陈朝军, 袁道先, 程海, Tsai Luen YU, Chuan Chou SHEN, R. Lawrence EDWARDS, 吴尧, 肖思雅, 张键, 王涛, 黄冉, 刘子琦, 李廷勇, 李俊云 人类活动和气候变化触发了中国西南石漠化的扩张[J]. 中国科学:地球科学, 2021:51.CHEN Chaojun, YUAN Daoxian, CHENG Hai, Tsai Luen YU, Chuan Chou SHEN, R Lawrence EDWARDS, WU Yao, XIAO Siya, ZHANG Jian, WANG Tao, HUANG Ran, LIU Ziqi, LI Tingyong, LI Junyue. Human activity and climate change triggered the expansion of rocky desertification in the karst areas of Southwestern China[J]. Science China Earth Sciences, 2021:51. [109] Tan L C, Dong G H, An Z S, et al. Megadrought and cultural exchange along the proto-silk road[J]. Science Bulletin, 2020, 66(6):603-611. [110] Li Y X, Rao Z G, Xu Q H, et al. Inter-relationship and environmental significance of stalagmite δ13C and δ18O records from Zhenzhu Cave, north China, over the last 130 ka[J]. Earth and Planetary Science Letters, 2020, 536:116149. doi: 10.1016/j.jpgl.2020.116149 [111] Wu Y, Li T Y, Yu T L, et al. Variation of the Asian summer monsoon since the last glacial-interglacial recorded in a stalagmite from southwest China[J]. Quaternary Science Reviews, 2020, 234:106261. doi: 10.1016/j.quascirev.2020.106261 [112] Mischel S A, Scholz D, Spötl C, et al. Holocene climate variability in Central Germany and a potential link to the polar North Atlantic: A replicated record from three coeval speleothems[J]. The Holocene, 2016, 27(4):509-525. [113] Cheng H, Edwards R L, Sinha A, et al. The Asian monsoon over the past 640, 000 years and ice age terminations[J]. Nature, 2016, 534(7609):640-646. doi: 10.1038/nature18591 [114] Wang Y J, Cheng H, Edwards R L, et al. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu cave, China[J]. Science, 2001, 294:2345-2348. doi: 10.1126/science.1064618 [115] Zhang M L, Yuan D X, Lin Y S, et al. A 6000-year high-resolution climatic record from a stalagmite in Xiangshui Cave, Guilin, China[J]. The Holocene, 2004, 14(5):697-702. doi: 10.1191/0959683604hl748rp [116] Feng X X, Yang Y, Cheng H, et al. The 7.2 ka climate event: Evidence from high-resolution stable isotopes and trace element records of stalagmite in Shuiming Cave, Chongqing, China[J]. The Holocene, 2019, 30(1):145-154. [117] Springer G S, Rowe H D, Hardt B, et al. Solar forcing of Holocene droughts in a stalagmite record from West Virginia in east-central North America[J]. Geophysical Research Letters, 2008, 35 (17) [118] Cheng H, Spotl C, Breitenbach S F, et al. Climate variations of Central Asia on orbital to millennial timescales[J]. Sci Rep, 2016, 5:36975. [119] Griffiths M L, Johnson K R, Pausata F S R, et al. End of Green Sahara amplified mid-to late Holocene megadroughts in mainland Southeast Asia[J]. Nature Communications, 2020, 11:4204. doi: 10.1038/s41467-020-17927-6 [120] Arienzo M M, Swart P K, Broad K, et al. Multi-proxy evidence of millennial climate variability from multiple Bahamian speleothems[J]. Quaternary Science Reviews, 2017, 161:18-29. doi: 10.1016/j.quascirev.2017.02.004 [121] Chen C J, Huang R, Yuan D X, et al. Karst hydrological changes during the Late-Holocene in Southwestern China[J]. Quaternary Science Reviews, 2021:258. [122] 顾宁, 吴江滢. 辽宁暖和洞石笋δ13C记录的古气候环境意义初探[J]. 中国岩溶, 2012, 31(2):107-114. doi: 10.3969/j.issn.1001-4810.2012.02.001GU Ning, WU Jiangying. Pale climate significance of δ13C in stalagmite from Nuanhe Cave, Liaoning[J]. Carsologica Sinica, 2012, 31(2):107-114. doi: 10.3969/j.issn.1001-4810.2012.02.001 [123] Liu D B, Wang Y J, Cheng H, et al. A detailed comparison of Asian Monsoon intensity and Greenland temperature during the Allerød and Younger Dryas events[J]. Earth and Planetary Science Letters, 2008, 272(3-4):691-697. doi: 10.1016/j.jpgl.2008.06.008 [124] Li X L, Cheng H, Tan L C, et al. The East Asian summer monsoon variability over the last 145 years inferred from the Shihua Cave record, North China[J]. Scientific Reports, 2017, 7(1):7078. doi: 10.1038/s41598-017-07251-3 [125] 吴尧, 李廷勇, 陈朝军, 黄冉,王涛,肖思雅,邱海英,徐玉珍,黄洋阳,李俊云. 中国石笋微层在古气候重建中的应用研究[J]. 第四纪研究, 2020, 40(4):1008-1024. doi: 10.11928/j.issn.1001-7410.2020.04.15WU Yao, LI Tingyong, CHEN Chaojun, HUANG Ran, WANG Tao, XIAO Siya, QIU Haiying, XU Yuzhen, HUANG Yangyang, LI Junyun. Application of stalagmite laminae in paleoclimate reconstructions of China[J]. Quaternary Sciences, 2020, 40(4):1008-1024. doi: 10.11928/j.issn.1001-7410.2020.04.15 [126] 秦小光, 刘东生, 谭明, 王先锋. 北京石花洞石笋微层灰度变化特征及其气候意义-Ⅱ. 灰度的年际变化[J]. 中国科学(D辑), 2000, 30(3):239-248. doi: 10.3969/j.issn.1674-7240.2000.03.003 [127] Yasur G, Ayalon A, Matthews A, et al. Climatic and environmental conditions in the Western Galilee, during Late Middle and Upper Paleolithic periods, based on speleothems from Manot Cave, Israel[J]. Journal of Human Evolution, 2019:102605. [128] Zhou H Y, Zhao J X, Feng Y X, et al. Distinct climate change synchronous with Heinrich event one, recorded by stable oxygen and carbon isotopic compositions in stalagmites from China[J]. Quaternary Research, 2008, 69(2):306-315. doi: 10.1016/j.yqres.2007.11.001 [129] Pu J B, Wang A Y, Shen L C, et al. Factors controlling the growth rate, carbon and oxygen isotope variation in modern calcite precipitation in a subtropical cave, Southwest China[J]. Journal of Asian Earth Sciences, 2016, 119:167-178. doi: 10.1016/j.jseaes.2015.12.010 [130] Tremaine D M, Froelich P N, Wang Y. Speleothem calcite farmed in situ: Modern calibration of δ18O and δ13C paleoclimate proxies in a continuously-monitored natural cave system[J]. Geochimica et Cosmochimica Acta, 2011, 75(17):4929-4950. doi: 10.1016/j.gca.2011.06.005 [131] Duan W H, Ruan J Y, Luo W J, et al. The transfer of seasonal isotopic variability between precipitation and drip water at eight caves in the monsoon regions of China[J]. Geochimica et Cosmochimica Acta, 2016, 183:250-266. doi: 10.1016/j.gca.2016.03.037 [132] Voarintsoa N R G, Ratovonanahary A L J, Rakotovao A Z M, et al. Understanding the linkage between regional climatology and cave geochemical parameters to calibrate speleothem proxies in Madagascar[J]. Science of theTotal Environment, 2021, 784:147181. doi: 10.1016/j.scitotenv.2021.147181 [133] Zhang J, Li T Y. Seasonal and interannual variations of hydrochemical characteristics and stable isotopic compositions of drip waters in Furong Cave, southwest China based on 12 years’ monitoring[J]. Journal of Hydrology, 2019, 572:40-50. doi: 10.1016/j.jhydrol.2019.02.052 [134] Qiu H Y, Li T Y, Chen C J, et al. Significance of active speleothem δ18O at annual-decadal timescale:A case study from monitoring in Furong Cave[J]. Applied Geochemistry, 2021, 126:104873. doi: 10.1016/j.apgeochem.2021.104873 [135] Ruan J Y, Hu C Y. Seasonal variations and environmental controls on stalagmite calcite crystal growth in Heshang Cave, central China[J]. Chinese Science Bulletin, 2010, 55(34):3929-3935. doi: 10.1007/s11434-010-4193-1 [136] 何璐瑶, 胡超涌, 曹振华, 马仲武, 熊志方. 湖北清江和尚洞洞穴温度对气候变化的响应[J]. 中国岩溶, 2008, 27(3):273-282. doi: 10.3969/j.issn.1001-4810.2008.03.013HE Luyao, HU Chaoyong, CAO Zhenhua, MA Zhongwu, XIONG Zhifang. Correspondences of Heshang cave temperature to climatic change in Qingjiang, Hubei[J]. Carsologica Sinica, 2008, 27(3):273-282. doi: 10.3969/j.issn.1001-4810.2008.03.013 [137] Hu C Y, Henderson G M, Huang J, et al. Report of a three-year monitoring programme at Heshang Cave, Central China[J]. International Journal of Speleology, 2008, 37(3):143-151. doi: 10.5038/1827-806X.37.3.1 [138] Li Y X, Zhang S R, Liu X K, et al. Variations of the stable isotopic composition of precipitation and cave drip water at zhenzhu cave, north China: a two-year monitoring study[J]. Journal of Cave and Karst Studies, 2019, 81(2):123-135. doi: 10.4311/2018ES0128 [139] Li Y D, Yang Y, Jiang X Y, et al. The transport mechanism of carbon isotopes based on 10 years of cave monitoring: Implications for paleoclimate reconstruction[J]. Journal of Hydrology, 2021, 592:125841. doi: 10.1016/j.jhydrol.2020.125841 [140] Yin J J, Tang W, Wang Z J, et al. Deciphering the hydroclimatic significance of dripwater δ13CDIC variations in monsoonal China based on modern cave monitoring[J]. Journal of Hydrology, 2021, 603:126882. doi: 10.1016/j.jhydrol.2021.126882 [141] 张蔷, 赵淑艳, 赵习方. 北京石花洞内CO2的监测与评价[J]. 中国岩溶, 1997, 16(4):325-331.ZHANG Qiang, ZHAO Shuyan, ZHAO Xifang. CO2 Monitoring and assessmentof Shihua cave,Beijing[J]. Carsologica Sinica, 1997, 16(4):325-331. [142] 沈蔚, 王建力, 王家录, 蒋先淑, 毛庆亚. 贵州纳朵洞洞穴水化学性质和δ13CDIC特征及其影响因素研究[J]. 中国岩溶, 2016, 35(1):98-105. doi: 10.11932/karst20160114SHEN Wei, WANG Jianli, WANG Jialu, JIANG Xianshu, MAO Qingya. Hydrochemistry and δ13CDIC features of cave water in Naduo cave, Guizhou and their influencing factors[J]. Carsologica Sinica, 2016, 35(1):98-105. doi: 10.11932/karst20160114 [143] 郑志惠, 王庆, 周厚云, 程 珂, 王红艳. 山东半岛九天洞洞穴环境变化特征与影响因素[J]. 中国岩溶, 2019, 38(3):370-377.ZHENG Zhihui, WANG Qing, ZHOU Houyun, CHENG Ke, WANG Hongyan. Variability of cave climate environment and influencing factors of the Shandong peninsula Jiutian cave[J]. Carsologica Sinica, 2019, 38(3):370-377. [144] Pu J B, Wang A Y, Yin J J, et al. pCO2 variations of cave air and cave water in a subtropical cave, SW China[J]. Carbonates and Evaporites, 2017, 33(3):477-487. [145] Luo W J, Wang S J. Transmission of δ13C signals and its paleoclimatic implications in Liangfeng Cave system of Guizhou Province, SW China[J]. Environmental Earth Sciences, 2009, 59(3):655-661. doi: 10.1007/s12665-009-0062-0 [146] Genty D, Deflandre G. Drip flow variations under a stalactite of the Pe`re Noe¨l cave (Belgium). Evidence of seasonal variations and air pressure constraints[J]. Journal of Hydrology, 1998, 211:208-232. doi: 10.1016/S0022-1694(98)00235-2 [147] Kaufmann G. Stalagmite growth and palaeo-climate: the numerical perspective[J]. Earth and Planetary Science Letters, 2003, 214(1-2):251-266. doi: 10.1016/S0012-821X(03)00369-8 [148] Mühlinghaus C, Scholz D, Mangini A. Modelling stalagmite growth and δ13C as a function of drip interval and temperature[J]. Geochimica et Cosmochimica Acta, 2007, 71(11):2780-2790. doi: 10.1016/j.gca.2007.03.018 [149] Hansen M, Scholz D, Schöne B R, et al. Simulating speleothem growth in the laboratory: Determination of the stable isotope fractionation (δ13C and δ18O) between H2O, DIC and CaCO3[J]. Chemical Geology, 2019, 509:20-44. doi: 10.1016/j.chemgeo.2018.12.012 [150] Chen C J, Yuan D X, Li J Y, et al. The 4.2 ka event in East Asian monsoon region, precisely reconstructed by multi-proxies of stalagmite[J]. Climate of the Past, 2021. [151] 殷建军, 覃嘉铭, 林玉石, 杨 琰, 唐 伟. 中国近2000年来气候变化石笋记录研究进展[J]. 中国岩溶, 2010, 29(3):258-266. doi: 10.3969/j.issn.1001-4810.2010.03.007YIN Jianjun, QIN Jiaming, LIN Yushi, YANG Yan, TANG Wei. Research progress on the recent 2,000 years’ climate change revealed by stalagmite record in China[J]. Carsologica Sinica, 2010, 29(3):258-266. doi: 10.3969/j.issn.1001-4810.2010.03.007