• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用石笋δ13C重建岩溶石漠化研究进展

徐玉珍 李廷勇 李俊云 杨琰

徐玉珍,李廷勇,李俊云,等. 利用石笋δ13C重建岩溶石漠化研究进展[J]. 中国岩溶,2022,41(4):660-674 doi: 10.11932/karst2022y11
引用本文: 徐玉珍,李廷勇,李俊云,等. 利用石笋δ13C重建岩溶石漠化研究进展[J]. 中国岩溶,2022,41(4):660-674 doi: 10.11932/karst2022y11
XU Yuzhen, LI Tingyong, LI Junyun, YANG Yan. Progress in reconstruction of karst rocky desertification by stalagmite δ13C[J]. CARSOLOGICA SINICA, 2022, 41(4): 660-674. doi: 10.11932/karst2022y11
Citation: XU Yuzhen, LI Tingyong, LI Junyun, YANG Yan. Progress in reconstruction of karst rocky desertification by stalagmite δ13C[J]. CARSOLOGICA SINICA, 2022, 41(4): 660-674. doi: 10.11932/karst2022y11

利用石笋δ13C重建岩溶石漠化研究进展

doi: 10.11932/karst2022y11
基金项目: 云南省基础研究计划重点项目(202101AS070070);国家自然科学基金项目(42172204);广西喀斯特动力学重点科技创新开放项目(KDL & Guangxi 202003)
详细信息
    作者简介:

    徐玉珍(1995-),女,硕士研究生,自然地理学专业。E-mail:xyz910@email.swu.edu.cn

    通讯作者:

    李廷勇 (1978- ),男,研究员,博士研究生导师,主要从事岩溶环境与全球变化研究,E-mail:cdlity@163.com

    李俊云 (1978-),女,副教授,硕士研究生导师,主要从事岩溶环境与全球变化研究,E-mail:jxljy@swu.edu.cn

  • 中图分类号: P532

Progress in reconstruction of karst rocky desertification by stalagmite δ13C

  • 摘要: 岩溶石漠化的形成演化机制是被关注的科学问题,对脆弱的岩溶区生态环境恢复具有重要的现实意义。洞穴石笋δ13C受到多种因素影响,能敏感响应地表生态环境以及岩溶水文条件的变化。因此,利用石笋δ13C研究岩溶地区生态环境演变历史成为一个重要方向。本文从地表环境和洞穴沉积两个方面梳理了影响石笋δ13C的主要因素。结合现代洞穴监测及模型模拟研究,分析整理了影响洞穴滴水和沉积物中δ13C的主要因素和机理。在多重因素的影响下,石笋δ13C的环境意义具有多解性,文章从时间尺度、空间分布、沉积环境三方面归纳了石笋δ13C的指示意义。为了准确解释石笋δ13C环境意义,提出了综合分析、现代监测以及模型模拟的解决方案。通过对岩溶石漠化概念、成因、发展过程、以及环境效应的讨论,分析了地表石漠化与石笋δ13C记录的密切联系。总结了已经发表的利用石笋δ13C重建区域石漠化的研究成果,讨论了目前研究中面临的主要问题:(1) 如何正确解译石笋δ13C的指示意义?这是石笋δ13C能够用于重建区域石漠化历史的前提;(2) 在空间上,石笋δ13C记录反映上覆地表的面积是有限的,需考虑石笋能否代表目标研究区域的环境变迁;(3) 石漠化可在年—十年际时间尺度上快速发展,而石笋测年存在一定的年龄误差,石笋δ13C是否能够敏感记录地表的石漠化过程?为了准确重建区域岩溶环境以及石漠化演变历史,提出以下主要建议:(1) 为了避免石笋δ13C重建古环境的不确定性,可加强石笋δ13C与δ18O、微量元素、矿物结构等指标的综合对比分析,与现代监测以及模型模拟的解决方案综合集成,能更加准确重建研究区岩溶水文变化过程,判定石漠化的演化历史;(2) 通过区域和同一洞穴的多根石笋记录对比,减少单一石笋记录的区域代表性问题;(3) 高精度年代控制的高分辨率多指标石笋记录,有助于捕捉快速发生的石漠化过程。

     

  • 石漠化是指在湿润半湿润的岩溶地区,由于自然因素和人类活动的干扰,地表植被遭到破坏,土壤受侵蚀、水土流失加剧,土壤生产力降低甚至退化,最终导致基岩大面积裸露成为荒漠的过程[1-2]。中国岩溶地貌分布广泛,2016年我国岩溶地区第三次石漠化监测结果显示,我国石漠化土地总面积达1 007万hm²,占岩溶总面积的22.3%[3]。石漠化已成为岩溶地区的首要生态问题,严重制约着区域社会经济发展和生态安全[4]。过去二十年来,石漠化研究主要集中在现代过程,如石漠化的成因、工程和生态治理、动态监测等方面[5]。自然因素和人类活动被认为是决定岩溶石漠化发生的最重要因素[6],历史上岩溶地区的石漠化过程对于研究石漠化发展规律具有重要借鉴意义;而当前关于石漠化演变历史的研究相对不足。

    石笋由于具有分布广泛、生长连续、定年准确、代用指标多等特征,成为古气候研究的重要载体[7-9]。石笋δ13C由于受到多种因素影响,限制了δ13C在古气候重建中的应用。随着洞穴监测以及模型模拟等研究的深入开展,关于δ13C对环境的响应机制取得了一些新的认识。石笋δ13C与区域环境联系紧密,能敏感地响应局地气候环境波动[10-12],可以记录区域地表生物活动、岩溶水文条件变化等[13-15]。人类活动对岩溶生态环境和地表植被的影响也能在洞穴滴水溶解无机碳的δ13C中快速体现出来[11, 16]。以石笋δ13C为主要替代指标,多指标综合集成研究区域岩溶石漠化演变历史,成为石笋古气候古环境研究中新的重要方向之一。本文将在梳理岩溶地区碳元素主要影响因素及运移过程的基础上,回顾石笋δ13C在岩溶石漠化研究中的进展;针对现存的问题,提出一些建议,为下一步工作中围绕石笋δ13C重建岩溶地区生态环境演变过程提供参考。

    洞穴石笋碳元素的主要来源有:大气CO2、上覆土壤CO2,碳酸盐岩(基岩)[17-19]。大气CO2对石笋δ13C的影响主要通过大气二氧化碳浓度(pCO2)、大气CO2同位素组成,以及与土壤CO2的浓度比值实现。大气CO2的碳同位素组成显著偏重于土壤生物成因的CO2碳同位素组成。当大气CO2的碳同位素组成不变时,大气pCO2与石笋δ13C值成正比[20]。在过去的80万年里,大气CO2浓度在180×10−6~280×10−6之间变化[21],大气δ13C值在−6‰~−7‰变化[22-23] (本文所涉及的δ13C值均为V-PDB标准,以下同)。工业革命之后,全球大气CO2浓度逐年升高,至2021年已达414.2×10−6, 大气CO2的δ13C值也降至−8.5‰(http://www.gosat.nies.go.jp/en/recent-global-co2.html)。虽然大气CO2浓度及δ13C值的变化会引起土壤CO2浓度及其δ13C值的改变 [24],但土壤CO2浓度可达104 ppm[25],远高于大气CO2浓度。与土壤相比,大气CO2对石笋δ13C的影响较小,因此,石笋最终记录的δ13C信号仍主要来源于土壤。

    土壤CO2直接影响着表层岩溶作用过程[26],是岩溶作用向地下发展的关键纽带,也是洞穴CO2的重要来源[27-30]。土壤物理状况(如温度、湿度)、生物作用(如呼吸,有机质分解)等都会影响土壤CO2浓度[31]。地表植被密切反映区域水热条件,土壤CO2也主要与生物作用有关[32-33]。温度上升,降水增加,土壤温湿度适宜,则生物活性增加,土壤CO2产率增加,δ13C值降低[34-36];若降水不足,高温可能引发干旱,抑制土壤生物活性,土壤CO2产率降低[37]。而在岩溶地区,石漠化导致地表水土流失,土层变薄;土壤有机碳含量、生物碳含量等也随着石漠化程度的加重而减少;同时限制了土壤中生物成因的CO2产率,最终导致土壤CO2的δ13C值偏重[38]

    此外,C3/C4植物的比例也是影响土壤CO2 δ13C值的重要因素[39]。植物依据光合作用方式不同可以分为C3和C4植物类型;自然环境下CAM植物生活在干旱地区,在这里不作讨论。C3植物喜湿冷,C4植物喜干热气候,因此C3/C4植物的比例可以反映气候条件。C3植物的δ13C值为−20‰~−35‰,平均为−27‰;C4植物的δ13C值为−9‰~−19‰,平均为−13‰ [14]。C3和C4植被的δ13C平均值相差14‰,对土壤CO2的δ13C值有重要影响。气候条件不同,上覆地表植被类型不同,最终会被洞穴石笋δ13C记录 [40]。单一植被类型下,C3和C4植被对应的石笋δ13C值分别为−14‰~−6‰和−6‰~2‰[41]

    土壤CO2溶于土壤水形成碳酸,溶解碳酸盐岩也是石笋δ13C的来源之一。由于碳酸盐岩的δ13C一般在0‰左右,显著偏重于土壤CO2中的δ13C;因此碳酸盐岩贡献的碳元素对石笋δ13C有一定影响。岩溶水中碳酸的溶解能力与土壤pCO2成正比;土壤CO2浓度增加,岩溶水对碳酸盐岩溶解能力越强[42]。另一方面,土壤CO2对基岩的溶解也受控于水文条件。当地表降水减少时,表层岩溶带中水岩相互作用时间延长,来自基岩贡献的碳比例增加,最终导致石笋δ13C偏重。干旱时期,岩溶水在岩层停留时间长,水岩作用充分,为蒸发或先期沉积(PCP,prior calcite precipitation)创造条件,也会导致洞穴滴水δ13C偏重[20]

    而在降水充足、岩溶水文条件适宜、岩溶裂隙管道畅通的情况下,开放的岩溶系统导致土壤CO2不断补充到岩溶水中,这种情况下碳酸盐溶解对石笋δ13C的影响很小[43]。在开放系统中,洞穴滴水δ13C的变化主要继承土壤CO2变化的结果[44-45]。而在封闭系统中,则同时受控于土壤和基岩的δ13C值[41]。但也有学者认为从长时间尺度上看,上覆碳酸盐岩的厚度或渗流通道不太可能发生重大的改变,基岩对滴水δ13C值的影响可以视为一个常量[46]。综上所述,石笋δ13C主要受土壤CO2产率以及岩溶水文条件的影响。

    洞穴滴水在进入洞穴之后受到的脱气作用显著影响着石笋δ13C 值。渗流水流经土壤,溶解土壤CO2,导致渗流水中pCO2高于洞穴空气中的pCO2,渗流流出洞穴顶板即为滴水。滴水通过脱气与洞穴大气平衡,CaCO3沉淀[47]。降水减少(干旱)可能导致岩溶裂隙和管道缺水,增强岩溶系统的通风效应,也会导致洞内空气pCO2减小[48],增强滴水脱气作用,动力分馏效应引起碳酸钙沉积物中δ13C偏重[49]。滴率对石笋同位素分馏影响较大,滴率慢,动力分馏强,石笋同位素偏重[50-52]。此外,PCP也是岩溶过程中的重要现象,模型以及实验室研究表明PCP程度与岩溶水在基岩中的运移时间、水-洞内二氧化碳分压(pCO2),以及滴水与洞穴空气接触时间有关[53]。干旱条件下,岩溶带表层或洞顶蒸发、水岩相互作用时间延长有助于PCP作用发生,导致石笋δ13C偏重[54-55]。滴率、PCP、以及洞穴通风等均受到地表水文状况的影响[56-57];因此,这些因素引起的石笋δ13C变化,在一定程度上反映了岩溶水文状态的变化。

    石笋根据矿物组成可分为纯文石型、纯方解石型、文石-方解石型[58]。同一母液,沉积的文石δ13C比方解石偏重[59-60]。文石疏松多孔,被淋溶容易转变为方解石[61-63]。在这个转变过程中方解石δ13C值比原生文石偏轻[64-65],但也有研究显示方解石δ13C几乎没有发生变化[66]。因此,石笋矿物类型以及矿物转变对石笋δ13C值产生的影响仍存在不确定性。

    石笋δ13C受地表气候环境、生物过程,岩溶水文条件以及洞穴沉积过程等多个因素综合影响[67],关于石笋δ13C的环境意义仍需要更加深入的研究。有研究认为石笋δ13C主要记录了洞穴上覆植被的变化,可以利用石笋δ13C重建区域生态环境的变化过程[68]。在轨道时间尺度上,石笋δ13C记录同太阳辐射曲线变化一致 [69-70],主要反映了气候变化控制的植被演变,也就响应了气候的变化。在百年—千年时间尺度上,可以重建区域温度、降水等变化引起的地表植被密度、类型以及土壤CO2产率等变化[20, 71]。如欧洲伊比利亚半岛的三根石笋δ13C对地表温度变化十分敏感,记录了该区域过去4 000年的冷暖交替[72]。自然条件下,区域植被演替的时间在数十年至数百年不等[73]。因此,在无重大自然灾害的前提下,年—十年际的短时间内植被类型一般不会发生重大改变;而地表水文状况、洞穴内部过程等对石笋δ13C值的影响显得更加重要[74-75]。中美洲伯利兹的石笋δ13C与南方涛动指数(Southern Oscillation Index;SOI)之间具有强相关性,石笋δ13C记录了在短时间尺度上热带雨林生态系统的碳循环[76]。客观而言,轨道时间尺度的气候变化周期中包含了多个百年—千年时间尺度的气候环境变化[77]。如在距今11.5万~1.4万年的格陵兰冰芯记录发现了24次气候突变事件,即Dansgaard-Oeschger(D-O)事件[78]。南京葫芦洞石笋记录了末次冰期-间冰期过渡时期植被对剧烈气候变化的响应,而在千年尺度上,偏轻的石笋δ13C反映了D-O暖事件中降水量的增加[79]。而百年—千年时间尺度的气候变化下又包含了十年尺度的气候波动[80-82]。利用贵州石将军洞高分辨率石笋分析小冰期内部结构时,发现在过去的1 300年里, 共有6次弱亚洲夏季风事件[83]。这些不同时间尺度的气候环境变化,有可能通过影响地表植被丰度、土壤生物过程、表层岩溶带水文条件等,进而影响到石笋δ13C值[15]。当气候处于寒冷或偏干时,石笋δ13C偏重[30]

    石笋δ13C记录了局地环境信息,例如洞穴所在区域温度、降水、以及海拔差异,会使得石笋δ13C呈现出不同的变化特征[84],表现为同一时间段的不同石笋δ13C记录存在区域差异。

    大多数研究认为石笋δ13C主要受地表植被的影响,δ13C越偏重,指示上覆植被覆盖度越低[85]。但四川东北部的多根石笋δ13C记录,在气候显著干旱的(Heinrich)事件发生时,并没有反映出植被可能存在的变化[86]。Fohlmeister等人在总结全球石笋δ13C记录时发现,有一些洞穴如欧洲直布罗陀的St. Michaels洞、美国得克萨斯州的Natural Bridge洞群,这些地区温度高、植被稀疏。根据当地碳通量监测数据,表层土壤CO2并不是洞穴石笋碳元素的主要来源,在土壤下层存在贫13C的碳源,使得在植被覆盖度低的情况下,洞穴石笋δ13C仍然偏轻[84, 87-88]。同属于欧洲末次间冰期的两根石笋δ13C记录在同一时期变化趋势相反,也可能表明了湿度差异对两个地点土壤生物活动以及岩溶系统中同位素分馏程度的不同影响[89-90]

    热带地区,植被演替过程缓慢,赤道辐合带(Intertropical Convergence Zone, ITCZ)的南北移动促使区域降水量改变,因此石笋δ13C变化反映了区域降水的季节变化和年际变化[74]。而在温带地区的澳大利亚塔斯马尼亚岛,石笋δ13C受温度控制,温度越高,基岩溶解对碳同位素的贡献增加,会导致石笋δ13C偏重[91]。在对阿尔卑斯山南坡不同海拔高度的洞穴研究中也发现,随着海拔的增加,植被覆盖度和土层厚度降低,位于高海拔地区的洞穴石笋δ13C更加偏重[92]。因此,不同气候带或者不同海拔高度的地区,通过影响温度和降水,影响地表植被和土壤生物活动强度、土壤厚度与CO2产率、基岩溶解等过程,最终影响石笋δ13C值。

    除了区域自然条件外,历史事件或特殊的人类活动也会在石笋δ13C记录中留下痕迹。例如北京石花洞石笋δ13C记录了在360 a BP以来,虽然气候条件有所改善,但是该区域的植被条件一直没有恢复到之前的平均水平。反映了元大都建立之后到明代晚期,城市扩张之下对建筑用材、薪柴需求量增加,人类大量砍伐北京西山森林导致了对地表植被和环境的改造[93]

    洞内过程会使得石笋δ13C发生偏移;即使是同一洞穴内同一时期的石笋δ13C记录,也可能存在差异。洞穴上覆地表环境、洞穴系统开闭条件等是相对一致的,这种差异可能来自于每个滴水点的滴水路径、脱气过程、滴水速率等因素的影响。贵州竹蹓坪洞中的两根石笋(ZLP1和 ZLP2)在相同沉积时间内,石笋δ13C值有差异(图1(B)) [94],可能是由于两根石笋在滴水速率和生长速率有差异,引起沉积过程中动力分馏程度不同所导致。雾露洞的两根石笋Wu23与Wu26的δ13C在59.3~57.7 ka BP变化趋势一致;57.7 ka BP之后,Wu23的δ13C振幅大于Wu26(图1(C)),两者生长速率相差不大,可能是脱气速率不同所导致[12]。天鹅洞的Sw4与Sw5石笋生长位置相近,在25~28 ka BP间,两者的δ13C变化趋势相反(图1(D))[95]。虽然作者在文中并有对该现象进行详细讨论,但在相似的地表水文条件下,产生这种差异的原因更可能来自于洞内过程。

    图  1  洞内过程对石笋δ13C的影响
    注:(A),(B) 贵州省竹蹓坪洞石笋ZLP1(蓝色曲线)、ZLP2(粉色曲线)δ13C对比,黄色条带表示同一沉积时间段;(C) 贵州省雾露洞石笋Wu23(绿色曲线)、Wu26(红色曲线) δ13C对比;(D) 河北省天鹅洞Sw4(深蓝色曲线)、Sw5(紫色曲线) δ13C对比; (A),(B)引自参考文献[94];(C)、(D)分别修改自参考文献[12]、[95]
    Figure  1.  Influence of cave process on δ13C value of stalagmite
    (A), (B) Comparison of ZLP1(blue curve) and ZLP2(pink curve) δ13C of Zhuliuping cave, Yellow bands indicate the same deposition period; (C) Comparison of Wu23(green curve) and Wu26(red curve) δ13C in the Stalagmite of Wulu cave; (D) Sw4(dark blue curve) and Sw5(purple curve) δ13C of Tian’e cave; (A), (B) cited from references [94]; (C) and (D) are revised from references [12] and [95]

    当岩溶地区出现干旱时,植被覆盖度减少,诱发石漠化。一方面,土壤活性受到抑制,土壤CO2浓度降低[6]。另一方面,随着水土流失加剧,土层变薄,雨水快速通过土壤,没有与土壤CO2达到同位素平衡,此时溶液主要继承大气CO2的δ13C值[53, 79]。渗流减少,水-岩相互作用时间增长,碳酸盐岩对滴水中的13C贡献增加。在石漠化严重阶段,基岩裸露,降水溶解碳酸盐岩将会成为洞穴石笋δ13C的主要来源[96-97]。洞穴滴水减少,滴率减慢,脱气作用增强[52, 98]。最终石笋δ13C值偏重(图2)。人类活动可直接改变地表植被密度和类型,影响土壤CO2产率,最终导致石笋δ13C偏重[11, 99]。例如马达加斯加Anjohibe洞穴石笋δ13C记录表明,该地区在一个世纪内完成C3植物向C4植物的快速转变。而石笋δ18O代表的降水量在δ13C波动过程中并没有显著变化,表明该时期的植被变化与降水变化无关,而是由于饲料作物的种植导致植被类型变化[59, 100]。若地表植被恢复、石漠化状况改善,石笋δ13C值会偏轻。现代洞穴监测的结果也有力地证明了这点。例如桂林茅茅头大岩监测表明:自20世纪90年代以来,由于造林政策和措施,石漠化面积一直在减少,上覆土壤pCO2和溶解无机碳(DIC)浓度同步升高,石笋δ13C呈下降趋势,反映了桂林石漠化地区植被恢复的历史[101]

    图  2  岩溶石漠化与石笋δ13C关系概念图。
    Figure  2.  Concept sketch for the relationship between rocky desertification and stalagmite δ13C

    由于气候和人类活动导致的植被变化或者石漠化过程需要一定的时间[102],因此洞穴石笋记录的信息可能会滞后于地表情况的变化[79]。对于上覆基岩较薄以及岩溶管道相对顺畅的洞穴,其石笋δ13C对地表环境变化的响应则相对快速[74]

    与利用石笋δ18O重建古气候研究相比,当前利用石笋δ13C重建岩溶石漠化的研究相对较少(表1)。石漠化引起植被和岩溶过程的显著变化,石笋δ13C可以灵敏响应于这些变化[12]。已有研究大多将石笋δ13C作为区域植被变化的代用指标,在百年—千年尺度上重建石漠化过程。

    表  1  中国利用石笋δ13C重建区域石漠化历史研究实例
    Table  1.  Case studies on the reconstruction of regional rocky desertification in China, based on stalagmite δ13C
    洞穴名称省区经纬度海拔/m时间跨度指示意义其他指标参考文献
    丰鱼洞广西24°30′N,110°20′E3801 500 年以来C3/C4石笋δ18OZhu等, 2006[85]
    响水洞广西25°15′N, 110°55′E4001 500 年以来C3/C4石笋δ18OZhu等, 2006[85]
    石将军洞贵州26°12′N, 105°30′E1 3002 000 年以来植被状况/
    水文状况
    大气CO2浓度,
    历史文献
    陈朝军等, 2021[108]
    董哥洞贵州25°17′N, 108°5′E6801 500 年以来C3/C4石笋δ18OZhu等, 2006[85]
    织金洞贵州26°46′27.31″′N,
    105°5′13.90″E
    1 330100 年以来植被状况石笋δ18O,器测数据,
    历史文献
    刘子琦, 2013[106]
    1 500 年以来水文状况石笋δ18O,鹅管δ18O、δ13C,
    器测数据,历史文献
    刘子琦, 2014[105]
    1 100 年以来植被状况石笋δ18O,历史文献Kuo等, 2011[107]
    董家洞云南24°7′52″N, 104°6′11′E14761 200 年以来植被状况石笋δ18O、微量元素,
    器测数据,历史文献
    李媛媛, 2017[103]
    下载: 导出CSV 
    | 显示表格

    在贵州和广西的研究发现,石笋δ13C可以记录岩溶作用以及地表植被变化。在暖湿气候下以C3植被为主导,C3植被增加,C4植被减少,石笋δ13C变轻,石漠化减弱;冷干气候下,C3植被减少,C4植被增加,石笋δ13C偏重,石漠化增强[85, 103]。然而薛治国等人基于石笋、孢粉分析和气候记录,分析了古气候变化对石漠化的影响:干旱期生态退化,进入湿润期后,降水量增多也可能导致水土流失加剧,出现石漠化的趋势,干湿振幅的不断增大会触发石漠化的发展[104]。因此,石笋δ13C与其他地质记录的多指标综合分析有助于重建石漠化历史。

    在亚洲季风区,石笋δ18O整体偏轻且相对稳定时,指示较为适宜的气候条件;如果对应于石笋δ13C的突然偏重,则可能指示了石漠化的发生[105]。通过对比人口数据,在气候较稳定的背景下,人口增加,人类活动强度增大,有可能导致了贵州地区石漠化的形成[106-107]。此外,单一洞穴石笋记录的代表性有限,多个洞穴石笋记录的综合对比有助于区域石漠化重建的准确性[108]

    明确石笋δ13C的指示意义是利用石笋碳同位素重建区域石漠化历史面临的首要问题。一些研究认为石笋δ13C可以直接反映降水量的变化[74, 109-110],而另一些研究者认为亚洲季风区的石笋δ13C反映区域水文环境的变化[79, 95, 111]。石笋δ18O可以反映大区域的气候变化共性和大气环流变化[9, 110, 112-115]。因此,石笋δ13C能否代表大区域环境意义需要结合石笋δ18O。目前研究中,中国石笋δ13C与δ18O的变化模态组合在不同地区以及时段上呈现出差异性[79, 86]。例如,中晚全新世的莲花洞石笋中δ13C记录可以划分出三个阶段,分别是暖湿期(6.6ka~3.8 ka BP)、过渡期(3.8ka~1.6 ka BP)、冷干期(1.6 ka BP至今);与δ18O记录相比,尽管二者之间的变化幅度有所差异,在这些时间段内两者的变化趋势是一致的(图3A)[20]。同属亚洲季风区,珍珠洞石笋氧碳同位素在千年-轨道尺度上同相协变,但是在百年时间尺度上,两者的变化幅度和趋势存在差异(图3B)[110]。因此,虽然石笋δ13C可以反映上覆地表水文环境的变化,但能否作为降水量指标以及大区域环境重建指标,仍然需要进一步的研究。

    图  3  洞穴石笋氧碳同位素记录在不同时段的模态组合差异
    注:(A)莲花洞A1石笋δ18O (绿色曲线)、δ13C(黄色曲线)记录,灰色虚线表示δ13C平均值;(B)珍珠洞PS1石笋1δ18O(蓝色曲线)、δ13C(紫色曲线)。(A)、(B)分别修改自参考文献[20]、[110]
    Figure  3.  Variation of oxygen and carbon isotope records of stalagmites from different caves
    (A) A1 Stalagmite δ18O (green curve) δ13C (yellow curve) records of Lianhua cave, the gray dotted line represents the average value of δ13C; (B) PS1 Stalagmite δ18O (blue curve) δ13C (purple curve) of Zhenzhu cave. (A) and (B) revised from references [20] and [110]

    微量元素等代用指标受温度、降水等条件的控制,与石笋δ13C相互配合,能够更加准确地重建局地环境变化[11, 97, 116-119]。例如巴哈马石笋Mg/Ca比值与δ13C变化一致;在H事件时,干旱使得水岩作用时间延长,石笋δ13C偏重[120]。此外,贵州石将军洞的多指标记录表明,当夏季风减弱时,降水减少,CO2脱气作用增强,石笋的Mg/Ca和Sr/Ca比值会随着PCP的增强而升高,同时导致石笋δ13C值偏重[121]。此外,石笋δ13C的变化慢于δ18O,这表明气候突变导致的区域生态退化和恢复是一个缓慢的过程。

    石笋微层是石笋响应气候环境变化产生的沉积形态,可以提供季节到年际尺度的高分辨水文环境信息[122-126]。欧洲直布罗陀石笋微层与δ13C记录表明,该地区冬季洞穴pCO2高,沉积浅色柱状方解石,石笋δ13C值偏轻;夏季沉积深色微晶方解石,石笋δ13C偏重。与地中海气候不同,在湖北青天洞,这里雨热同期,夏季生物量与土壤CO2产率高,形成的石笋微层δ13C比冬季偏轻[123]

    石笋δ18O、δ13C、微量元素以及矿物结构等多指标结合的综合分析,是准确解译石笋δ13C气候环境意义,并进行岩溶水文过程和岩溶石漠化重建的重要方法和途径[12, 111, 119, 127-128]。除此之外,现代洞穴监测与模型模拟也有助于了解现代岩溶过程中各地球化学指标(包括δ13C)的变化特征及其与地表环境(气温、降水等)、土壤过程,以及表层岩溶带水文条件的关系[14, 129-132]。国内已有多个洞穴开展相关监测工作,包括芙蓉洞[14, 15, 133-134]、和尚洞[135-137]、珍珠洞[138]、鸡冠洞[139]、茅茅头大岩[140]、石花洞[141]、纳朵洞[142]、九天洞[143]、雪玉洞[129, 144]、凉风洞[145]等。监测结果表明,大气降水、温度、CO2来源、植被类型等会影响石笋δ13C值[137, 146]。对芙蓉洞和鸡冠洞从植物、土壤、滴水和石笋的碳同位素监测结果表明,碳同位素在迁移过程中不断富集,并且敏感地响应当地水文条件变化[14139]。实验室模拟可在较短时间内观察碳酸钙沉积过程,是探索石笋δ13C环境意义的重要途径[147-148]。例如通过在实验室设置不同的溶液流动距离和时间,模拟石笋生长过程,发现在动力学过程影响下沉积的CaCO3同位素值有明显差别[149]。Riechelmann等也通过对比不同滴率下方解石δ13C的值,认为滴率较低的情况下沉积的方解石δ13C值更加偏重[98]。模拟结果也表明洞穴内部过程有可能引起碳酸钙δ13C的变化,这些研究成果有助于将气候环境信息从动力过程中剥离出来,正确解释石笋δ13C指示意义。

    其次,石笋δ13C记录的代表性是石漠化演变历史重建中另一个需要关注的问题。一般认为,石笋δ13C以及微量元素等指标的变化,更多指示的是洞穴上覆区域岩溶水文条件以及地表过程变化[11, 14-15, 150]。洞穴上覆区域与人类活动的区域在空间上有可能并不重合;因此获取多空间分布的石笋记录,有助于更准确地重建区域岩溶生态环境变化[108]

    最后,即使在同一洞穴,不同滴水点对地表环境和岩溶过程的响应也会有差异,导致信号记录以及分辨率的不同,对同一个气候环境事件的表达程度不同[30]。石笋记录的分辨率对于解释石笋代用指标的气候环境意义以及重建区域生态环境变化具有重要意义[151]。石漠化的发生和发展可能发生在年—十年际的时间尺度,高分辨率的石笋记录有助于捕捉快速的环境变化信息。

    现代洞穴监测表明洞穴滴水和现代沉积物中δ13C主要受到地表生物过程以及表层岩溶带水文条件变化的影响。气候恶化和不合理的人类活动均可导致地表植被退化、水土流失、生物活动减弱、土壤CO2产率降低、水岩相互作用时间延长等,这些生物和物理化学过程,可导致洞穴滴水中δ13C偏重[57]。岩溶水是连接地表环境与洞穴石笋的纽带;石笋δ13C记录了上覆植被、土壤,水文等生态环境信息,可以利用石笋δ13C重建区域岩溶生态环境演变历史。已有研究证明,石笋δ13C很好地记录了气候变化和人类活动共同触发的石漠化发生和扩展[108]

    今后研究中需要进一步加强现代洞穴监测,有助于准确厘清石笋中各地球化学指标和物理指标对地表环境的响应特征和机理。多个区域的洞穴石笋,以及同一洞穴多根石笋的高分辨率多指标记录和综合对比,有助于解决单一洞穴石笋记录与石漠化在空间上不一致的可能,并更加准确地重建区域生态环境和岩溶水文演变历史。

    致谢:感谢南京师范大学地理科学学院刘殿兵教授、宜春学院地理科学系黄伟博士在数据收集中提供的大力支持和帮助。

  • 图  1  洞内过程对石笋δ13C的影响

    注:(A),(B) 贵州省竹蹓坪洞石笋ZLP1(蓝色曲线)、ZLP2(粉色曲线)δ13C对比,黄色条带表示同一沉积时间段;(C) 贵州省雾露洞石笋Wu23(绿色曲线)、Wu26(红色曲线) δ13C对比;(D) 河北省天鹅洞Sw4(深蓝色曲线)、Sw5(紫色曲线) δ13C对比; (A),(B)引自参考文献[94];(C)、(D)分别修改自参考文献[12]、[95]

    Figure  1.  Influence of cave process on δ13C value of stalagmite

    (A), (B) Comparison of ZLP1(blue curve) and ZLP2(pink curve) δ13C of Zhuliuping cave, Yellow bands indicate the same deposition period; (C) Comparison of Wu23(green curve) and Wu26(red curve) δ13C in the Stalagmite of Wulu cave; (D) Sw4(dark blue curve) and Sw5(purple curve) δ13C of Tian’e cave; (A), (B) cited from references [94]; (C) and (D) are revised from references [12] and [95]

    图  2  岩溶石漠化与石笋δ13C关系概念图。

    Figure  2.  Concept sketch for the relationship between rocky desertification and stalagmite δ13C

    图  3  洞穴石笋氧碳同位素记录在不同时段的模态组合差异

    注:(A)莲花洞A1石笋δ18O (绿色曲线)、δ13C(黄色曲线)记录,灰色虚线表示δ13C平均值;(B)珍珠洞PS1石笋1δ18O(蓝色曲线)、δ13C(紫色曲线)。(A)、(B)分别修改自参考文献[20]、[110]

    Figure  3.  Variation of oxygen and carbon isotope records of stalagmites from different caves

    (A) A1 Stalagmite δ18O (green curve) δ13C (yellow curve) records of Lianhua cave, the gray dotted line represents the average value of δ13C; (B) PS1 Stalagmite δ18O (blue curve) δ13C (purple curve) of Zhenzhu cave. (A) and (B) revised from references [20] and [110]

    表  1  中国利用石笋δ13C重建区域石漠化历史研究实例

    Table  1.   Case studies on the reconstruction of regional rocky desertification in China, based on stalagmite δ13C

    洞穴名称省区经纬度海拔/m时间跨度指示意义其他指标参考文献
    丰鱼洞广西24°30′N,110°20′E3801 500 年以来C3/C4石笋δ18OZhu等, 2006[85]
    响水洞广西25°15′N, 110°55′E4001 500 年以来C3/C4石笋δ18OZhu等, 2006[85]
    石将军洞贵州26°12′N, 105°30′E1 3002 000 年以来植被状况/
    水文状况
    大气CO2浓度,
    历史文献
    陈朝军等, 2021[108]
    董哥洞贵州25°17′N, 108°5′E6801 500 年以来C3/C4石笋δ18OZhu等, 2006[85]
    织金洞贵州26°46′27.31″′N,
    105°5′13.90″E
    1 330100 年以来植被状况石笋δ18O,器测数据,
    历史文献
    刘子琦, 2013[106]
    1 500 年以来水文状况石笋δ18O,鹅管δ18O、δ13C,
    器测数据,历史文献
    刘子琦, 2014[105]
    1 100 年以来植被状况石笋δ18O,历史文献Kuo等, 2011[107]
    董家洞云南24°7′52″N, 104°6′11′E14761 200 年以来植被状况石笋δ18O、微量元素,
    器测数据,历史文献
    李媛媛, 2017[103]
    下载: 导出CSV
  • [1] 王世杰. 喀斯特石漠化概念演绎及其科学内涵的探讨[J]. 中国岩溶, 2002, 21(2):101-105. doi: 10.3969/j.issn.1001-4810.2002.02.006

    WANG Shijie. Concept dduction and its connotation of karst rocky desertification[J]. Carsologica Sinica, 2002, 21(2):101-105. doi: 10.3969/j.issn.1001-4810.2002.02.006
    [2] 王德炉, 朱守谦, 黄宝龙. 石漠化的概念及其内涵[J]. 南京林业大学学报(自然科学版), 2004, 28(6):87-90.

    WANG Delu,ZHU Shouqian, HUANG Baolong. Discussion on the conception and connotation of rocky desertification[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2004, 28(6):87-90.
    [3] 中国自然资源公报. 我国岩溶地区石漠化状况公报[N]. 中国自然资源报, 2019.
    [4] 但新球, 李梦先, 吴协保,吴照柏,彭长清,贺东北,屠志方. 中国岩溶地区石漠化现状[J]. 中南林业调查规划, 2019, 38(1):4-9,37.

    DAN Xinqiu,LI Mengxian,WU Xiebao,WU Zhaobai,PENG Changqing,HE Dongbei ,TU Zhifang. The present situation of rocky desertification in karst areas of China[J]. Central South Forst Inventory and Planning, 2019, 38(1):4-9,37.
    [5] 马华, 王云琦, 王力, 王益坤. 近20 a广西石漠化区植被覆盖度与气候变化和农村经济发展的耦合关系[J]. 山地学报, 2014, 32(1):38-54. doi: 10.3969/j.issn.1008-2786.2014.01.005

    MA Hua,WANG Yunqi,WANG Li,WANG Yikun. Vegetation cover and climate change and rural economic development in relations during last 20 years in karst region of Guangxi,China[J]. Mountain Research, 2014, 32(1):38-54. doi: 10.3969/j.issn.1008-2786.2014.01.005
    [6] Jiang Z, Lian Y, Qin X. Rocky desertification in southwest China: Impacts, causes, and restoration[J]. Earth-Science Reviews, 2014, 132:1-12. doi: 10.1016/j.earscirev.2014.01.005
    [7] 程海, 张海伟,赵景耀,李瀚瑛, 宁有丰,Kathayat G. 中国石笋古气候研究的回顾与展望[J]. 中国科学:地球科学, 2019, 49(10):1565-1589.

    CHENG Hai, ZHANG Haiwei, ZHAO Jingyao, LI Haiying, NING Youfeng, Kathayat G. Chinese stalagmite paleoclimate researches: A review and perspective[J]. Science China Earth Sciences, 2019, 49(10):1565-1589.
    [8] 薛刚, 蔡演军, 程鹏, 马乐,成星. 石笋有机质碳同位素组成研究的进展与挑战[J]. 地球环境学报, 2019, 10(2):105-115.

    XUE Gang, CAI Yanjun, CHENG Peng, MA Le, CHENG Xing. Progress and challenge of organic carbon isotope composition research in stalagmite[J]. Journal of Earth Environment, 2019, 10(2):105-115.
    [9] Yuan D X, Cheng H, Edwards R L, et al. Timing, duration, and transitions of the last interglacial Asian monsoon[J]. Science, 2004, 304(5670):575-578. doi: 10.1126/science.1091220
    [10] Wu J Y, Wang Y J, Cheng H, et al. Stable isotope and trace element investigation of two contemporaneous annually-laminated stalagmites from northeastern China surrounding the “8.2 ka event”[J]. Climate of the Past, 2012, 8(5):1497-1507. doi: 10.5194/cp-8-1497-2012
    [11] Zhang H W, Cai Y J, Tan L C, et al. Large variations of δ13C values in stalagmites from southeastern China during historical times: implications for anthropogenic deforestation[J]. Boreas, 2015, 44(3):511-525. doi: 10.1111/bor.12112
    [12] Liu D B, Wang Y J, Cheng H, et al. Strong coupling of centennial-scale changes of Asian monsoon and soil processes derived from stalagmite δ18O and δ13C records, southern China[J]. Quaternary Research, 2016:333-346.
    [13] 张美良, 朱晓燕, 林玉石, 覃嘉铭,章程,罗贵荣,杨琰. 洞穴石笋的13C记录研究[J]. 广西科学, 2006, 13:48-57. doi: 10.3969/j.issn.1005-9164.2006.01.016

    ZHANG Meiliang,ZHU Xiaoyan,LIN Yushi,QIN Jiaming,ZHANG Cheng,LUO Guirong,YANG Yan. Study on13C isotope records from stalagmites[J]. Guangxi Sciences, 2006, 13:48-57. doi: 10.3969/j.issn.1005-9164.2006.01.016
    [14] 李廷勇, 李红春, 向晓晶, 郭子兴, 李俊云, 周福莉, 陈虹利, 彭玲莉. 碳同位素δ13C在重庆岩溶地区植被-土壤-基岩-洞穴系统运移特征研究[J]. 中国科学:地球科学, 2012, 55(4):526-535.

    LI Tingyong, LI Hongchun, XIANG Xiaojing, GUO Zixing, LI Junyun, ZHOU Fuli, PENG Lingli. Transportation characteristics of δ13C in the plants-soil-bedrock-cave system in Chongqing karst area[J]. Scientia Sinica(Terrae), 2012, 55(4):526-535.
    [15] Li J Y, Li T Y. Seasonal and annual changes in soil/cave air pCO2 and the δ13CDIC of cave drip water in response to changes in temperature and rainfall[J]. Applied Geochemistry, 2018, 93:94-101. doi: 10.1016/j.apgeochem.2018.04.002
    [16] Lyu Y, Luo W J, Wang Y W, et al. Geochemical responses of cave drip water to vegetation restoration[J]. Journal of Hydrology, 2020:590.
    [17] Hendy C H. The isotopic geochemistry of speleothems—I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators[J]. Geochimica et Cosmochimica Acta, 1971, 35(8):801-824. doi: 10.1016/0016-7037(71)90127-X
    [18] Baskaran M, Krishnamurthy R V. Speleothems as proxy for the carbon isotope composition of atmospheric CO2[J]. Geophysical Research Letters, 1993, 20(24):2905-2908. doi: 10.1029/93GL02690
    [19] Genty D, Blamart D, Ouahdi R, et al. Precise dating of Dansgaard–Oeschger climate oscillations in western Europe from stalagmite data[J]. Nature, 2003, 421(6925):833-837. doi: 10.1038/nature01391
    [20] Cosford J, Qing H, Mattey D, et al. Climatic and local effects on stalagmite δ13C values at Lianhua cave, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 280(1-2):235-244. doi: 10.1016/j.palaeo.2009.05.020
    [21] Tripati A k, Roberts C D, Eagle R A. Coupling of CO2 and ice sheet stability over major climate transitions of the last 20 million years[J]. Science, 2009, 326:1394-1397. doi: 10.1126/science.1178296
    [22] Bauska T K, Brook E J, Marcott S A, et al. Controls on millennial‐scale atmospheric CO2 variability during the last glacial period[J]. Geophysical Research Letters, 2018, 45(15):7731-7740. doi: 10.1029/2018GL077881
    [23] Francey R J, Allison C E, Etheridge D M, et al. A 1000-year high precision record of δ13C in atmospheric CO2[J]. Tellus B:Chemical and Physical Meteorology, 1999, 51(2):170-193. doi: 10.3402/tellusb.v51i2.16269
    [24] 李亚翠, 季宏兵, 张涛, 郝亚婷. 石林地区典型土壤剖面有机碳、氮含量分布特征研究[J]. 地球与环境, 2018, 46(5):437-443.

    LI Yacui,JI Hongbing,ZHANG Tao,HAO Yating. Distribution characteristics of organic carbon and nitrogen contents in typical soil profiles in the Shilin area[J]. Earth and Environment, 2018, 46(5):437-443.
    [25] 章程. 不同土地利用土下溶蚀速率季节差异及其影响因素:以重庆金佛山为例[J]. 地质论评, 2010, 56(1):136-140.

    ZHANG Cheng. Seasonal variation of dissolution rate under the soil at different land uses and its influence factors a case study of Jinfo mountain, Chongqing[J]. Geological Review, 2010, 56(1):136-140.
    [26] Sheng H, Yang Y S, Yang Z J, et al. The dynamic response of soil respiration to land-use changes in subtropical China[J]. Gobal Change Biology, 2010, 16:1107-1121. doi: 10.1111/j.1365-2486.2009.01988.x
    [27] Genty D, Baker A, Massault M, et al. Dead carbon in stalagmites: carbonate bedrock paleodissolution vs. ageing of soil organic matter. Implications for 13C variations in speleothems[J]. Geochimica et Cosmochimica Acta, 2001, 65(20):2443-3457.
    [28] Vogel J C, Kronfeld J. Calibration of radiocarbon dates for the late Pleistocene using U/Th dates on stalagmites[J]. Radiocarbon, 1997, 39:27-32. doi: 10.1017/S003382220004087X
    [29] Genty D, Massault M. Carbon transfer dynamics from bomb-14C and δ13C time series of a laminated stalagmite from SW France:modelling and comparison with other stalagmite records[J]. Geochimica et Cosmochimica Acta, 1999, 63(10):1537-1548. doi: 10.1016/S0016-7037(99)00122-2
    [30] Genty D, Blamart D, Ghaleb B, et al. Timing and dynamics of the last deglaciation from European and North African δ13C stalagmite profiles:comparison with Chinese and South Hemisphere stalagmites[J]. Quaternary Science Reviews, 2006, 25(17-18):2118-2142. doi: 10.1016/j.quascirev.2006.01.030
    [31] Amundson R G, Davidson E A. Carbon dioxide and nitrogenous gases in the soil atmosphere[J]. Journal of Geochemical Exploration, 1990, 38:13-41. doi: 10.1016/0375-6742(90)90091-N
    [32] 刘再华, 何师意, 袁道先,赵景波. 土壤中的CO2及其对岩溶作用的驱动[J]. 水文地质工程地质, 1998, 4:44-47.

    LIU Zaihua, HE Shiyi, YUAN Daoxian, ZHAO Jingbo. CO2 in soil and its driving force to karstification[J]. Hydrogeology & Engineering Geology, 1998, 4:44-47.
    [33] Meyer K W, Feng W, Breecker D O, et al. Interpretation of speleothem calcite δ 13C variations: Evidence from monitoring soil CO2, drip water, and modern speleothem calcite in central Texas[J]. Geochimica et Cosmochimica Acta, 2014, 142:281-298. doi: 10.1016/j.gca.2014.07.027
    [34] Wainer K, Genty D, Blamart D, et al. A new stage 3 millennial climatic variability record from a SW France speleothem[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 271(1-2):130-139. doi: 10.1016/j.palaeo.2008.10.009
    [35] Genty D, Ghaleb B, Plagnes V, et al. Datations U/Th (TIMS) et 14C (AMS) des stalagmites de la grotte Chauvet (Ardèche, France): intérêt pour la chronologie des événements naturels et anthropiques de la grotte[J]. Comptes Rendus Palevol, 2004, 3(8):629-642. doi: 10.1016/j.crpv.2004.06.005
    [36] Rudzka D, McDermott F, Baldini L M, et al. The coupled δ13C-radiocarbon systematics of three Late Glacial/early Holocene speleothems; insights into soil and cave processes at climatic transitions[J]. Geochimica et Cosmochimica Acta, 2011, 75(15):4321-4339. doi: 10.1016/j.gca.2011.05.022
    [37] Hartman G, Danin A. Isotopic values of plants in relation to water availability in the Eastern Mediterranean region[J]. Oecologia, 2010, 162(4):837-852. doi: 10.1007/s00442-009-1514-7
    [38] 曹建华, 周莉, 杨慧, 卢茜,康志强. 桂林毛村岩溶区与碎屑岩区林下土壤碳迁移对比及岩溶碳汇效应研究[J]. 第四纪研究, 2011, 31(3):431-437. doi: 10.3969/j.issn.1001-7410.2011.03.05

    CAO Jianhua,ZHOU Li,YANG Hui,LU Qian,KANG Zhiqiang. Comparison of carbon transfer between forest soils in karst and the karst and clastite areas and thekarst carbon sink effect in maocun village of Guilin[J]. Quaternary Kciences, 2011, 31(3):431-437. doi: 10.3969/j.issn.1001-7410.2011.03.05
    [39] Cerling T E. The stable isotopic composition of modern soil carbonate and its relationship to climate[J]. Earth and Planetary Science Letters, 1984, 71:229-240. doi: 10.1016/0012-821X(84)90089-X
    [40] Uchida S, Kurisaki K, Ishihara Y, et al. Anthropogenic impact records of nature for past hundred years extracted from stalagmites in caves found in the Nanatsugama Sandstone Formation, Saikai, Southwestern Japan[J]. Chemical Geology, 2013, 347:59-68. doi: 10.1016/j.chemgeo.2013.04.006
    [41] McDermott F. Palaeo-climate reconstruction from stable isotope variations in speleothems: a review[J]. Quaternary Science Reviews, 2004, 23(7-8):901-918. doi: 10.1016/j.quascirev.2003.06.021
    [42] 闫志为, 刘辉利, 张志卫. 温度及CO2对方解石、白云石溶解度影响特征分析[J]. 中国岩溶, 2009, 28(1):7-10. doi: 10.3969/j.issn.1001-4810.2009.01.002

    YAN Zhiwei, LIU Huili, ZHANG Zhiwei. Influences of temperature and pCO2 on the solubility of calcite and dolomite[J]. Carsologica Sinica, 2009, 28(1):7-10. doi: 10.3969/j.issn.1001-4810.2009.01.002
    [43] B. C T, J. W I. 500, 000-year stable carbon isotopic record form Devils Hole, Nevada[J]. Science, 1994, 263:361-365. doi: 10.1126/science.263.5145.361
    [44] Fohlmeister J, Scholz D, Kromer B, et al. Modelling carbon isotopes of carbonates in cave drip water[J]. Geochimica et Cosmochimica Acta, 2011, 75(18):5219-5228. doi: 10.1016/j.gca.2011.06.023
    [45] Griffiths M L, Fohlmeister J, Drysdale R N, et al. Hydrological control of the dead carbon fraction in a Holocene tropical speleothem[J]. Quaternary Geochronology, 2012, 14:81-93. doi: 10.1016/j.quageo.2012.04.001
    [46] Dorale J A, Gonzalez L A, Reagan M K, et al. A high-resolution record of Holocene climate change in speleothem calcite from Cold Water Cave, Northeast Lowa[J]. Science, 1992, 258:1626-1630. doi: 10.1126/science.258.5088.1626
    [47] Bond-Lamberty B, Thomson A. Temperature-associated increases in the global soil respiration record[J]. Nature, 2010, 464(7288):579-582. doi: 10.1038/nature08930
    [48] Sherwin C M, Baldini J U L. Cave air and hydrological controls on prior calcite precipitation and stalagmite growth rates: Implications for palaeoclimate reconstructions using speleothems[J]. Geochimica et Cosmochimica Acta, 2011, 75(14):3915-3929. doi: 10.1016/j.gca.2011.04.020
    [49] Lambert W J, Aharon P. Controls on dissolved inorganic carbon and δ13C in cave waters from DeSoto Caverns: Implications for speleothem δ13C assessments[J]. Geochimica et Cosmochimica Acta, 2011, 75(3):753-768. doi: 10.1016/j.gca.2010.11.006
    [50] Day C C, Henderson G M. Oxygen isotopes in calcite grown under cave-analogue conditions[J]. Geochimica Et Cosmochimica Acta, 2011, 75(14):3956-3972. doi: 10.1016/j.gca.2011.04.026
    [51] Scholz D, Mühlinghaus C, Mangini A. Modelling δ13C and δ18O in the solution layer on stalagmite surfaces[J]. Geochimica et Cosmochimica Acta, 2009, 73(9):2592-2602. doi: 10.1016/j.gca.2009.02.015
    [52] Verheyden S, Genty D, Deflandre G, et al. Monitoring climatological, hydrological and geochemical parameters in the Père Noël cave (Belgium): implication for the interpretation of speleothem isotopic and geochemical time-series[J]. International Journal of Speleology, 2008, 37(3):221-234. doi: 10.5038/1827-806X.37.3.6
    [53] Baker A, Ito E, Smart P L, et al. Elevated and variable values of 13C in speleothems in a British cave system[J]. Chemical Geology, 1997, 136:263-270. doi: 10.1016/S0009-2541(96)00129-5
    [54] Deininger M, Fohlmeister J, Scholz D, et al. Isotope disequilibrium effects: The influence of evaporation and ventilation effects on the carbon and oxygen isotope composition of speleothems – A model approach[J]. Geochimica et Cosmochimica Acta, 2012, 96:57-79. doi: 10.1016/j.gca.2012.08.013
    [55] Treble P C, Fairchild I J, Griffiths A, et al. Impacts of cave air ventilation and in-cave prior calcite precipitation on Golgotha Cave dripwater chemistry, southwest Australia[J]. Quaternary Science Reviews, 2015, 127:61-72. doi: 10.1016/j.quascirev.2015.06.001
    [56] Tan L C, Cai Y J, An Z S, et al. A Chinese cave links climate change, social impacts, and human adaptation over the last 500 years[J]. Sci Rep, 2015, 5:12284. doi: 10.1038/srep12284
    [57] Li T Y, Huang C X, Tian L J, et al. Variation of δ13C in plant-soil-cave systems in karst regions with different degrees of rocky desertification in southwest China[J]. Journal of Cave and Karst Studies, 2018, 80(4):212-228. doi: 10.4311/2018ES0107
    [58] 张海伟, 蔡演军, 谭亮成. 石笋矿物类型、成因及其对气候和环境的指示[J]. 中国岩溶, 2010, 29(3):222-228. doi: 10.3969/j.issn.1001-4810.2010.03.002

    ZHANG Haiwei, CAI Yanjun, TAN Liangcheng. Phase composition and formation of stalagmite minerals: Indications of climate and environment[J]. Carsologica Sinica, 2010, 29(3):222-228. doi: 10.3969/j.issn.1001-4810.2010.03.002
    [59] Scroxton N, Burns S J, McGee D, et al. Hemispherically in-phase precipitation variability over the last 1700 years in a Madagascar speleothem record[J]. Quaternary Science Reviews, 2017, 164:25-36. doi: 10.1016/j.quascirev.2017.03.017
    [60] Tarutani T, Clayton R N, Mayeda T K. The effect of polymorphism and magnesium substitution on oxygen isotope fractionation between calcium carbonate and water[J]. Geochimica et Cosmochimica Acta, 1969, 33:987-996. doi: 10.1016/0016-7037(69)90108-2
    [61] 林玉石, 张美良, 覃家铭, 姜光辉,舒丽,刘玉,杨琰,彭稳,黄新跃,黄芬. 论洞穴石笋结构构造转变[J]. 西北地质, 2009, 42(2):36-46.

    LIN Yushi,ZHANG Meiliang,QIN Jiaming,JIANG Guanghui, SHU Li,LIU Yu,YANG Yan,PENG Wen,HUANG Xinyue,HUANG Fen. On the transformation of stalagmite texture and structure[J]. Northwestern Geology, 2009, 42(2):36-46.
    [62] Morse J W, Bender M L. Partition coefficients in calcite: Examination of factors influencing the validity of experimental results and their application to natural systems[J]. Chemical Geology, 1990, 82(90):265-277.
    [63] Frisia S. Microstratigraphic logging of calcite fabrics in speleothems as tool for palaeoclimate studies[J]. International Journal of Speleology, 2015, 44(1):1-16.
    [64] Domínguez-Villar D, Krklec K, Pelicon P, et al. Geochemistry of speleothems affected by aragonite to calcite recrystallization: Potential inheritance from the precursor mineral[J]. Geochimica et Cosmochimica Acta, 2017, 200:310-329. doi: 10.1016/j.gca.2016.11.040
    [65] Wassenburg J A, Immenhauser A, Richter D K, et al. Climate and cave control on Pleistocene/Holocene calcite-to-aragonite transitions in speleothems from Morocco: Elemental and isotopic evidence[J]. Geochimica et Cosmochimica Acta, 2012, 92:23-47. doi: 10.1016/j.gca.2012.06.002
    [66] 张海伟, 蔡演军, 安芷生, 秦世江. 石笋矿物由文石转变为方解石后碳、氧同位素组成的变化[J]. 矿物岩石地球化学通报, 2014, 33(1):31-37. doi: 10.3969/j.issn.1007-2802.2014.01.004

    ZHANG Haiwei ,CAI Yanjun, AN Zhisheng,QIN Shijiang. Variation of Oxygen and Carbon Isotope Compositions in Transformation of Speleothem Primary Aragonite to Secondary Calcite[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2014, 33(1):31-37. doi: 10.3969/j.issn.1007-2802.2014.01.004
    [67] Spötl C, Fohlmeister J, Cheng H, et al. Modern aragonite formation at near-freezing conditions in an alpine cave, Carnic Alps, Austria[J]. Chemical Geology, 2016, 435:60-70. doi: 10.1016/j.chemgeo.2016.04.017
    [68] Holmgren K, Lee-Thorp J A, Cooper G R J, et al. Persistent millennial-scale climatic variability over the past 25, 000 years in Southern Africa[J]. Quaternary Science Reviews, 2003, 22(21-22):2311-2326. doi: 10.1016/S0277-3791(03)00204-X
    [69] Springer G S, Rowe H D, Hardt B, et al. East central North America climates during marine isotope stages 3-5[J]. Geophysical Research Letters, 2014, 41(9):3233-3237. doi: 10.1002/2014GL059884
    [70] Cruz F W, Burns S J, Jercinovic M, et al. Evidence of rainfall variations in Southern Brazil from trace element ratios (Mg/Ca and Sr/Ca) in a Late Pleistocene stalagmite[J]. Geochimica et Cosmochimica Acta, 2007, 71(9):2250-2263. doi: 10.1016/j.gca.2007.02.005
    [71] Duan W H, Tan M, Ma Z B, et al. The palaeoenvironmental significance of δ13C of stalagmite BW-1 from Beijing, China during Younger Dryas intervals inferred from the grey level profile[J]. Boreas, 2014, 43(1):243-250. doi: 10.1111/bor.12034
    [72] Martín-Chivelet J, Muñoz-García M B, Edwards R L, et al. Land surface temperature changes in Northern Iberia since 4,000 yr BP, based on δ13C of speleothems[J]. Global and Planetary Change, 2011, 77(1-2):1-12. doi: 10.1016/j.gloplacha.2011.02.002
    [73] 文丽, 宋同清, 杜虎, 王克林, 彭晚霞, 曾馥平, 曾昭霞, 何铁光. 中国西南喀斯特植物群落演替特征及驱动机制[J]. 生态学报, 2015, 35(17):5822-5833.

    WEN Li,SONG Tongqing,DU Hu,WANG Kelin,PENG Wanxia,ZENG Fuping,ZENG Zhaoxia,HE Tieguang. The succession characteristics and its driving mechanism of plant community in karst region, southwest China[J]. Acta Ecologica Sinica, 2015, 35(17):5822-5833.
    [74] Ridley H E, Asmerom Y, Baldini J U L, et al. Aerosol forcing of the position of the intertropical convergence zone since AD 1550[J]. Nature Geoscience, 2015, 8(3):195-200. doi: 10.1038/ngeo2353
    [75] Yadava M G, Ramesh R. Monsoon reconstruction from radiocarbon dated tropical Indian speleothems[J]. The Holocene, 2005, 15(1):48-59. doi: 10.1191/0959683605h1783rp
    [76] Frappier A, Sahagian D, Gonza´lez L A, et al. El Nio Events Recorded by Stalagmite Carbon Isotopes[J]. Science, 2002, 298:565. doi: 10.1126/science.1076446
    [77] 吴秀平, 丁明虎, 侯典炯, 孙维君, 杜文涛, 张德忠, 季顺川. 末次冰期晚期黄土高原西部万象洞高分辨率石笋δ13C记录时频分析[J]. 干旱区资源与环境, 2012, 26(11):42-47.

    WU Xiuping, DING Minghu, HOU Dianjiong, SUN Weijun, DU Wentao, ZHANG Dezhong, JI Shunchuan. Time-frequency analysis of carbon isotope record of stalagmite from Wanxiang Cave,western Loess Plateau,during the late of last Glacial[J]. Journal of Arid Land Resources and Environment, 2012, 26(11):42-47.
    [78] Dansgaard W, Johnsen S J, Clausen H B, et al. Evidence for general instability of past climate from a 250-kyr ice-core record[J]. Nature, 1993, 364:218-220. doi: 10.1038/364218a0
    [79] Kong X G, Wang Y J, Wu J Y, et al. Complicated responses of stalagmite δ13C to climate change during the last glaciation from Hulu Cave, Nanjing, China[J]. Science in China Series D:Earth Sciences, 2005, 48(12):2174-2181. doi: 10.1360/04yd0140
    [80] Cheng H, Zhang H W, Spotl C, et al. Timing and structure of the Younger Dryas event and its underlying climate dynamics[J]. Proceedings of the National Academy of Sciences, 2020, 117(38):23408-23417. doi: 10.1073/pnas.2007869117
    [81] Zhu X Y, Zhang M L, Cheng H, et al. Centennial-scale monsoon climate fluctuations from a stalagmite record during the mid-Holocene Epoch in Fulu cave of Huaping, Yunnan, China[J]. Environmental Earth Sciences, 2015, 74(2):929-935. doi: 10.1007/s12665-014-3984-0
    [82] Wolff E W, Chappellaz J, Blunier T, et al. Millennial-scale variability during the last glacial: The ice core record[J]. Quaternary Science Reviews, 2010, 29(21-22):2828-2838. doi: 10.1016/j.quascirev.2009.10.013
    [83] Li T Y, Xiao S Y, Shen C C, et al. Little Ice Age climate changes in Southwest China from a stalagmite δ18O record[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 67(1):56-68.
    [84] Fohlmeister J, Voarintsoa N R G, Lechleitner F A, et al. Main controls on the stable carbon isotope composition of speleothems[J]. Geochimica et Cosmochimica Acta, 2020, 279:67-87. doi: 10.1016/j.gca.2020.03.042
    [85] Zhu X Y, Zhang M L, Lin Y S, et al. Carbon isotopic records from stalagmites and the signification of paleo-ecological environment in the area of Guangxi-Guizhou, China[J]. Environmental Geology, 2006, 51(2):267-273. doi: 10.1007/s00254-006-0324-z
    [86] 程珂, 谢宇, 刘粤峰, 李汉杰, 潘晨光, 彭小桃, 刘淑华, 陈琼, 周厚云. 东亚季风区石笋13C是否记录植被变化: 从川东北石笋记录的Heinrich事件说起[J]. 第四纪研究, 2019, 39(4):837-844. doi: 10.11928/j.issn.1001-7410.2019.04.05

    CHENG Ke, XIE Yu, LIU Yuefeng, LI Hanjie, PAN Chenguang, PENG Xiaotao, LIU Shuhua, CHEN Qiong, ZHOU Houyun. Can speleothem δ13C record vegetation changes in the East Asia summer monsoon regime? A story starting from Heinrich events recorded by speleothems from northeast Sichuan in Central China[J]. Quaternary Sciences, 2019, 39(4):837-844. doi: 10.11928/j.issn.1001-7410.2019.04.05
    [87] Mattey D, Lowry D, Duffet J, et al. A 53 year seasonally resolved oxygen and carbon isotope record from a modern Gibraltar speleothem: Reconstructed drip water and relationship to local precipitation[J]. Earth and Planetary Science Letters, 2008, 269(1-2):80-95. doi: 10.1016/j.jpgl.2008.01.051
    [88] Wong C I, Banner J L, Musgrove M. Holocene climate variability in Texas, USA: An integration of existing paleoclimate data and modeling with a new, high-resolution speleothem record[J]. Quaternary Science Reviews, 2015, 127:155-173. doi: 10.1016/j.quascirev.2015.06.023
    [89] Meyer M C, Spötl C, Mangini A. The demise of the Last Interglacial recorded in isotopically dated speleothems from the Alps[J]. Quaternary Science Reviews, 2008, 27(5-6):476-496. doi: 10.1016/j.quascirev.2007.11.005
    [90] Demény A, Kern Z, Czuppon G, et al. Stable isotope compositions of speleothems from the last interglacial – Spatial patterns of climate fluctuations in Europe[J]. Quaternary Science Reviews, 2017, 161:68-80. doi: 10.1016/j.quascirev.2017.02.012
    [91] Xia Q K, Zhao J X, K. D. Collerson. Early-Mid Holocene climatic variations in Tasmania, Australia: multi-proxy records in a stalagmite from Lynds Cave[J]. Earth and Planetary Science Letters, 2001, 194:177-187. doi: 10.1016/S0012-821X(01)00541-6
    [92] Johnston V E, Borsato A, Spötl C, et al. Stable isotopes in caves over altitudinal gradients: fractionation behaviour and inferences for speleothem sensitivity to climate change[J]. Climate of the Past, 2013, 9(1):99-118. doi: 10.5194/cp-9-99-2013
    [93] 李红春, 顾德隆,陈文寄,袁道先,李铁英. 高分辨率洞穴石笋中稳定同位素应用:北京元大都建立后对森林资源的破坏: δ13C记录[J]. 地质论评, 1998, 44(5):456-463. doi: 10.3321/j.issn:0371-5736.1998.05.002

    LI Hongchun, GU Delong, CHEN Wenji, YUAN Daoxian, LI Tieying. Application of high-resolution carbon isotope record of a stalagmite from the Shihua cave,Beijing:δ13C record of deforestation after the establishment of the grand capital[J]. Geological Review, 1998, 44(5):456-463. doi: 10.3321/j.issn:0371-5736.1998.05.002
    [94] Huang W, Wang Y J, Cheng H, et al. Multi-scale Holocene Asian monsoon variability deduced from a twin-stalagmite record in southwestern China[J]. Quaternary Research, 2016, 86(1):34-44. doi: 10.1016/j.yqres.2016.05.001
    [95] Zhang J, Liu S S, Liu D B, et al. Correlation between oxygen and carbon isotopes of speleothems from Tian’e Cave, central China: Insights into the phase relationship between Asian summer and winter monsoons[J]. Journal of Asian Earth Sciences, 2019, 180:103884. doi: 10.1016/j.jseaes.2019.103884
    [96] 谭亮成, 刘文, 王甜莉, 程鹏, 臧婧杰, 王曦谦, 马乐, 李东, 蓝江湖, 艾思本, 程海, 徐海, 艾莉, 高永利, 蔡演军. 石笋多指标记录揭示的山东中部森林采伐历史[J]. 中国科学:地球科学, 2020, 50(11):1643-1654.

    TAN Liangcheng, LIU Wen, WANG Tianli, CHENG Peng, ZANG Jingjie, WANG Xiqian, MA Le, LI Dong, LAN Jianghu, Edwards R L, CHENG Hai, XU Hai, AI Li, GAO Yongli, CAI Yanjun. A multiple-proxy stalagmite record reveals historical deforestation in central Shandong, northern China[J]. Science China Earth Sciences, 2020, 50(11):1643-1654.
    [97] Bar-Matthews M, Ayalon A, Kaufman A, et al. The Eastern Mediterranean paleoclimate as a reflection of regional events: Soreq cave, Israe[J]. Earth and Planetary Science Letters, 1999, 166:85-95. doi: 10.1016/S0012-821X(98)00275-1
    [98] Riechelmann D F C, Deininger M, Scholz D, et al. Disequilibrium carbon and oxygen isotope fractionation in recent cave calcite: Comparison of cave precipitates and model data[J]. Geochimica et Cosmochimica Acta, 2013, 103:232-244. doi: 10.1016/j.gca.2012.11.002
    [99] 王庆, 周厚云, 迟宏,程珂,王红艳,马倩倩,王常山. 最近千年来山东半岛西部气候环境变化的石笋δ18O、δ13C记录(Ⅰ)[J]. 海洋地质与第四纪地质, 2015, 35(5):135-142.

    WANG Qing,ZHOU Houyun,CHI Hong,CHENG Ke,WANG Hongyan,MA Qianqian,WANG Changshan. The stalagmite records of climate and environmentchange on the western shandong peninsuladuring the past 1 000years:18O and13C values(Ⅰ)[J]. Marine Geology & Quaternary Geology, 2015, 35(5):135-142.
    [100] Burns S J, Godfrey L R, Faina P, et al. Rapid human-induced landscape transformation in Madagascar at the end of the first millennium of the Common Era[J]. Quaternary Science Reviews, 2016, 134:92-99. doi: 10.1016/j.quascirev.2016.01.007
    [101] Yin J J, Li H C, Tang W, et al. Rainfall variability and vegetation recovery in rocky desertification areas recorded in recently-deposited stalagmites from Guilin, South China[J]. Quaternary International, 2019, 528:109-119. doi: 10.1016/j.quaint.2019.01.039
    [102] Cheng J, Wu H B, Liu Z Y, et al. Vegetation feedback causes delayed ecosystem response to East Asian Summer Monsoon Rainfall during the Holocene[J]. Nat Commun, 2021, 12(1):1843. doi: 10.1038/s41467-021-22087-2
    [103] 李媛媛. 滇东南近千年来石漠化过程的石笋记录[D]. 昆明: 云南师范大学, 2017.

    LI Yuanyuan.The process of rocky desertification from the stalagmites records in last 1,000 years in the southeast of Yunnan[D].Kunming:Yunnan Normal University, 2017
    [104] 薛治国, 陈浒, 李晓娜, 王仙攀. 云贵高原石漠化与古气候演变分析[J]. 安徽农业科学, 2010, 23:12303-12305. doi: 10.3969/j.issn.0517-6611.2010.23.001

    XUE Zhiguo,CHEN Hu,LI Xiaona,WANG Xianpan. Analysis of paleoclimatic evolution and rocky desertification in Yunnan-Guizhou Plateau[J]. Journal of Anhui Agricultural Sciences, 2010, 23:12303-12305. doi: 10.3969/j.issn.0517-6611.2010.23.001
    [105] 刘子琦, 王宏远, 张乾柱. 基于洞穴沉积物记录的石漠化演变重要历史事件相关研究[J]. 科学技术与工程, 2014, 14(4):18-21. doi: 10.3969/j.issn.1671-1815.2014.04.004

    LIU Ziqi,WANG Hongyuan,ZHANG Qianzhu. The research for historical events of development of rocky desertification based on speleothems records[J]. Science Technology and Engineering, 2014, 14(4):18-21. doi: 10.3969/j.issn.1671-1815.2014.04.004
    [106] 刘子琦. 利用石笋记录探究贵州织金地区近百年气候环境变化[J]. 西南大学报(自然科学版), 2013, 35(5):165-171.

    LIU Ziqi. The record of stalagmite ZJD-21 reflects the climate and environmental changes in Zhijin during the past 100years[J]. Journal of Southwest University(Natural Science Edition), 2013, 35(5):165-171.
    [107] Kuo T S, Liu Z Q, Li H C, et al. Climate and environmental changes during the past millennium in central western Guizhou, China as recorded by Stalagmite ZJD-21[J]. Journal of Asian Earth Sciences, 2011, 40(6):1111-1120. doi: 10.1016/j.jseaes.2011.01.001
    [108] 陈朝军, 袁道先, 程海, Tsai Luen YU, Chuan Chou SHEN, R. Lawrence EDWARDS, 吴尧, 肖思雅, 张键, 王涛, 黄冉, 刘子琦, 李廷勇, 李俊云 人类活动和气候变化触发了中国西南石漠化的扩张[J]. 中国科学:地球科学, 2021:51.

    CHEN Chaojun, YUAN Daoxian, CHENG Hai, Tsai Luen YU, Chuan Chou SHEN, R Lawrence EDWARDS, WU Yao, XIAO Siya, ZHANG Jian, WANG Tao, HUANG Ran, LIU Ziqi, LI Tingyong, LI Junyue. Human activity and climate change triggered the expansion of rocky desertification in the karst areas of Southwestern China[J]. Science China Earth Sciences, 2021:51.
    [109] Tan L C, Dong G H, An Z S, et al. Megadrought and cultural exchange along the proto-silk road[J]. Science Bulletin, 2020, 66(6):603-611.
    [110] Li Y X, Rao Z G, Xu Q H, et al. Inter-relationship and environmental significance of stalagmite δ13C and δ18O records from Zhenzhu Cave, north China, over the last 130 ka[J]. Earth and Planetary Science Letters, 2020, 536:116149. doi: 10.1016/j.jpgl.2020.116149
    [111] Wu Y, Li T Y, Yu T L, et al. Variation of the Asian summer monsoon since the last glacial-interglacial recorded in a stalagmite from southwest China[J]. Quaternary Science Reviews, 2020, 234:106261. doi: 10.1016/j.quascirev.2020.106261
    [112] Mischel S A, Scholz D, Spötl C, et al. Holocene climate variability in Central Germany and a potential link to the polar North Atlantic: A replicated record from three coeval speleothems[J]. The Holocene, 2016, 27(4):509-525.
    [113] Cheng H, Edwards R L, Sinha A, et al. The Asian monsoon over the past 640, 000 years and ice age terminations[J]. Nature, 2016, 534(7609):640-646. doi: 10.1038/nature18591
    [114] Wang Y J, Cheng H, Edwards R L, et al. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu cave, China[J]. Science, 2001, 294:2345-2348. doi: 10.1126/science.1064618
    [115] Zhang M L, Yuan D X, Lin Y S, et al. A 6000-year high-resolution climatic record from a stalagmite in Xiangshui Cave, Guilin, China[J]. The Holocene, 2004, 14(5):697-702. doi: 10.1191/0959683604hl748rp
    [116] Feng X X, Yang Y, Cheng H, et al. The 7.2 ka climate event: Evidence from high-resolution stable isotopes and trace element records of stalagmite in Shuiming Cave, Chongqing, China[J]. The Holocene, 2019, 30(1):145-154.
    [117] Springer G S, Rowe H D, Hardt B, et al. Solar forcing of Holocene droughts in a stalagmite record from West Virginia in east-central North America[J]. Geophysical Research Letters, 2008, 35 (17)
    [118] Cheng H, Spotl C, Breitenbach S F, et al. Climate variations of Central Asia on orbital to millennial timescales[J]. Sci Rep, 2016, 5:36975.
    [119] Griffiths M L, Johnson K R, Pausata F S R, et al. End of Green Sahara amplified mid-to late Holocene megadroughts in mainland Southeast Asia[J]. Nature Communications, 2020, 11:4204. doi: 10.1038/s41467-020-17927-6
    [120] Arienzo M M, Swart P K, Broad K, et al. Multi-proxy evidence of millennial climate variability from multiple Bahamian speleothems[J]. Quaternary Science Reviews, 2017, 161:18-29. doi: 10.1016/j.quascirev.2017.02.004
    [121] Chen C J, Huang R, Yuan D X, et al. Karst hydrological changes during the Late-Holocene in Southwestern China[J]. Quaternary Science Reviews, 2021:258.
    [122] 顾宁, 吴江滢. 辽宁暖和洞石笋δ13C记录的古气候环境意义初探[J]. 中国岩溶, 2012, 31(2):107-114. doi: 10.3969/j.issn.1001-4810.2012.02.001

    GU Ning, WU Jiangying. Pale climate significance of δ13C in stalagmite from Nuanhe Cave, Liaoning[J]. Carsologica Sinica, 2012, 31(2):107-114. doi: 10.3969/j.issn.1001-4810.2012.02.001
    [123] Liu D B, Wang Y J, Cheng H, et al. A detailed comparison of Asian Monsoon intensity and Greenland temperature during the Allerød and Younger Dryas events[J]. Earth and Planetary Science Letters, 2008, 272(3-4):691-697. doi: 10.1016/j.jpgl.2008.06.008
    [124] Li X L, Cheng H, Tan L C, et al. The East Asian summer monsoon variability over the last 145 years inferred from the Shihua Cave record, North China[J]. Scientific Reports, 2017, 7(1):7078. doi: 10.1038/s41598-017-07251-3
    [125] 吴尧, 李廷勇, 陈朝军, 黄冉,王涛,肖思雅,邱海英,徐玉珍,黄洋阳,李俊云. 中国石笋微层在古气候重建中的应用研究[J]. 第四纪研究, 2020, 40(4):1008-1024. doi: 10.11928/j.issn.1001-7410.2020.04.15

    WU Yao, LI Tingyong, CHEN Chaojun, HUANG Ran, WANG Tao, XIAO Siya, QIU Haiying, XU Yuzhen, HUANG Yangyang, LI Junyun. Application of stalagmite laminae in paleoclimate reconstructions of China[J]. Quaternary Sciences, 2020, 40(4):1008-1024. doi: 10.11928/j.issn.1001-7410.2020.04.15
    [126] 秦小光, 刘东生, 谭明, 王先锋. 北京石花洞石笋微层灰度变化特征及其气候意义-Ⅱ. 灰度的年际变化[J]. 中国科学(D辑), 2000, 30(3):239-248. doi: 10.3969/j.issn.1674-7240.2000.03.003
    [127] Yasur G, Ayalon A, Matthews A, et al. Climatic and environmental conditions in the Western Galilee, during Late Middle and Upper Paleolithic periods, based on speleothems from Manot Cave, Israel[J]. Journal of Human Evolution, 2019:102605.
    [128] Zhou H Y, Zhao J X, Feng Y X, et al. Distinct climate change synchronous with Heinrich event one, recorded by stable oxygen and carbon isotopic compositions in stalagmites from China[J]. Quaternary Research, 2008, 69(2):306-315. doi: 10.1016/j.yqres.2007.11.001
    [129] Pu J B, Wang A Y, Shen L C, et al. Factors controlling the growth rate, carbon and oxygen isotope variation in modern calcite precipitation in a subtropical cave, Southwest China[J]. Journal of Asian Earth Sciences, 2016, 119:167-178. doi: 10.1016/j.jseaes.2015.12.010
    [130] Tremaine D M, Froelich P N, Wang Y. Speleothem calcite farmed in situ: Modern calibration of δ18O and δ13C paleoclimate proxies in a continuously-monitored natural cave system[J]. Geochimica et Cosmochimica Acta, 2011, 75(17):4929-4950. doi: 10.1016/j.gca.2011.06.005
    [131] Duan W H, Ruan J Y, Luo W J, et al. The transfer of seasonal isotopic variability between precipitation and drip water at eight caves in the monsoon regions of China[J]. Geochimica et Cosmochimica Acta, 2016, 183:250-266. doi: 10.1016/j.gca.2016.03.037
    [132] Voarintsoa N R G, Ratovonanahary A L J, Rakotovao A Z M, et al. Understanding the linkage between regional climatology and cave geochemical parameters to calibrate speleothem proxies in Madagascar[J]. Science of theTotal Environment, 2021, 784:147181. doi: 10.1016/j.scitotenv.2021.147181
    [133] Zhang J, Li T Y. Seasonal and interannual variations of hydrochemical characteristics and stable isotopic compositions of drip waters in Furong Cave, southwest China based on 12 years’ monitoring[J]. Journal of Hydrology, 2019, 572:40-50. doi: 10.1016/j.jhydrol.2019.02.052
    [134] Qiu H Y, Li T Y, Chen C J, et al. Significance of active speleothem δ18O at annual-decadal timescale:A case study from monitoring in Furong Cave[J]. Applied Geochemistry, 2021, 126:104873. doi: 10.1016/j.apgeochem.2021.104873
    [135] Ruan J Y, Hu C Y. Seasonal variations and environmental controls on stalagmite calcite crystal growth in Heshang Cave, central China[J]. Chinese Science Bulletin, 2010, 55(34):3929-3935. doi: 10.1007/s11434-010-4193-1
    [136] 何璐瑶, 胡超涌, 曹振华, 马仲武, 熊志方. 湖北清江和尚洞洞穴温度对气候变化的响应[J]. 中国岩溶, 2008, 27(3):273-282. doi: 10.3969/j.issn.1001-4810.2008.03.013

    HE Luyao, HU Chaoyong, CAO Zhenhua, MA Zhongwu, XIONG Zhifang. Correspondences of Heshang cave temperature to climatic change in Qingjiang, Hubei[J]. Carsologica Sinica, 2008, 27(3):273-282. doi: 10.3969/j.issn.1001-4810.2008.03.013
    [137] Hu C Y, Henderson G M, Huang J, et al. Report of a three-year monitoring programme at Heshang Cave, Central China[J]. International Journal of Speleology, 2008, 37(3):143-151. doi: 10.5038/1827-806X.37.3.1
    [138] Li Y X, Zhang S R, Liu X K, et al. Variations of the stable isotopic composition of precipitation and cave drip water at zhenzhu cave, north China: a two-year monitoring study[J]. Journal of Cave and Karst Studies, 2019, 81(2):123-135. doi: 10.4311/2018ES0128
    [139] Li Y D, Yang Y, Jiang X Y, et al. The transport mechanism of carbon isotopes based on 10 years of cave monitoring: Implications for paleoclimate reconstruction[J]. Journal of Hydrology, 2021, 592:125841. doi: 10.1016/j.jhydrol.2020.125841
    [140] Yin J J, Tang W, Wang Z J, et al. Deciphering the hydroclimatic significance of dripwater δ13CDIC variations in monsoonal China based on modern cave monitoring[J]. Journal of Hydrology, 2021, 603:126882. doi: 10.1016/j.jhydrol.2021.126882
    [141] 张蔷, 赵淑艳, 赵习方. 北京石花洞内CO2的监测与评价[J]. 中国岩溶, 1997, 16(4):325-331.

    ZHANG Qiang, ZHAO Shuyan, ZHAO Xifang. CO2 Monitoring and assessmentof Shihua cave,Beijing[J]. Carsologica Sinica, 1997, 16(4):325-331.
    [142] 沈蔚, 王建力, 王家录, 蒋先淑, 毛庆亚. 贵州纳朵洞洞穴水化学性质和δ13CDIC特征及其影响因素研究[J]. 中国岩溶, 2016, 35(1):98-105. doi: 10.11932/karst20160114

    SHEN Wei, WANG Jianli, WANG Jialu, JIANG Xianshu, MAO Qingya. Hydrochemistry and δ13CDIC features of cave water in Naduo cave, Guizhou and their influencing factors[J]. Carsologica Sinica, 2016, 35(1):98-105. doi: 10.11932/karst20160114
    [143] 郑志惠, 王庆, 周厚云, 程 珂, 王红艳. 山东半岛九天洞洞穴环境变化特征与影响因素[J]. 中国岩溶, 2019, 38(3):370-377.

    ZHENG Zhihui, WANG Qing, ZHOU Houyun, CHENG Ke, WANG Hongyan. Variability of cave climate environment and influencing factors of the Shandong peninsula Jiutian cave[J]. Carsologica Sinica, 2019, 38(3):370-377.
    [144] Pu J B, Wang A Y, Yin J J, et al. pCO2 variations of cave air and cave water in a subtropical cave, SW China[J]. Carbonates and Evaporites, 2017, 33(3):477-487.
    [145] Luo W J, Wang S J. Transmission of δ13C signals and its paleoclimatic implications in Liangfeng Cave system of Guizhou Province, SW China[J]. Environmental Earth Sciences, 2009, 59(3):655-661. doi: 10.1007/s12665-009-0062-0
    [146] Genty D, Deflandre G. Drip flow variations under a stalactite of the Pe`re Noe¨l cave (Belgium). Evidence of seasonal variations and air pressure constraints[J]. Journal of Hydrology, 1998, 211:208-232. doi: 10.1016/S0022-1694(98)00235-2
    [147] Kaufmann G. Stalagmite growth and palaeo-climate: the numerical perspective[J]. Earth and Planetary Science Letters, 2003, 214(1-2):251-266. doi: 10.1016/S0012-821X(03)00369-8
    [148] Mühlinghaus C, Scholz D, Mangini A. Modelling stalagmite growth and δ13C as a function of drip interval and temperature[J]. Geochimica et Cosmochimica Acta, 2007, 71(11):2780-2790. doi: 10.1016/j.gca.2007.03.018
    [149] Hansen M, Scholz D, Schöne B R, et al. Simulating speleothem growth in the laboratory: Determination of the stable isotope fractionation (δ13C and δ18O) between H2O, DIC and CaCO3[J]. Chemical Geology, 2019, 509:20-44. doi: 10.1016/j.chemgeo.2018.12.012
    [150] Chen C J, Yuan D X, Li J Y, et al. The 4.2 ka event in East Asian monsoon region, precisely reconstructed by multi-proxies of stalagmite[J]. Climate of the Past, 2021.
    [151] 殷建军, 覃嘉铭, 林玉石, 杨 琰, 唐 伟. 中国近2000年来气候变化石笋记录研究进展[J]. 中国岩溶, 2010, 29(3):258-266. doi: 10.3969/j.issn.1001-4810.2010.03.007

    YIN Jianjun, QIN Jiaming, LIN Yushi, YANG Yan, TANG Wei. Research progress on the recent 2,000 years’ climate change revealed by stalagmite record in China[J]. Carsologica Sinica, 2010, 29(3):258-266. doi: 10.3969/j.issn.1001-4810.2010.03.007
  • 期刊类型引用(1)

    1. 韦志琼. 喀斯特石漠化地区土壤微生物研究——基于CNKI数据库的文献计量分析. 黑龙江科学. 2023(14): 27-31 . 百度学术

    其他类型引用(1)

  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  1359
  • HTML浏览量:  866
  • PDF下载量:  73
  • 被引次数: 2
出版历程
  • 收稿日期:  2022-01-20
  • 刊出日期:  2022-08-31

目录

/

返回文章
返回