Genetic mechanism analysis of low Ca/Mg value of acid goaf water in coal mine drainage
-
摘要: 山西省阳泉市山底河煤矿“老窑水”循环系统多年水质监测数据计算结果显示,煤矿酸性“老窑水”的Ca/Mg值普遍偏低,且存在Ca/Mg值随酸化程度的增强(SO42−含量增加或pH减小)而减小的规律。针对这一问题,结合研究区的地球化学物源条件,通过室内试验以及野外监测水样的石膏、方解石、白云石矿物饱和指数与pH变化关系,分析煤矿酸性“老窑水”低Ca/Mg值的成因机制。研究表明:区内石炭系-二叠系的煤系地层中碳酸盐岩夹层、分散状态分布的菱镁矿、黄铁矿是“老窑水”中Ca2+、Mg2+、SO42−的物质来源;在黄铁矿氧化水解形成的以硫酸根为主导的酸性溶液中(pH为2.0~4.5),代表硫酸对石膏、方解石、白云石可溶解性的饱和指数排序为石膏>方解石>白云石,受石膏在高浓度硫酸活性降低并发生沉淀、方解石溶解受Ca2+同离子效应抑制和饱和状态的平衡调节的综合影响,使Ca2+相对含量减少,由于MgSO4溶度积大于CaSO4,故Mg2+含量未受上述约束(或较低),脱白云岩化反应可因Ca2+含量随石膏沉淀而继续进行,加之区内有菱镁矿的溶解,使得Mg2+相对含量增加,最终出现了镁矿酸性“老窑水” Ca/Mg值低的结果。Ca/Mg值可作为煤矿酸性“老窑水”的污染特征指标,应用于环境影响评价。Abstract: The calculation results of water quality monitoring of the acid mine drainage circulation system of Shandi river in Yangquan City, Shanxi Province for many years show that the Ca/Mg value of the acid goaf water in coal mine drainage is generally low. The average value of 257 groups of acid mine drainage samples was 1.14, the average value of 69 samples of mine drainage in the study area during the same period was 3.73, and the average value of 206 samples of karst groundwater was 5.30, and there is a law that the Ca/Mg value decreased with the increase of acidification degree (increases of SO42− content or decreases of pH value). In response to this problem,combined with the geochemical source conditions of the study area, this paper analyzes the relationship between the saturation index of gypsum, calcite and dolomite minerals and pH value changes in laboratory tests and field monitoring water samples, so as to reveal the genetic mechanism of low Ca/Mg values of acid goaf water in coal mine drainage. The research results show that the scattered magnesite and pyrite in the carbonate interlayers in the Carboniferous-Permian coal measure strata in the study area are the material sources of Ca2+, Mg2+ and SO42− in the goaf water; In the sulfate-dominated acidic solution formed by the oxidative hydrolysis of pyrite (pH value is in the range of 2.0 to 4.5), the saturation index representing the solubility of sulfuric acid to gypsum, calcite and dolomite is in the order of gypsum>calcite>dolomite,at the same time, with the increase of pH value, gypsum will occur in the precipitation reaction, the relative content of Ca2+ would decrease, and the relative content of Mg2+ would increase, which will eventually lead to the decrease of Ca/Mg value in the solution. Its chemical mechanism is, (1) When the pH value is in the range of 2 to 3, the dissolution of gypsum is inhibited by high concentration sulfuric acid, the solubility decreased rapidly with the increase of pH value, gypsum precipitation may occur,which have been confirmed in laboratory tests, and the content of Ca2+ decreased;When the pH value is in the range of 3 to 4.5, the gypsum in the samples is in a reaction equilibrium state with a slight change in the saturation index near zero. A slight increase in pH value will lead to the formation of gypsum precipitation from Ca2+ dissolved from calcite and dolomite. The content of Ca2+ cannot continue to increase, and the relative content of Mg2+ increases. (2) In the pH range of 2 to 4.5, the calcite is affected by the co-ion effect of Ca2+ and the ion-pair balance when the gypsum is saturated, the saturation index of all samples was maintained at about −4.4, irrespective of pH decrease. (3) However, the dissolution of dolomite was not affected by the above inhibition (the solubility of MgSO4 in sulfuric acid solution is greater than that of CaSO4), the Mg2+ and SO42− content of the monitored samples have a significant positive correlation (the linear correlation coefficient reached 0.83). While dolomite forms gypsum precipitation with Ca2+ in the solution, de-dolomitization reaction occured sustainably, and there is dissolution of magnesite, which eventually increased the content of Mg2+ in acid water relative to the content of Ca2+, and the Ca/Mg value decreased. The Ca/Mg value can be used as an indicator of pollution characteristics of acid goaf water in coal mine drainage and applied to environmental impact assessment.
-
表 1 研究区煤矿“老窑水”及岩溶水相关水化学特征组分含量绘制表
Table 1. Relevant hydrochemical characteristic components of goaf water in acid mine drainage and karst water in the study area
样品类型 样品数/组 特征项 pH Ca2+ Mg2+ SO42− HCO3− Ca/Mg /mg·L−1 煤矿“老窑水” 257 平均 3.64 394.51 592.28 7 707.64 86.29 1.14 最大 8.02 1 817.00 2340.00 33 248.00 1 283.00 4.12 最小 2.03 20.50 24.10 59.90 0.00 0.14 现采煤矿排水 69 平均 7.43 326.89 89.85 1 549.09 222.75 3.73 最大 8.73 545.00 187.00 2 476.00 388.00 5.31 最小 3.38 163.00 48.10 717.00 0.00 2.14 岩溶水 206 平均 7.44 290.92 59.56 729.26 269.95 5.30 最大 8.29 517.00 115.00 1 248.00 316.00 19.19 最小 6.51 79.10 18.50 140.00 172.00 2.14 表 2 试验结束时各组合的Ca2+、Mg2+含量(单位:mg·L−1)及Ca/Mg值
Table 2. Ca2+ and Mg2+ content (unit:mg·L−1) and Ca/Mg value in each group at the end of the test
项目 菱镁矿 菱镁矿+方解石+白云石 菱镁矿+白云石 pH=2 pH=4 pH=6 pH=2 pH=4 pH=6 pH=2 pH=4 pH=6 Mg 71.66 8.75 3.35 123.25 5.84 3.67 154.52 8.37 2.17 Ca 0.00 10.75 8.95 6.03 6.43 5.63 0.00 8.64 5.23 Ca-Mg 71.66 −2.00 −5.60 117.22 −0.59 −1.96 154.52 −0.27 −3.06 Ca/Mg 0.00 1.23 2.67 0.05 1.10 1.54 0.00 1.03 2.41 -
[1] 李凤明, 王儒军, 王存煜. 资源枯竭型矿区综合治理与可持续发展[J]. 煤矿开采, 2004, 9(3):7-10. doi: 10.3969/j.issn.1006-6225.2004.03.003LI Fengming, WANG Rujun, WANG Cunyu. Synthetically control and continuable development of resource exhausted mine area[J]. Coal Mining Technology, 2004, 9(3):7-10. doi: 10.3969/j.issn.1006-6225.2004.03.003 [2] 武强, 董东林, 傅耀军, 白喜庆, 孙占起. 煤矿开采诱发的水环境问题研究[J]. 中国矿业大学学报, 2002, 31(1):22-25.WU Qiang, DONG Donglin, FU Yaojun, BAI Xiqing, SUN Zhanqi. Research on water pollution induced by coal mining[J]. Journal of China University of Mining & Technology, 2002, 31(1):22-25. [3] 梁永平, 韩行瑞, 等. 中国北方岩溶地下水环境问题与保护[M]. 北京: 地质出版社, 2013: 166-68LIANG Yongping, HAN Xingrui, et al. The karst groundwater environmental and protection of Northern China[M]. Beijing: Geological Publishing House, 2013: 166-168. [4] 梁永平, 赵春红, 唐春雷, 申豪勇, 王志恒, 郭芳芳. 山西娘子关泉水及污染成因再分析[J]. 中国岩溶, 2017, 36(5):633-640.LIANG Yongping, ZHAO Chunhong, TANG Chunlei, SHEN Haoyong, WANG Zhiheng, GUO Fangfang. Reanalysis of spring water and its pollution causes of the Niangziguan spring in Shanxi[J]. Carsologica Sinica, 2017, 36(5):633-640. [5] 赵春红, 梁永平, 卢海平, 唐春雷, 申豪勇, 王志恒. 娘子关泉域岩溶水SO42−、δ34S特征及其环境意义[J]. 中国岩溶, 2019, 38(6):867-875.ZHAO Chunhong, LIANG Yongping, LU Haiping, TANG Chunlei, SHEN Haoyong, WANG Zhiheng. Chemical characteristics and environmental significance of SO42−and sulfur isotope in the karst watershed of the Niangziguan spring, Shanxi Province[J]. Carsologica Sinica, 2019, 38(6):867-875. [6] 高旭波, 王万洲, 侯保俊, 高列波, 张建友, 张松涛, 李成城, 姜春芳. 中国北方岩溶地下水污染分析[J]. 中国岩溶, 2020, 39(3):287-298.GAO Xubo, WANG Wanzhou, HOU Baojun, GAO Liebo, ZHANG Jianyou, ZHANG Songtao, LI Chengcheng, JIANG Chunfang. Analysis of karst groundwater pollution in northern China[J]. Carsologica Sinica, 2020, 39(3):287-298. [7] 梁永平, 赵春红, 申豪勇, 等. 废弃煤矿区典型地下水系统硫产出机制与岩溶水环境效应[R]. 桂林: 中国地质科学院岩溶地质研究所, 2021LIANG Yongping, ZHAO Chunhong, SHEN Haoyong, et al. Sulfur-output mechanism and effect of karst water environment in a typical groundwater system situated on abandoned coal mining area[R]. Guilin: Institute of Karst Geology, Chinese Academy of Geological Sciences, 2021. [8] 肖有权. 试谈酸性矿坑水的污染与防治[J]. 水文地质工程地质, 1982(3):7-9.XIAO Youquan. Pollution and prevention of acid mine water[J]. Hydrogeology & Engineering Geology, 1982(3):7-9. [9] Lines G C. The ground-water system and possible effects of underground coal mining in the Trail Mountain area, central Utah[J]. Geological Survey water-supply paper (USA), 1985, 22(59):5-30. [10] Booth C J. Strata-Movement Concepts and the Hydrogeological Impact of Underground Coal Mining[J]. Ground Water, 1986, 24(4):507-515. doi: 10.1111/j.1745-6584.1986.tb01030.x [11] Britton L J, Anderson C L, Goolsby D A, et al. Summary of the U. S. Geological Survey and U. S. Bureau of Land Management national coal-hydrology program, 1974-84[J]. Professional Paper, 1989, 1464. [12] Powell J D. Origin and influence of coal mine drainage on streams of the United States[J]. Environmental Geology, 1988, 11(2):141-152. [13] 谭鹤翔. 煤矿矿坑水的水质特征[J]. 煤矿环境保护, 1990(04):75-81.TAN Hexiang. Water quality characteristics of coal mine pit water[J]. Coal Mine Environmental Protection, 1990(04):75-81. [14] Evangelou V. Pyrite Oxidation and Its Control[M]. Florida: Crc Press,1995. [15] 钟佐燊, 汤鸣皋, 张建立. 淄博煤矿矿坑排水对地表水体的污染及对地下水水质影响的研究[J]. 地学前缘, 1999, 6(S1):238-244.ZHONG Zuoshen, TANG Minggao, ZHANG Jianli. Influence of mining drainage of Zibo coal mines on quality of surface water and groundwater[J]. Earth Science Frontiers, 1999, 6(S1):238-244. [16] 吴耀国, 沈照理, 钟佐燊, 李广贺. 淄博煤矿区矿井水的化学形成及其模拟[J]. 环境科学学报, 2000, 20(4):401-405. doi: 10.3321/j.issn:0253-2468.2000.04.004WU Yaoguo, SHEN Zhaoli, ZHONG Zuoshen, LI Guanghe. Chemical origin of mine drainage and its simulation for Zibo coal mining district[J]. Acta Scientiae Circumstantiae, 2000, 20(4):401-405. doi: 10.3321/j.issn:0253-2468.2000.04.004 [17] Hollings P, Hendry M J, Nicholson R V, et al. Quantification of oxygen consumption and sulphate release rates for waste rock piles using kinetic cells: Cluff lake uranium mine, northern Saskatchewan, Canada[J]. Applied Geochemistry, 2001, 16(9):1215-1230. [18] 赵峰华. 煤矿酸性水地球化学[M]. 北京: 煤炭工业出版社, 2005ZHAO Fenghua. Geochemistry of acid water in coal mine[M]. Beijing: China Coal Industry Publishing House, 2005. [19] 岳梅, 赵峰华, 孙红福, 任德贻. 煤系黄铁矿氧化溶解地球化学动力学研究[J]. 煤炭学报, 2005(1):75-79. doi: 10.3321/j.issn:0253-9993.2005.01.017YUE Mei, ZHAO Fenghua, SUN Hongfu, REN Deyi. The kinetics of oxidation reaction of pyrites from coal-bearing measure[J]. Journal of China Coal Society, 2005(1):75-79. doi: 10.3321/j.issn:0253-9993.2005.01.017 [20] Watten B J, P L Sibrell, M F Schwartz. Acid neutralization within limestone sand reactors receiving coal mine drainage[J]. Environmental Pollution, 2005, 137(2):295-304. doi: 10.1016/j.envpol.2005.01.026 [21] Mohan D, S Chander. Removal and recovery of metal ions from acid mine drainage using lignite: A low cost sorbent[J]. Journal of Hazardous Materials, 2006, 137(3):1545-1553. doi: 10.1016/j.jhazmat.2006.04.053 [22] 孙红福, 赵峰华, 李文生, 李荣杰, 葛祥坤. 煤矿酸性矿井水及其沉积物的地球化学性质[J]. 中国矿业大学学报, 2007, 36(2):221-226. doi: 10.3321/j.issn:1000-1964.2007.02.017SUN Hongfu, ZHAO Fenghua, LI wensheng, LI Rongjie, GE Xiangkun. Geochemical characteristics of acid mine draiange and sediments from coal mines[J]. Journal of China University of Mining & Technology, 2007, 36(2):221-226. doi: 10.3321/j.issn:1000-1964.2007.02.017 [23] 郑仲, 蔡昌凤. 煤矿酸性矿井水形成机理的研究进展[J]. 资源环境与工程, 2007, 21(3):323-327. doi: 10.3969/j.issn.1671-1211.2007.03.026ZHENG Zhong, CAI Changfeng. A discussion on the formation mechanism of acid mine drainage[J]. Resources Environment & Engineering, 2007, 21(3):323-327. doi: 10.3969/j.issn.1671-1211.2007.03.026 [24] Mapanda F, Nyamadzawo G, Nyamangara J, et al. Effects of discharging acid-mine drainage into evaporation ponds lined with clay on chemical quality of the surrounding soil and water[J]. Physics & Chemistry of the Earth Parts A/b/c, 2007, 32(15-18):1366-1375. [25] C. A. Ríos a b, B C D W, B C L R. Removal of heavy metals from acid mine drainage (AMD) using coal fly ash, natural clinker and synthetic zeolites[J]. Journal of Hazardous Materials, 2008, 156(1-3):23-35. doi: 10.1016/j.jhazmat.2007.11.123 [26] Stoner J D. Probable hydrologic effects of subsurface mining[J]. Groundwater Monitoring & Remediation, 2010, 3(1):128-137. [27] BIAN Zhengfu, INYANG Hilary I, DANIELS John L, OTTO Frank, STRUTHERS Sue. Environmental issues from coal mining and their solutions[J]. Mining Science & Technology, 2010, 20(2):215-223. [28] 孙红福, 赵峰华, 李静琴, 张梦, 石磊. 混合煤矿酸性水中金属元素的迁移行为[J]. 环境科学与技术, 2010, 33(S2):111-114, 152.SUN Hongfu, ZHAO Fenghua, LI Jingqin, ZHANG Meng, SHI Lei. Migration of metal elements in mixed acid mine drainage[J]. Environmental Science & Technology, 2010, 33(S2):111-114, 152. [29] 赵峰华, 孙红福, 李文生. 煤矿酸性水中有害元素的迁移特性[J]. 煤炭学报, 2007, 32(3):261-266. doi: 10.3321/j.issn:0253-9993.2007.03.009ZHAO Fenghua, SUN Hongfu, LI Wensheng. Migration of hazardous elements in acid coal mine drainage[J]. Journal of China Coal Society, 2007, 32(3):261-266. doi: 10.3321/j.issn:0253-9993.2007.03.009 [30] 王瑞, 李潇瀚. 百泉泉域岩溶地下水水化学演化特征及成因[J]. 中国岩溶, 2021, 40(3):398-408.WANG Rui, LI Xiaohan. Hydrochemical characteristics and genesis of karst groundwater in the Baiquan spring catchment[J]. Carsologica Sinica, 2021, 40(3):398-408. [31] 李庭, 冯启言, 周来, 朱雪强. 废弃矿井地下水污染风险评价系统开发[J]. 能源环境保护, 2014, 28(2):13-16, 8. doi: 10.3969/j.issn.1006-8759.2014.02.004LI Ting, FENG Qiyan, ZHOU Lai, ZHU Xueqiang. Design and development of groundwater contamination risk assessment system for abandoned coal mines[J]. Energy Environmental Protection, 2014, 28(2):13-16, 8. doi: 10.3969/j.issn.1006-8759.2014.02.004 [32] 刘再华. 娘子关泉群水的来源再研究[J]. 中国岩溶, 1989, 8(3):200-207.Liu Zaihua. Restudy on the sources of Niangziguan spring[J]. Carsologica Sinica, 1989, 8(3):200-207. [33] 顾慰祖, 林曾平, 费光灿, 郑平生. 环境同位素硫在大同南寒武-奥陶系地下水资源研究中的应用[J]. 水科学进展, 2000, 11(1): 11-14GU Weizu, LIN Zengping, FEI Guangchan, ZHENG Pingsheng[J]. Advances in Water Science, 2000, 11(1): 11-14. . [34] 段光武, 梁永平. 应用34 S同位素分析阳泉市岩溶地下水硫酸盐污染[J]. 西部探矿工程, 2006, 117(1):100-103. doi: 10.3969/j.issn.1004-5716.2006.01.045DUAN Guangwu, LIANG Yongping. Analysis of sulfate pollution of karst groundwater in Yangquan City by 34S isotope[J]. West-China Exploration Engineering, 2006, 117(1):100-103. doi: 10.3969/j.issn.1004-5716.2006.01.045 [35] 张江华, 梁永平, 王维泰, 韩行瑞, 侯光才. 硫同位素技术在北方岩溶水资源调查中的应用实例[J]. 中国岩溶, 2009, 28(13):235-241.ZHANG Jianghua, LIANG Yongping, WANG Weitai, HAN Xingrui, HOU Guangcai. A practical use of δ34 S in the investigation of karst groundwater resource in North China[J]. Carsologica Sinica, 2009, 28(13):235-241. [36] 唐春雷, 郑秀清, 梁永平. 龙子祠泉域岩溶地下水水化学特征及成因[J]. 环境科学, 2020, 41(5):2087-2095.TANG Chunlei, ZHENG Xiuqing, LIANG Yongping. Hydrochemical characteristics and formation causes of ground karst water systems in the Longzici spring catchment[J]. Environmental Science, 2020, 41(5):2087-2095. [37] TANG Chunlei, HUA Jin, LIANG Yongping. Using isotopic and hydrochemical indicators to identify sources of sulfate in karst groundwater of the Niangziguan spring field, China[J]. Water, 2021, 13(3):390. doi: 10.3390/w13030390 [38] 王柏林, 张志村. 1/20万阳泉幅地质图说明书[R]. 太原: 山西省地质局, 1965WANG Bailin, ZHANG Zhicun. Description of 1 / 200,000 Yangquan geological map[R], Taiyuan: Shanxi Geological Bureau, 1965. [39] 孙文瀚, 代淑娟, 罗娜, 于连涛. 基于矿石溶解性差异的菱镁矿酸浸脱钙[J]. 中国有色金属学报, 2019, 29(8):1733-1739.SUN Wenhan, DAI Shujuan, LUO Na, YU Liantao. Decalcification leaching test of magnesite based on solubleness difference of minerals[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(8):1733-1739. [40] 胡宽溶, 曹玉清. 碳酸盐岩地区水质和化学动力学模型研究[J]. 水文地质工程地质, 1993, 3:8-14.HU Kuanrong, CAO Yuqing. Study on water quality and chemical kinetics model in carbonate area[J]. Hydrogeology & Engineering Geology, 1993, 3:8-14. [41] 夏雨, 吴攀, 张瑞雪, 朱健, 王悦竹, 宋传孝, 李玲. 酸性矿山废水对碳酸盐岩侵蚀的影响[J]. 生态学杂志, 2018, 37(6):1702-1707.XIA Yu, WU Pan, ZHANG Ruixue, ZHU Jian, WANG Yuezhu, SONG Chuanxiao, LI Ling. The effects of acid mine drainage on the erosion of carbonatite in carbonate rocks[J]. Chinese Journal of Ecology, 2018, 37(6):1702-1707. [42] DENG Licong, ZHANG Yifei, CHEN Fangfang, CAO Shaotao, YOU Shaowei, LIU Yan, ZHANG Yi. Reactive crystallization of calcium sulfate dihydrate from acidic wastewater and lime[J]. Chinese Journal of Chemical Engineering, 2013, 21:1303-1312. doi: 10.1016/S1004-9541(13)60626-6 [43] 黄思静, 杨俊杰, 张文正, 黄月明, 刘桂霞, 肖林萍. 石膏对白云岩溶解影响的实验模拟研究[J]. 沉积学报, 1996, 14(1):103-109.HUANG Sijing, YANG Junjie, ZHANG Wenzheng, HUANG Yueming, LIU Guixia, XIAO Linping. Effects of gypsum on dissolution of dolomite under different temperatures and pressures of epigenesis and burial diagenesis[J]. Acta Sedimentologica Sinica, 1996, 14(1):103-109. [44] 闫志为, 张志卫, 王佳佳. 硫酸水对方解石和白云石矿物的溶蚀作用[J]. 水资源保护, 2009, 25(2):79-81. doi: 10.3969/j.issn.1004-6933.2009.02.021YAN Zhiwei, ZHANG Zhiwei, WANG Jiajia. Corrosion of calcite and dolomite in sulfuric acid water[J]. Water Resources Protection, 2009, 25(2):79-81. doi: 10.3969/j.issn.1004-6933.2009.02.021 [45] 闫志为. 硫酸根离子对方解石和白云石溶解度的影响[J]. 中国岩溶, 2008, 27(1):24-31. doi: 10.3969/j.issn.1001-4810.2008.01.005YAN Zhiwei. Influences of SO42− on the solubility of calcite and dolomite[J]. Carsologica Sinica, 2008, 27(1):24-31. doi: 10.3969/j.issn.1001-4810.2008.01.005 [46] Schwertmann U, Bigham J M, Murad E. The first occurrence of schwertmannite in a natural stream environment[J]. Eur J Miner, 1995, 7:547-552. doi: 10.1127/ejm/7/3/0547 [47] Bigham J M, Schwertmann U, Traina S J, et al. S chwertmannite and the chemical modelin of iron in acid sulfate waters[J]. Geochim Cosmochim Acta, 1996, 60:2111-2121. doi: 10.1016/0016-7037(96)00091-9 [48] 岳梅, 赵峰华, 孙红福, 任德贻. 煤矿酸性水中亚稳态矿物Schwertmannite 的形成与转变[J]. 矿物学报, 2006, 26(1):43-46. doi: 10.3321/j.issn:1000-4734.2006.01.008YUE Mei, ZHAO Fenghua, SUN Hongfu, REN Deyi. THE formation and transition of The metastable mineral schwertmannite in acid drainage from caol mine[J]. Acta Mineralogica Sinica, 2006, 26(1):43-46. doi: 10.3321/j.issn:1000-4734.2006.01.008