Water abundance of karst fissure water and its electrical properties in north Taihang Mountains: A case study of mountainous area in the west of Baoding
-
摘要: 为揭示太行山北段岩溶裂隙水富水性分布规律,采用电阻率、极化率、半衰时和偏离度分析不同含水层介质结构、不同含水岩组和不同地下水系统岩溶裂隙水与电性参数的关系,探讨研究区岩溶裂隙水富水性的影响因素及其电性响应特征。结果表明:含水层介质结构按照溶蚀孔洞型→断层型→褶皱型→岩体阻水型的排列顺序,半衰时值分布范围依次降低,而偏离度值分布范围依次升高;四种电性参数对奥陶系含水岩组、蓟县系含水岩组具有较强的分辨能力;极化率、半衰时和偏离度难以识别拒马河、界河-唐河以及瀑河-漕河三种岩溶裂隙地下水系统类型;奥陶系含水岩组的富水性优于蓟县系含水岩组;就含水层介质结构而言,溶蚀孔洞型富水性最佳,断层型和褶皱型次之,岩体阻水型富水性最差。Abstract:
In north Taihang Mountains, there are mainly located the karst fissure groundwater systems of Juma river, of Puhe river-Caohe river and of Jiehe river-Tanghe river. The water-bearing formation of carbonatite karst fissure in the research area can be divided into the Ordovician and the Jixian water-bearing formations. The Ordovician water-bearing formation is mainly developed with chert zebra dolomite and limestone with holes, solution cracks and fissures and groundwater concentration zones. The Jixian water-bearing formation is made up of chert zebra dolomite with fissures, where water abundance is good. The aquifer medium structures in the research area are divided into corrosion pore type, fault type, fold type and water blocking type of rock mass. Zijingguan fault is a normal fault with relatively fragmented hanging wall. The fissures of dolomite and limestone are developed in the fracture zone with good water abundance. To determine the spatial variation of water abundance of karst fissure water in the northern Taihang Mountains and the electrical characteristics of fissure water, karst fissure water in the northern Taihang Mountains was taken as research object and the data of unit water inflow of 39 boreholes was obtained by pumping tests. According to the characteristic of karst fissure water i.e., obvious induced polarization response, four electrical parameters—resistivity, polarizability, half damping time and deviation degree—were acquired by induced polarization method. Statistical analyses and box-whisker plots were processed by Grapher software. The distribution characteristics of four electrical parameters were studied. The relationships between electrical parameters and water abundance of karst fissure water in different aquifer medium structures, water-bearing formations and groundwater systems were analyzed. Interfering factors of water abundance of karst fissure water in the research area and its electrical response characteristics were discussed. The range delineated by lower box (25%) and upper box (75%) of unit water inflow or electrical parameters reflects the dispersion degree of 50% of the data in the central range, which is indicative of various types of karst fissure water in the research area. Results showed that the structure of aquifer media was arranged in the order of corrosion pore type→fault type→fold type→water blocking type of rock mass. In this sequence, the distribution range of half aging value decreases in turn, while the distribution range of deviation value increases correspondingly. It is difficult to distinguish the four types of aquifer medium structures by resistivity and polarizability. Water-bearing formations of the Ordovician system and the Jixianian system could be identified effectively with resistivity, polarizability, half damping time and deviation degree. It was hard to identify groundwater system types among the Juma river, the Jiehe river-Tanghe river and the Puhe river-Caohe river just by the use of polarizability, half damping time and deviation degree. Water abundance in the Ordovician system is better than its value in the Jixianian system. The best water abundance was found in corrosion pore type, followed by fault type, fold type, and water blocking type of rock mass in sequence. -
表 1 研究区岩溶地下水系统划分
Table 1. Classification of karst groundwater system in the research area
三级地下水系统代码及名称 四级地下水系统代码及名称 五级地下水系统代码及名称 拒马河岩溶裂隙地下水系统(Ⅶ1) 北拒马河岩溶裂隙地下水系统(Ⅶ1-2) 北拒马河岩溶裂隙地下水系统(Ⅶ1-2-3) 大西沟岩溶裂隙地下水系统(Ⅶ1-2-5) 鱼谷洞岩溶裂隙地下水系统(Ⅶ1-2-8) 易水河岩溶裂隙地下水系统(Ⅶ1-3) 北易水河岩溶裂隙地下水系统(Ⅶ1-3-1) 中易水河岩溶裂隙地下水系统(Ⅶ1-3-2) 瀑河—漕河岩溶裂隙地下水系统(Ⅶ2) 瀑河岩溶裂隙地下水系统(Ⅶ2-1) 瀑河上游岩溶裂隙地下水系统(Ⅶ2-1-1) 北邵-东庄岩溶裂隙地下水系统(Ⅶ2-1-2) 漕河岩溶裂隙地下水系统(Ⅶ2-2) 界河—唐河岩溶裂隙地下水系统(Ⅶ3) 界河岩溶裂隙地下水系统(Ⅶ3-1) 界河上游岩溶裂隙地下水系统(Ⅶ3-1-1) 安阳向斜东岩溶裂隙地下水系统(Ⅶ3-1-2) 界河中上游岩溶裂隙地下水系统(Ⅶ3-1-3) 唐河岩溶裂隙地下水系统(Ⅶ3-2) 安阳向斜西岩溶裂隙地下水系统(Ⅶ3-2-2) 表 2 研究区地下水地层电阻率值分布
Table 2. Resistivity distribution of underground water strata in the research area
年代 地层 岩性 电阻率分布范围/Ω·m 第四系 黏土 22~62 第四系 碎石、卵石 875~1 835 第四系 回填土 89~279 第四系 砂、砾石 195~356 奥陶系 马家沟组 灰岩 184~2 865 奥陶系 冶里组、亮甲山组 燧石条带白云岩 84~2 634 寒武系 馒头组 泥岩、页岩、泥质灰岩 25~57 青白口系 龙山组 石英砂岩、粉砂岩 47~316 青白口系 下马岭组 页岩、粉砂质页岩 86~452 蓟县系 雾迷山组、高于庄组 燧石条带白云岩 103~3 124 表 3 激发极化法极距
Table 3. Electrode spacing of induced polarization method
序号 供电极距AB/2/m 测量极距MN/2/m 装置系数K/m 序号 供电极距AB/2/m 测量极距MN/2/m 装置系数K/m 01 2.5 0.83 10.5 10 50 16.67 209.5 02 3.5 1.17 14.7 11 65 21.67 272.4 03 5.0 1.67 21.0 12 80 26.67 335.2 04 7.0 2.33 29.3 13 100 33.33 419.0 05 10.0 3.33 41.9 14 130 43.33 544.7 06 14.0 4.67 58.7 15 170 56.67 712.3 07 20.0 6.67 83.8 16 220 73.33 922.0 08 28.0 9.33 117.3 17 280 93.33 1 173.0 09 38.0 12.67 159.2 18 350 116.67 1 467.0 表 4 实验结果
Table 4. Test results
钻孔
名称单位涌水
量/L·(s·m)−1水位
/m电阻率
ρ/Ω·m极化率
η/%半衰时
St/ms偏离度
r/%含水层介
质结构含水
岩组地下水
系统钻孔包气带
岩性和厚度所处地下水系统
的动力场位置沙峪 30.214 12.05 127 2.027 1 920 4.023 溶蚀孔洞型 奥陶系 Ⅶ1-2-8 粗砂1.64 m、砾12.03 m(层底埋深23.62 m) 岩溶水顶托补给区 芦子水 21.695 7.94 153 1.826 1 760 4.332 溶蚀孔洞型 奥陶系 Ⅶ1-2-8 粗砂2.10 m、卵石3.42 m(层底埋深18.25 m) 岩溶水顶托补给区 清水建 15.332 9.80 178 2.109 2 020 4.276 溶蚀孔洞型 奥陶系 Ⅶ1-2-8 粗砂1.22 m、砾7.33 m、卵石2.85 m(层底埋深27.31 m) 岩溶水顶托补给区 马各庄 33.564 12.45 147 1.657 1 550 3.902 溶蚀孔洞型 奥陶系 Ⅶ1-2-8 粗砂3.45 m、砾2.15 m,卵石1.39 m(层底埋深37.60 m) 岩溶水顶托补给区 西安阳 5.007 3.09 223 2.513 1 610 4.401 断层型 奥陶系 Ⅶ3-1-2 碎石3.09 m(层底埋深9.00 m) 人工开采区 岭后 10.560 11.86 234 2.016 1 540 4.631 褶皱型 奥陶系 Ⅶ3-2-2 卵石3.00 m、风化白云岩8.86 m(层底埋深47.00 m) 潜流排泄区 龙门 39.073 13.01 524 2.113 1 980 4.053 溶蚀孔洞型 蓟县系 Ⅶ1-2-3 卵石、砂13.01 m(层底埋深28.10 m) 岩溶水顶托补给区 西南蒲 4.080 48.45 97 1.927 1 860 4.601 溶蚀孔洞型 蓟县系 Ⅶ3-1-3 黏土15.20 m、卵石25.80 m、含砾砂岩6.40 m、砂岩1.05 m(层底埋深9.60 m) 人工开采区 计鹿 34.686 6.99 428 1.526 1 620 4.181 溶蚀孔洞型 蓟县系 Ⅶ1-2-3 粗砂5.12 m、砾2.43 m,卵石3.24 m(层底埋深16.25 m) 岩溶水顶托补给区 桑园 4.135 2.68 833 3.127 2 230 4.556 溶蚀孔洞型 蓟县系 Ⅶ1-2-3 卵石2.68 m(层底埋深6.60 m) 岩溶水顶托补给区 高庄 15.654 5.00 512 1.984 1 910 4.268 溶蚀孔洞型 蓟县系 Ⅶ1-2-3 回填土2.00 m、卵石3.00 m(层底埋深17.65 m) 岩溶水顶托补给区 南庄子 0.521 18.97 537 1.638 1 180 4.571 断层型 蓟县系 Ⅶ1-2-5 砾石18.52 m(层底埋深22.61 m) 岩溶地下水侧向补给区 安子沟 0.439 22.32 582 1.641 1340 4.823 断层型 蓟县系 Ⅶ1-2-5 砾石2.34 m、卵石11.33 m(层底埋深20.67 m) 岩溶地下水侧向补给区 西角 0.386 16.28 399 1.501 1 400 4.907 断层型 蓟县系 Ⅶ1-2-3 砾石3.27 m、白云岩5.38 m(层底埋深20.34 m) 人工开采区 向阳 0.271 33.25 602 1.235 1 080 5.222 褶皱型 蓟县系 Ⅶ2-1-2 粉土1.34 m、细晶白云岩9.76 m(层底埋深6.39 m) 地下水径流区 东娄山 0.113 21.60 564 1.193 1 060 5.348 褶皱型 蓟县系 Ⅶ2-1-2 粉土2.13 m、细晶白云岩6.39 m(层底埋深8.66 m) 地下水径流区 南峪 1.037 128.41 1185 1.962 1 530 4.222 断层型 蓟县系 Ⅶ1-2-3 回填土4.30 m、灰质白云岩124.11 m(层底埋深206.40 m) 大气降水入渗补给区 白云西庄 1.214 95.65 387 1.749 1 320 4.638 断层型 蓟县系 Ⅶ3-1-3 粉砂10.00 m、燧石条带白云岩49.00 m、白云岩36.65 m(层底埋深275.00 m) 人工开采区 娘娘宫 0.331 3.09 422 1.805 1 200 4.932 断层型 蓟县系 Ⅶ3-1-1 卵石3.09 m(层底埋深15.20 m) 大气降水入渗补给区 金水口 0.259 27.50 1083 1.712 1 050 5.132 断层型 蓟县系 Ⅶ1-2-5 砾石27.50 m(层底埋深28.96 m) 岩溶地下水侧向补给区 南康关 0.281 64.09 391 1.286 1 410 4.701 断层型 蓟县系 Ⅶ3-1-2 角砾岩64.09 m(层底埋深84.00 m) 人工开采区 辛宅 2.238 45.69 149 2.103 1 770 4.532 断层型 蓟县系 Ⅶ3-1-3 粉土21.00 m、粉质黏土24.69 m(层底埋深39.00 m) 人工开采区 西白司城 0.248 14.91 521 1.875 1 110 5.218 断层型 蓟县系 Ⅶ3-1-2 粉土4.06 m、风化泥质灰岩10.85 m(32.44 m) 人工开采区 史家沟 0.101 10.04 452 0.924 950 4.995 褶皱型 蓟县系 Ⅶ3-1-2 黏土0.66 m、破碎石灰岩8.34 m、竹叶状灰岩1.04 m(层底埋深12.54 m) 岩溶地下水侧向补给区 导务 0.006 4.26 516 0.913 910 5.706 褶皱型 蓟县系 Ⅶ3-1-2 黏土0.90 m、石灰岩3.36 m(层底埋深15.30 m) 地下水径流区 福山口 0.211 39.16 907 0.889 980 5.668 褶皱型 蓟县系 Ⅶ1-2-3 粉土11.90 m、微晶白云岩27.26 m(层底埋深37.70 m) 潜流排泄区 都衙 0.353 8.43 1076 1.333 1 100 5.425 褶皱型 蓟县系 Ⅶ1-2-3 砾石5.32 m、白云岩3.11 m(层底埋深46.88 m) 潜流排泄区 南清醒 0.354 1.29 261 1.628 1 280 4.506 褶皱型 蓟县系 Ⅶ3-1-1 含砾石黏土1.29 m(层底埋深4.70 m) 岩溶地下水侧向补给区 裸心峪 0.183 10.50 986 1.825 1 230 5.203 褶皱型 蓟县系 Ⅶ1-2-3 白云岩10.50 m(层底埋深41.40 m) 岩溶地下水侧向补给区 夏家庄 0.209 65.35 713 1.269 1 160 4.798 褶皱型 蓟县系 Ⅶ2-1-1 细晶燧石白云岩63.70 m、白云岩1.65 m(层底埋深14.70 m) 人工开采区 南百全 0.107 7.23 618 0.951 920 5.889 岩体阻水型 蓟县系 Ⅶ1-3-1 黏土5.39 m、细晶白云岩2.36 m(层底埋深12.39 m) 人工开采区 柳林庄 0.092 8.00 576 0.934 960 6.301 岩体阻水型 蓟县系 Ⅶ1-3-2 粉土2.41 m、微晶灰岩5.25 m(层底埋深3.95 m) 人工开采区 太和庄 0.011 7.99 577 0.775 910 6.891 岩体阻水型 蓟县系 Ⅶ1-3-1 粉质黏土6.00 m、细晶白云岩1.99 m(层底埋深55.40 m) 地下水径流区 上黄蒿 0.028 6.36 651 1.121 970 7.021 岩体阻水型 蓟县系 Ⅶ1-3-1 卵石6.36 m(层底埋深8.50 m) 人工开采区 福家庄 0.078 10.36 512 0.906 890 6.114 岩体阻水型 蓟县系 Ⅶ1-3-2 粉土3.00 m、微晶灰岩4.20 m、微晶灰岩3.16 m(层底埋深4.00 m) 人工开采区 官银堂 0.059 11.79 317 0.859 990 5.867 岩体阻水型 蓟县系 Ⅶ3-1-1 卵石5.50 m、粉晶白云岩6.29 m(层底埋深8.90 m) 大气降水入渗补给区 西后兴 0.108 36.24 206 1.539 1 090 4.938 岩体阻水型 蓟县系 Ⅶ3-1-3 黏土3.00 m、粉土18.50 m、黏土11.50 m、卵石3.24 m(层底埋深38.50 m) 人工开采区 南韩 0.036 27.84 725 0.821 820 6.329 岩体阻水型 蓟县系 Ⅶ2-1-2 粉土2.00 m、碎石12.40 m、砾石9.60 m、石灰岩3.84 m(层底埋深5.20 m) 地下水径流区 草庄儿 0.104 3.95 1088 1.002 990 5.331 岩体阻水型 蓟县系 Ⅶ2-2 砂卵砾石3.95 m(层底埋深8.60 m) 潜流排泄区 -
[1] 梁永平, 申豪勇, 赵春红, 王志恒, 唐春雷, 赵一, 谢浩, 石维芝. 对中国北方岩溶水研究方向的思考与实践[J]. 中国岩溶, 2021, 40(3):363-380.LIANG Yongping, SHEN Haoyong, ZHAO Chunhong, WANG Zhiheng, TANG Chunlei, ZHAO Yi, XIE Hao, SHI Weizhi. Thinking and practice on the research direction of karst water in Northern China[J]. Carsologica Sinica, 2021, 40(3):363-380. [2] 孟顺祥, 宋绵, 刘伟朋. 太行山区1∶5万水文地质调查(水环中心)成果报告[R]. 北京: 中国地质调查局, 2017.MENG Shunxiang, SONG Mian, LIU Weipeng. The 1∶50, 000 hydrogeological investigation report of Taihang Mountains (Center for Hydrogeology and Environmental Geology , China Geological Survey)[R]. Beijing: China Geological Survey, 2017. [3] 曹贤发, 刘玉康, 刘之葵, 张炳晖. 基于强溶蚀带特征的地基岩溶发育程度评价方法[J]. 中国岩溶, 2020, 39(4):577-583.CAO Xianfa, LIU Yukang, LIU Zhikui, ZHANG Binghui. Evaluation method of development degree based on features of intense dissolution layer[J]. Carsologica Sinica, 2020, 39(4):577-583. [4] 李传生, 靳孟贵, 武选民, 刘宏伟, 王宁涛. 唐县山区基岩裂隙水的赋存规律及找水方向[J]. 人民黄河, 2009, 31(4):34-35. doi: 10.3969/j.issn.1000-1379.2009.04.015LI Chuansheng, JIN Menggui, WU Xuanmin, LIU Hongwei, WANG Ningtao. Metamorphic rock fissure water in mountains of Tang county and its direction of water finding[J]. Yellow River, 2009, 31(4):34-35. doi: 10.3969/j.issn.1000-1379.2009.04.015 [5] 刘元晴, 周乐, 李伟, 丁鹏, 吕琳, 马雪梅, 孟顺祥, 邓启军, 李波. 鲁中南山区古近系朱家沟组灰质砾岩溶蚀发育特征及水文地质意义[J]. 中国岩溶, 2020, 39(3):327-334.LIU Yuanqing, ZHOU Le, LI Wei, DING Peng, LYU Lin, MA Xuemei, MENG Shunxiang, DENG Qijun, LI Bo. Dissolution characteristics of limestone conglomerate in the Paleogene Zhujiagou formation in the central and southern mountainous area of Shandong Province and hydrogeological implications[J]. Carsologica Sinica, 2020, 39(3):327-334. [6] 钟祖良, 高国富, 刘新荣, 王南云, 李皓. 地下采动下含深大裂隙岩溶山体变形响应特征[J]. 水文地质工程地质, 2020, 47(4):97-106.ZHONG Zuliang, GAO Guofu, LIU Xinrong, WANG Nanyun, LI Hao. Deformation response characteristics of karst mountains with deep and large fissures under the condition of underground mining[J]. Hydrogeology & Engineering Geology, 2020, 47(4):97-106. [7] 杨忠平, 蒋源文, 李滨, 高杨, 刘欣荣, 赵亚龙. 采动作用下岩溶山体深大裂隙扩展贯通机理研究[J]. 地质力学学报, 2020, 26(4):459-470. doi: 10.12090/j.issn.1006-6616.2020.26.04.039YANG Zhongping, JIANG Yuanwen, LI Bin, GAO Yang, LIU Xinrong, ZHAO Yalong. Study on the mechanism of deep and large fracture propagation and transfixion in karst slope under the action of mining[J]. Journal of Geomechanics, 2020, 26(4):459-470. doi: 10.12090/j.issn.1006-6616.2020.26.04.039 [8] 唐博宁, 朱传庆, 邱楠生, 崔悦, 郭飒飒, 陈驰. 雄安新区雾迷山组岩溶裂隙发育特征[J]. 地质学报, 2020, 94(7):2002-2012. doi: 10.3969/j.issn.0001-5717.2020.07.009TANG Boning, ZHU Chuanqing, QIU Nansheng, CUI Yue, GUO Sasa, CHEN Chi. Characteristics of the karst thermal reservoir in the Wumishan Formation in the Xiong'an New Area[J]. Acta Geologica Sinica, 2020, 94(7):2002-2012. doi: 10.3969/j.issn.0001-5717.2020.07.009 [9] 刘伟朋, 卢放, 韩振, 孟顺祥, 龚冀丛. 阜平县太古界变质岩区地下水的赋存规律与电性特征[J]. 南水北调与水利科技, 2019, 17(6):170-177.LIU Weipeng, LU Fang, HAN Zhen, MENG Shunxiang, GONG Jicong. Occurrence law and electrical characteristics of groundwater in Archean metamorphic rock area of Fuping county[J]. South-to-North Water Transfers and Water Science & Technology, 2019, 17(6):170-177. [10] 吉学亮, 尹学灵, 潘晓东, 陈志兵. 岩溶斜坡地带基于蓄水构造的地下水富集模式[J]. 科学技术与工程, 2017, 17(22):8-15. doi: 10.3969/j.issn.1671-1815.2017.22.002JI Xueliang, YIN Xueling, PAN Xiaodong, CHEN Zhibing. Groundwater enrichment model in karst slope zone based on storage structure[J]. Science Technology and Engineering, 2017, 17(22):8-15. doi: 10.3969/j.issn.1671-1815.2017.22.002 [11] 贾德旺. 鲁南山区基岩蓄水构造类型及找水定井方法[J]. 地质学刊, 2020, 44(3):318-325. doi: 10.3969/j.issn.1674-3636.2020.03.014JIA Dewang. Type of bedrock water storage structure and the method of water exploration and well determination in the southern mountainous area of Shandong[J]. Journal of Geology, 2020, 44(3):318-325. doi: 10.3969/j.issn.1674-3636.2020.03.014 [12] 梁永平, 王维泰. 中国北方岩溶水系统划分与系统特征[J]. 地球学报, 2010, 31(6):860-868.LIANG Yongping, WANG Weitai. The division and characteristics of karst water systems in Northern China[J]. Acta Geoscientica Sinica, 2010, 31(6):860-868. [13] 冯亚伟, 陈洪年, 贾德旺. 山东省岩溶地下水系统划分及构造模式[J]. 水文, 2020, 40(6):83-89.FENG Yawei, CHEN Hongnian, JIA Dewang. Division and structural pattern of karst groundwater system in Shandong Province[J]. Journal of China Hydrology, 2020, 40(6):83-89. [14] 蒋显忠, 夏平. 伊犁盆地地下水系统划分研究[J]. 地下水, 2020, 42(4):44-45.JIANG Xianzhong, XIA Ping. Study on division of groundwater system in Yili Basin[J]. Groundwater, 2020, 42(4):44-45. [15] 邵杰, 李瑛, 董美玲, 冯俊岭. 新疆伊犁河谷地下水系统划分及特征研究[J]. 安徽农业科学, 2019, 47(22):43-46. doi: 10.3969/j.issn.0517-6611.2019.22.015SHAO Jie, LI Ying, DONG Meiling, FENG Junling. Classification and characteristics of groundwater system in Yili river valley of Xinjiang[J]. Journal of Anhui Agricultural Sciences, 2019, 47(22):43-46. doi: 10.3969/j.issn.0517-6611.2019.22.015 [16] 高旭波, 王万洲, 侯保俊, 高列波, 张建友, 张松涛, 李成城, 姜春芳. 中国北方岩溶地下水污染分析[J]. 中国岩溶, 2020, 39(3):287-298.GAO Xubo, WANG Wanzhou, HOU Baojun, GAO Liebo, ZHANG Jianyou, ZHANG Songtao, LI Chengcheng, JIANG Chunfang. Analysis of karst groundwater pollution in Northern China[J]. Carsologica Sinica, 2020, 39(3):287-298. [17] 钱家忠, 汪家权, 葛晓光, 张寿全, 李如忠. 我国北方型裂隙岩溶水流及污染物运移数值模拟研究进展[J]. 水科学进展, 2003, 14(4):509-512. doi: 10.3321/j.issn:1001-6791.2003.04.022QIAN Jiazhong, WANG Jiaquan, GE Xiaoguang, ZHANG Shouquan, LI Ruzhong. Advances in research for numerical simulation of contaminant transport and flow in North China type fracture karst media[J]. Advances in Water Science, 2003, 14(4):509-512. doi: 10.3321/j.issn:1001-6791.2003.04.022 [18] 梁永平, 王维泰, 赵春红, 王玮, 唐春雷. 中国北方岩溶水变化特征及其环境问题[J]. 中国岩溶, 2013, 32(1):34-42. doi: 10.3969/j.issn.1001-4810.2013.01.006LIANG Yongping, WANG Weitai, ZHAO Chunhong, WANG Wei, TANG Chunlei. Variation of karst water and environmental problems in North China[J]. Carsologica Sinica, 2013, 32(1):34-42. doi: 10.3969/j.issn.1001-4810.2013.01.006 [19] 申豪勇, 梁永平, 徐永新, 张发旺. 中国北方岩溶地下水补给研究进展[J]. 水文, 2019, 39(3):15-21. doi: 10.3969/j.issn.1000-0852.2019.03.003SHEN Haoyong, LIANG Yongping, XU Yongxin, ZHANG Fawang. Research progress of karst groundwater recharge in Northern China[J]. Journal of China Hydrology, 2019, 39(3):15-21. doi: 10.3969/j.issn.1000-0852.2019.03.003 [20] 王宇. 岩溶区地表水与地下水资源及环境统一评价的流域边界划分研究[J]. 中国岩溶, 2019, 38(6):823-830.WANG Yu. Study on watershed boundary division for unified evaluation of surface water and groundwater resources and environment in karst areas[J]. Carsologica Sinica, 2019, 38(6):823-830. [21] 夏中广, 郭莹. 电法勘探在某辉锑矿采空区探测中的应用[J]. 工程地球物理学报, 2013, 10(5):676-682. doi: 10.3969/j.issn.1672-7940.2013.05.017XIA Zhongguang, GUO Ying. The application of electrical prospecting to the exploration of a stibnite goaf[J]. Chinese Journal of Engineering Geophysics, 2013, 10(5):676-682. doi: 10.3969/j.issn.1672-7940.2013.05.017 [22] 宋洪伟, 张翼龙, 夏凡, 殷夏, 苗青壮. 超高密度电法和激电法在河北某地找水实例分析[J]. 南水北调与水利科技, 2011, 9(4):60-62.SONG Hongwei, ZHANG Yilong, XIA Fan, YIN Xia, MIAO Qingzhuang. Analysis of the water investigation by super density electrical method and ip in Hebei[J]. South-to-North Water Transfers and Water Science & Technology, 2011, 9(4):60-62. [23] 李慧杰, 朱庆俊, 李伟, 王璇. 山东临朐新生代玄武岩地下水赋存规律及电性特征[J]. 南水北调与水利科技, 2012, 10(6):65-69.LI Huijie, ZHU Qingjun, LI Wei, WANG Xuan. Storage rules and electrical characteristics of groundwater in Genozoic Basalt in Linqu county of Shandong[J]. South-to-North Water Transfers and Water Science & Technology, 2012, 10(6):65-69. [24] 李金铭. 激发极化法方法技术指南[M]. 北京: 地质出版社, 2004: 184-185.LI Jinming. Technical guide for induced polarization method[M]. Beijing: Geological Publishing House, 2004: 184-185. [25] 张宗祜, 李烈荣. 中国地下水资源(河北卷)[M]. 北京: 中国地图出版社, 2005: 5-6.ZHANG Zonghu, LI Lierong. Groundwater resources of China(vol. Hebei)[M]. Beijing: SinoMaps, 2005: 5-6. [26] 陈望和. 河北地下水[M]. 北京: 地震出版社, 1999: 132-133.CHEN Wanghe. Groundwater of Hebei[M]. Beijing: Seismological Press, 1999: 132-133. [27] 韩双宝, 李甫成, 马涛. 燕山—太行山连片扶贫区1∶5万水文地质调查成果报告[R]. 北京: 中国地质调查局, 2019.HAN Shuangbao, LI Fucheng, MA Tao. The 1∶50, 000 hydrogeological investigation report of contiguous poverty alleviation area in the Taihang-Yanshan Mountains[R]. Beijing: China Geological Survey, 2019. [28] 河北省地质矿产局. 河北省北京市天津市区域地质志[M]. 北京: 地质出版社, 1989: 571-574.Hebei Bureau of Geology and Mineral Resources Exploration. Regional geological memoirs of Hebei, Beijing and Tianjin[M]. Beijing: Geological Publishing House, 1989: 571-574. [29] 薛原. 太行山北段紫荆关断裂带构造特征与活动期次[D]. 北京: 中国地质大学(北京), 2015.XUE Yuan. Structural characteristics and evolutional stages of Zijingguan fault zone in northern Taihang Mountains[D]. Beijing: China University of Geosciences, 2015. [30] 陈桂华. 紫荆关断裂带构造活动特征: 以太行山北段为例[D]. 北京: 中国地质大学(北京), 2002.CHEN Guihua. Evolutional and structural characteristics of Zijingguan fault zone: An example from northern part of Taihang Mountains[D]. Beijing: China University of Geosciences, 2002. [31] 程志平. 电法勘探教程[M]. 北京: 冶金工业出版社, 2007: 110-111.CHENG Zhiping. Electrical exploration course[M]. Beijing: Metallurgical Industry Press, 2007: 110-111. [32] 何高清, 肖健. 轴承尺寸检测数据的异常值检测与数据处理研究[J]. 机电工程, 2021, 38(2):198-203. doi: 10.3969/j.issn.1001-4551.2021.02.009HE Gaoqing, XIAO Jian. Outlier detection and data processing of bearing dimension detection data[J]. Journal of Mechanical & Electrical Engineering, 2021, 38(2):198-203. doi: 10.3969/j.issn.1001-4551.2021.02.009