• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于FLAC3D不同降雨速率下土洞致塌规律研究

薛明明 陈学军 宋宇 高晓彤 李辉 甘小卉 张铭致 潘宗源 唐灵明

薛明明,陈学军,宋 宇,等. 基于FLAC3D不同降雨速率下土洞致塌规律研究[J]. 中国岩溶,2022,41(6):905-914 doi: 10.11932/karst20220605
引用本文: 薛明明,陈学军,宋 宇,等. 基于FLAC3D不同降雨速率下土洞致塌规律研究[J]. 中国岩溶,2022,41(6):905-914 doi: 10.11932/karst20220605
XUE Mingming, CHEN Xuejun, SONG Yu, GAO Xiaotong, LI Hui, GAN Xiaohui, ZHANG Mingzhi, PAN Zongyuan, TANG Lingming. A study on collapse law of soil cave with different rainfall rates based on FLAC3D[J]. CARSOLOGICA SINICA, 2022, 41(6): 905-914. doi: 10.11932/karst20220605
Citation: XUE Mingming, CHEN Xuejun, SONG Yu, GAO Xiaotong, LI Hui, GAN Xiaohui, ZHANG Mingzhi, PAN Zongyuan, TANG Lingming. A study on collapse law of soil cave with different rainfall rates based on FLAC3D[J]. CARSOLOGICA SINICA, 2022, 41(6): 905-914. doi: 10.11932/karst20220605

基于FLAC3D不同降雨速率下土洞致塌规律研究

doi: 10.11932/karst20220605
基金项目: 国家重点研发计划项目(2019YFC507502);国家自然科学基金项目(41967037)
详细信息
    作者简介:

    薛明明(1997-),男,硕士研究生,主要从事岩土工程、岩溶塌陷、数值分析应用。E-mail:320386123@qq.com

    通讯作者:

    宋宇(1981-),女,博士,副教授,主要从事特殊性土的工程特性及致灾机理方面的研究工作。E-mail: songyu119@126.com

  • 中图分类号: P642.25

A study on collapse law of soil cave with different rainfall rates based on FLAC3D

  • 摘要: 针对桂林市临桂区岩溶塌陷易发区域,采用FLAC3D模拟不同降雨速率下的强降雨入渗过程,探究不同直径土洞在强降雨作用下的致塌规律,结果表明:(1)强降雨条件下,不同直径土洞最大位移均出现在洞顶部。降雨速率相同,洞顶竖向位移增长速率随土洞直径的增加呈整体加快的特点;加快降雨速率,竖向位移增长明显,竖向位移与土洞大小呈正相关。(2)相同降雨速率下,土洞直径增大会引起土洞底部剪切破坏区域进一步扩展。上覆土层在强降雨初期主要受到潜蚀作用,加快降雨速率,土洞底部水位剧烈波动对上覆土体产生的水击气爆成为主导作用,剪切破坏速率加快,洞趾剪切应变明显增加,当土洞直径达到3 m时,水位波动愈加剧烈,加速上覆土层破坏。(3)降雨速率的变化对土洞塑性区拓展范围具有不同程度的影响,较大直径的土洞在加快降雨速率时塑性区拓展范围明显扩大,即土洞大小、降雨速率对上覆土层稳定性具有较大的影响。研究结果为定量研究强降雨与上覆土层塌陷的关系提供了依据,对有效、合理地预警岩溶塌陷具有一定的意义。

     

  • 图  1  工程地质图

    Figure  1.  Engineering geology map

    图  2  上覆土层结构类型

    Figure  2.  Structure type of overlying soil layer

    图  3  上覆土层模型

    Figure  3.  Overlying soil layer model

    图  4  初始应力分布图

    Figure  4.  Initial stress distribution

    图  5  降雨速率为6.94×10−4 m3·s−1时土洞竖直方向位移图

    Figure  5.  Vertical displacement of soil cave when the rainfall rate is 6.94×10−4 m3·s−1

    图  6  不同降雨速率下土洞竖直方向位移图

    Figure  6.  Vertical displacement of soil cave with different rainfall rates

    图  7  不同降雨速率下土洞最大剪应力图

    Figure  7.  Maximum shear stress of soil caves with different rainfall rates

    图  8  降雨速率为6.94×10−4 m3·s−1时土洞最大剪切应变增量图

    Figure  8.  Maximum shear strain increment of soil cave when the rainfall rate is 6.94×10−4 m3·s−1

    图  9  不同降雨速率下土洞最大剪切应变增量图

    Figure  9.  Maximum shear strain increment of soil caves with different rainfall rates

    图  10  降雨速率为6.94×10−4 m3·s−1时土洞塑性区分布

    Figure  10.  Plastic distribution of soil cave when the rainfall rate is 6.94×10−4 m3·s−1

    图  11  不同降雨速率下土洞塑性区分布

    Figure  11.  Plastic distribution of soil cave with different rainfall rates

    表  1  土体基本物理、力学参数

    Table  1.   Basic physical and mechanical parameters of soil

    覆盖层类型 密度/g·cm−3 孔隙率 剪切模量/kpa 体积模量/kpa 内摩擦角/° 粘聚力/kPa 渗透系数/cm·s−1
    粉质黏土 1.72 0.47 1.354 $ \times $106 4.22 $ \times $106 8.8 25.3 3.22 $ \times $10−4
    下载: 导出CSV

    表  2  模拟方案设计

    Table  2.   Simulation scheme design

    方案 土洞直
    径/m
    降雨强
    度/mm·d−1
    集雨面
    积/m2
    降雨历
    时/h
    降雨速
    率/m3·s−1
    1 0.5 200 50 2 1.39 $ \times $10−3
    1.0
    1.5
    2.0
    2.5
    3.0
    2 0.5 2.5 1.11 $ \times $10−3
    1.0
    1.5
    2.0
    2.5
    3.0
    3 0.5 4 6.94 $ \times $10−4
    1.0
    1.5
    2.0
    2.5
    3.0
    下载: 导出CSV
  • [1] CHEN Xuejun. GIS-based evaluation of danger in karst collapse[J]. Journal of China University of Geosciences, 2001(2):132-136.
    [2] 陈学军, 杨越, 白汉营, 宋宇, 陈李洁. 基于ANP-模糊聚类分析法的岩溶塌陷研究[J]. 工程地质学报, 2017, 27(5):1213-1219. doi: 10.13544/j.cnki.jeg.2017.05.005

    CHEN Xuejun, YANG Yue, BAI Hanying, SONG Yu, CHEN Lijie. Use of analytic network process and fuzzy clustering analysis method in karst collapse[J]. Journal of Engineering Geology, 2017, 27(5):1213-1219. doi: 10.13544/j.cnki.jeg.2017.05.005
    [3] 陈学军, 陈植华, 贾晓青. 桂林市西城区岩溶塌陷灾害危险性评价[M]. 武汉: 中国地质大学出版社, 2004: 69-71.

    CHEN Xuejun, CHEN Zhihua, JIA Xiaoqing. Risk assessment of karst collapse disaster in Xicheng district, Guilin City[M]. Wuhan: China University of Geosciences Press, 2004: 69-71.
    [4] 雷明堂, 蒋小珍, 李瑜. 岩溶塌陷模型试验: 以武昌为例[J]. 地质灾害与环境保护, 1993, 4(2):39-44.

    LEI Mingtang, JIANG Xiaozhen, LI Yu. Karst collapse model test: Taking Wuchang as an example[J]. Geological Hazards and Environmental Protection, 1993, 4(2):39-44.
    [5] 戴建玲, 雷明堂, 蒋小珍, 罗伟权. 极端气候与岩溶塌陷[J]. 中国矿业, 2020, 29(S2):402-404. doi: 10.12075/j.issn.1004-4051.2020.S2.082

    DAI Jianling, LEI Mingtang, JIANG Xiaozhen, LUO Weiquan. Extreme climate and sinkhole[J]. China Mining Magazine, 2020, 29(S2):402-404. doi: 10.12075/j.issn.1004-4051.2020.S2.082
    [6] Jiang Xiaozhen, Lei Mingtang, Gao Yongli. Formation mechanism of large sinkhole collapses in Laibin, Guangxi, China[J]. Environment Earth Sciences, 2017, 76(24):810-823.
    [7] 靳红华, 王林峰, 杨培丰, 宋男男. 降雨与岩溶渗漏联合作用下岩溶塌陷稳定性分析[J]. 人民长江, 2019, 50(9):105-112. doi: 10.16232/j.cnki.1001-4179.2019.09.018

    JIN Honghua, WANG Linfeng, YANG Peifeng, SONG Nannan. Stability analysis of karst collapse considering joint effect of rainfall infiltration and groundwater leakage[J]. Yangtze River, 2019, 50(9):105-112. doi: 10.16232/j.cnki.1001-4179.2019.09.018
    [8] Xiao Xiaoxuan, Li Zhaofeng, Cai Guoqing, Yang He. Effects of declining water levels on water-air interactions in cover collapse sinkhole[J]. Bulletin of Engineering Geology Environment, 2021, 80(3):2545-2556. doi: 10.1007/s10064-020-02089-y
    [9] XIAO Xiaoxuan, XU Mo, DING Qingzhong, KANG Xiaobing, XIA Qiang, DU Feng. Experimental study investigating deformation behavior in land overlying a karst cave caused by groundwater level changes[J]. Environment Earth Sciences, 2018, 77(3):64-77. doi: 10.1007/s12665-017-7102-y
    [10] Xiao Xiaoxuan, Gutiérrez Francisco, Guerrero Jesús. The impact of groundwater drawdown and vacuum pressure on sinkhole development. Physical laboratory models[J]. Engineering Geology, 2020, 279:1-10. doi: 10.1016/j.enggeo.2020.105894
    [11] 贾龙, 蒙彦, 管振德. 岩溶土洞演化及其数值模拟分析[J]. 中国岩溶, 2014, 33(3):294-298. doi: 10.11932/zgyr20140305

    JIA Long, MENG Yan, GUAN Zhende. Evolution and numerical simulation of a karst soil cave[J]. Carsologica Sinica, 2014, 33(3):294-298. doi: 10.11932/zgyr20140305
    [12] 苏添金, 洪儒宝, 简文彬. 覆盖型岩溶土洞致灾过程的数值模拟与预测[J]. 自然灾害学报, 2018, 27(5):179-187. doi: 10.13577/j.jnd.2018.0520

    SU Tianjin, HONG Rubao, JIAN Wenbin. Numerical simulation and prediction of covered karst collapse[J]. Journal of Natural Disasters, 2018, 27(5):179-187. doi: 10.13577/j.jnd.2018.0520
    [13] 陈育民, 许鼎平. FLAC3D基础工程与实例[M]. 中国水利水电出版社, 2013.

    CHEN Yumin , XU Dingping. FLAC3D foundation engineering and examples[M]. China Water Resources and Hydropower Press, 2013.
    [14] 彭文斌. FLAC3D实用教程[M]. 机械工业出版社, 2020.

    PENG Wenbin. FLAC3D practical tutorial[M]. China Machine Press, 2020.
    [15] 唐灵明. 强降雨作用下覆盖型岩溶塌陷模型试验研究[D]. 桂林: 桂林理工大学, 2021.

    TANG Lingming. Experimental study on covering karst collapse model under heavy rainfall[D]. Guilin: Guilin University of Technology, 2021.
    [16] 王文全, 张立翔. 计算流固耦合动力学及其应用[M]. 中国水利水电出版社, 2015: 58-67.

    WANG Wenquan, ZHANG Lixiang. Computational fluid structure coupling dynamics and its application[M]. China Water Resources and Hydropower Press, 2015: 58-67.
    [17] 高江平, 胡海波, 孙世界, 王泽普. 太沙基地基极限承载力的三剪应力统一强度理论解[J]. 西安建筑科技大学学报(自然科学版), 2019, 51(2):186-191. doi: 10.15986/j.1006-7930.2019.02.005

    GAO Jiangping, HU Haibo, SUN Shijie, WANG Zepu. Three-shear stress unified strength theoretical solution of Terzaghi ultimate bearing capacity of foundation[J]. Journal of Xi'an University of Architecture & Technology(Natural Science Edition), 2019, 51(2):186-191. doi: 10.15986/j.1006-7930.2019.02.005
    [18] 张鑫. 覆盖型岩溶塌陷模型试验与数值模拟研究[D]. 合肥: 合肥工业大学, 2017.

    ZHANG Xin. Model test and numericaI simulation of overburden karst collapse [D]. Hefei: Hefei University of Technology, 2017.
    [19] 邢宇健. 岩溶区地下水位动态变化诱发地表塌陷的机理研究[D]. 北京: 北京交通大学, 2018.

    XING Yujian. Study on the mechanism of overburden collapse induced by groundwater fluctuation in karst area[D]. Beijing: Beijing Jiaotong University, 2018.
    [20] 肖先煊. 覆盖型岩溶区水气相互驱动盖层变形演化及塌陷机理研究[D]. 成都: 成都理工大学, 2018.

    XIAO Xianxuan. Deformation behavior evolution and collapse mechanism of karst covers under water-air interaction in karst area[D]. Chengdu: Chengdu University of Technology, 2018.
    [21] 王滨, 贺可强, 孙建敏. 岩溶塌陷临界土洞高度的确定:以唐山市体育场岩溶塌陷为例[J]. 工程地质学报, 2005, 13(3):320-324. doi: 10.3969/j.issn.1004-9665.2005.03.007

    WANG Bin, HE Keqiang, SUN Jianmin. Determination of critical height of soil holes of karst collapse: Karst collapse case from Tangshan palaestra[J]. Journal of Engineering Geology, 2005, 13(3):320-324. doi: 10.3969/j.issn.1004-9665.2005.03.007
    [22] 王滨, 贺可强. 岩溶塌陷临界土洞的极限平衡高度公式[J]. 岩土力学, 2006, 27(3):458-462. doi: 10.3969/j.issn.1000-7598.2006.03.024

    WANG Bin, HE Keqiang. Study on limit equilibrium height expression of critical soil cave of karst collapse[J]. Rock and Soil Mechanics, 2006, 27(3):458-462. doi: 10.3969/j.issn.1000-7598.2006.03.024
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  1222
  • HTML浏览量:  865
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-27
  • 网络出版日期:  2023-01-06
  • 刊出日期:  2022-12-25

目录

    /

    返回文章
    返回