• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

珠江流域岩溶地下河分布特征与影响因素研究

杨杨 赵良杰 夏日元 王莹

杨 杨,赵良杰,夏日元,等. 珠江流域岩溶地下河分布特征与影响因素研究[J]. 中国岩溶,2022,41(4):562-576 doi: 10.11932/karst20220515
引用本文: 杨 杨,赵良杰,夏日元,等. 珠江流域岩溶地下河分布特征与影响因素研究[J]. 中国岩溶,2022,41(4):562-576 doi: 10.11932/karst20220515
YANG Yang, ZHAO Liangjie, XIA Riyuan, WANG Ying. Distribution and influencing factors of karst underground rivers in the Pearl River Basin[J]. CARSOLOGICA SINICA, 2022, 41(4): 562-576. doi: 10.11932/karst20220515
Citation: YANG Yang, ZHAO Liangjie, XIA Riyuan, WANG Ying. Distribution and influencing factors of karst underground rivers in the Pearl River Basin[J]. CARSOLOGICA SINICA, 2022, 41(4): 562-576. doi: 10.11932/karst20220515

珠江流域岩溶地下河分布特征与影响因素研究

doi: 10.11932/karst20220515
基金项目: 国家自然科学青年基金项目 “岩溶管道−裂隙双重含水介质水流交换的非线性特征研究” (42102296);广东省水资源调查监测评价”(0835-220Z52801991)
详细信息
    作者简介:

    杨杨(1987-),女,硕士,工程师,从事岩溶水循环与水资源评价研究。E-mail:yangyang_a@mail.cgs.gov.cn

    通讯作者:

    赵良杰(1986-),男,博士,助理研究员,从事岩溶水循环与水资源评价研究。E-mail:zhaoliangjie@mail.cgs.gov.cn

  • 中图分类号: P641.134

Distribution and influencing factors of karst underground rivers in the Pearl River Basin

  • 摘要: 珠江流域岩溶地下河枯季流量约4 738.69万m3·d−1,赋存丰富的地下水资源,探讨地下河分布和发育特征对我国南方岩溶水资源的开发利用具有重要的指导意义。文章以西南岩溶区大量的野外调查工作为基础,结合珠江流域内1∶20万水文地质普查报告,选择348组岩石样品和1 036条岩溶地下河,从岩性、地形地貌、构造、水动力条件和新构造运动等角度总结分析珠江流域地下河发育规律、分布特征及其影响因素。结果表明:地下河在比溶解度介于0.84~1.2的细粒−鲕粒生物碎屑纯灰岩中最为发育,在比溶解度介于0.43~0.61的泥质灰岩中发育较弱。根据地下河形态及水循环演化条件,将地下河分为发育初期单管型、发育多期羽毛型、新构造控制网络型、发育成熟期树枝型4种类型。地形地貌和地表河网决定岩溶地下河运动的趋势和方向;构造控制地下河发育的空间格局,其中构造反接复合部位、压扭性断裂两侧破碎带、与非可溶岩接触带、褶皱弯曲最大部位、背斜轴部破碎带和向斜轴部地下河发育尤为明显;水动力特征影响地下河发育规模和发育深度;新构造运动促进地下河发育向深性、继承性、新生性发展。

     

  • 图  1  珠江流域含水岩组及二级分区

    Figure  1.  Aquifer characteristics and secondary watershed boundary of the Pearl River Basin

    图  2  珠江流域地下河分布

    Figure  2.  Distribution of underground rivers in the Pearl River Basin

    图  3  地下河出露高程

    Figure  3.  Outlet elevation of karst underground river

    图  4  珠江流域大型地下河分布

    Figure  4.  Distribution of large underground rivers in the Pearl River Basin

    图  5  单管型地州地下河系统

    Figure  5.  Dizhou underground river system for single conduit type

    图  6  羽毛型三丘田地下河系统

    Figure  6.  San-qiutian underground river system for feather type

    图  7  网络型化处地下河系统

    Figure  7.  Huachu underground river system for network type

    图  8  树枝型大龙潭地下河系统

    Figure  8.  Dalongtan underground river system for dendritic type

    图  9  碳酸盐岩化学成份占比

    Figure  9.  Proportion of chemical composition of carbonate rock

    图  10  地下河向河谷排泄的趋势

    Figure  10.  Tend of underground rivers to discharge into valleys

    图  11  河间地块地下河展布

    Figure  11.  Distribution of karst underground river in the inter-river land mass

    图  12  构造对大小井地下河分布的控制作用(修改自罗甸幅1∶20万水文地质普查报告)

    Figure  12.  Controlling Effect of geological structure on the distribution of Daxiaojing Underground Rivers

    图  13  构造对地苏地下河分布的控制作用

    Figure  13.  The controlling effect of structure on the distribution of Disu underground rivers

    图  14  岩溶含水介质特征分布

    Figure  14.  Characteristic distribution of karst water-bearing media

    图  15  豪猪岩至东究岩溶管道形态示意图(据中英探险资料修改)

    Figure  15.  Schematic diagram of karst conduit form from Haozhuyan to Dongju in Zhaidi underground river (modified according to Sino-British exploration materials)

    图  16  寨底地下河流域北部地表水地下水分水岭

    Figure  16.  Watershed of surface water and groundwater in the north of Zhaidi underground river basin

    图  17  新构造运动促进地下河的发展

    Figure  17.  Distribution of karst underground river in the inter-river land

    图  18  天生桥地下河平面位置图

    Figure  18.  Plane map of Tianshengqiao underground river

    表  1  各二级流域岩溶地下河发育情况

    Table  1.   Development of karst underground rivers in each secondary watershed

    二级
    流域
    裸露型碳酸盐岩
    面积/万km2
    占流域面
    积比例/%
    岩溶地下
    河条数
    密度/
    条·100 km−2
    南北盘江 5.30 64.09 173 0.33
    红柳江 5.90 52.07 440 0.75
    郁江 2.06 26.44 216 1.05
    西江 0.65 9.79 96 1.48
    北江 1.04 22.27 111 1.07
    合计 14.95 38.63 1036 0.69
    下载: 导出CSV

    表  2  大型地下河发育特征表

    Table  2.   Development characteristics of large underground rivers

    代码地下河名称出口位置主管道长
    度/km
    分布方向地下河支流
    数/个
    汇水面
    积/km2
    枯季流
    量/m3·s−1
    主要含水
    岩组
    UGR1六郎洞云南丘北县15.00NE22 064.0010.50T2g
    UGR2水源洞广西凌云县80.30SW5667.189.74D2t
    UGR3洛帆贵州册亨县11.25SE3339.008.43P1m
    UGR4外孟塘贵州荔波县15.00SE21 418.806.60P1m
    UGR5谷 布广西田阳区19.20NE5611.195.78D3r
    UGR6坡心-坡月广西巴马瑶族自治县47.30SE11852.445.75D2t
    UGR7地 苏广西都安瑶族自治县55.90SE121 128.004.86D3d-e
    UGR8大小井贵州罗甸县35.00SE71 855.704.73T1d
    UGR9盘溪云南弥勒市13.75NE2744.803.33Dx
    UGR10小七孔贵州荔波县20.00SE2337.303.23P1q-m
    UGR11拉 浪广西宜州区20.90SE转NE7221.203.00C2d-h
    UGR12定 业广西那坡县26.60NNW4423.522.73D1y
    UGR13作 登广西田东县76.00SEE转NE41 409.052.16D3r、C1yt
    UGR14百 朗广西乐业县63.00N13600.032.14CPm
    UGR15索 潭广西都安瑶族自治县31.20N转NW6226.312.13C2h、P1q
    UGR16坡 雷广西田东县16.70NE2377.371.79D3r、CPm
    UGR17鸡 叫广西忻城县28.80SW3327.811.79CPm、P1q
    UGR18沙锅贵州镇宁布依族苗族自治县23.75SW4480.201.70T2f
    UGR19东里-板文广西东兰县37.40E5502.291.48C1-2d
    UGR20龙临-头布广西靖西市28.20SE3320.811.46D3r
    UGR21录峒-鹅泉广西靖西市22.00SE2226.951.40D3r
    UGR22哑口寨贵州镇宁布依族苗族自治县12.50NE5252.201.36P1m、P2w
    UGR23布泉-大龙潭广西隆安县54.80E101 347.141.35D3r
    UGR24中 旧广西都安瑶族自治县35.90SE6369.441.30CPm、P1q
    UGR25坝纳贵州平塘县17.50NW5455.201.20P1
    UGR26下 末广西鹿寨县20.00S3463.601.20D3g、C1h
    UGR27石 牌广西来宾市23.00SE转NEE3221.441.14C1d、P1q
    UGR28模 范广西田东县20.50SE转NE3210.211.06D3r、C1d
    UGR29大龙洞广西上林县24.00N转SSE4437.651.03D2t、D3g
    UGR30古 蓬广西忻城县17.00NW转E2213.681.01CPm、P1q
    下载: 导出CSV

    表  3  不同岩性化学成份及比溶解度对比

    Table  3.   Comparison of chemical composition and specific solubility of different lithologies

    发育强弱主要岩性结构化学成份/%比溶解度
    CaOMgO
    地下河发育强细粒−鲕粒生物碎屑纯灰岩52.58~56.030.08~1.620.84−1.20
    地下河发育中等微粒白云质灰岩30.77~52.140.31~7.680.62~0.83
    地下河发育弱含泥质−燧石灰岩、细粒−中粒白云岩30.72~34.8410.94~21.110.43~0.61
    无发育非碳酸盐岩(粉砂岩)1.15~3.330.12~2.14/
    下载: 导出CSV
  • [1] 袁道先. 西南岩溶石山地区重大环境地质问题及对策研究[M]. 北京: 科学出版社, 2014.

    YUAN Daoxian. Study on major environmental geological problems and countermeasures in karst stone mountain area of southwest China[M]. Beijing: Science Press, 2014.
    [2] ZOU S, ZHU M, TANG J, XIA R. Water resources security in karst area of southwest China: problems and countermeasures[J]. Acta Geologica Sinica, 2006, 80(10):637-642.
    [3] 夏日元. 西南岩溶石山区地下水资源调查评价与开发利用模式[M]. 北京: 科学出版社, 2018.

    XIA Riyuan. Investigation, evaluation and exploitation of groundwater resources in karst rocky mountainous areas of Southwest China[M]. Beijing: Science Press, 2018.
    [4] 赵良杰. 岩溶裂隙−管道双重含水介质水流交换机理研究[D]. 北京: 中国地质大学(北京), 2019.

    ZHAO Liangjie. Study of water exchange mechanism of karst matrix and conduit medium[D]. Beijing: China University of Geosciences (Beijing), 2019.
    [5] Brkić Ž, Kuhta M, Hunjak T. Groundwater flow mechanism in the well-developed karst aquifer system in the western Croatia: Insights from spring discharge and water isotopes[J]. Catena, 2018, 161:14-26. doi: 10.1016/j.catena.2017.10.011
    [6] 王宇. 岩溶区地表水与地下水资源及环境统一评价的流域边界划分研究[J]. 中国岩溶, 2019, 38(6):823-830.

    WANG Yu. Study on watershed boundary division for unified evaluation of surface water and groundwater resources and environment in karst areas[J]. Carsologica Sinica, 2019, 38(6):823-830.
    [7] 杨杨, 赵良杰, 潘晓东, 夏日元, 曹建文. 西南岩溶山区地下水资源评价方法对比研究: 以寨底地下河流域为例[J]. 中国岩溶, 2022, 41(1):111-123.

    YANG Yang, ZHAO Liangjie, PAN Xiaodong, XIA Riyuan, CAO Jianwen. Comparative analysis of groundwater resources evaluation methods in karst area of south China: Taking Zhaidi underground river system as an example[J]. Carsologica Sinica, 2022, 41(1):111-123.
    [8] 罗明明, 季怀松. 岩溶管道与裂隙介质间溶质暂态存储机制[J]. 水科学进展, 2022, 33(1):145-152.

    LUO Mingming, JI Huaisong. Mechanism of solute transient storage between karst conduit and fissures[J]. Advances in Water Science, 2022, 33(1):145-152.
    [9] Sağır Ç, Kurtuluş B, Razack M. Hydrodynamic characterization of Mugla karst aquifer using correlation and spectral analyses on the rainfall and springs water-level time series[J]. Water, 2019, 12(1):85. doi: 10.3390/w12010085
    [10] Sauter M, Giese M, Bailly Comte V, Maré chal J C, Reimann T, Geyer T. Turbulent and laminar flow in karst conduits under unsteady flow conditions: Interpretation of pumping tests by discrete conduit-continuum modeling[J]. Water Resources Research, 2018, 54(3):1918-1933. doi: 10.1002/2017WR020658
    [11] 蒋忠诚, 夏日元, 时坚, 裴建国, 何师意, 梁彬. 西南岩溶地下水资源开发利用效应与潜力分析[J]. 地球学报, 2006(5):495-502. doi: 10.3321/j.issn:1006-3021.2006.05.012

    JIANG Zhongcheng, XIA Riyuan, SHI Jian, PEI Jianguo, HE Shiyi, LIANG Bin. The application effects and exploitation capacity of karst underground water resources in southwest China[J]. Acta Geoscientica Sinica, 2006(5):495-502. doi: 10.3321/j.issn:1006-3021.2006.05.012
    [12] 王明章, 王伟, 周忠赋. 峰丛洼地区地下地表联合成库地下水开发模式: 贵州普定马官水洞地下河开发利用[J]. 贵州地质, 2005(4):279-283. doi: 10.3969/j.issn.1000-5943.2005.04.012

    WANG Mingzhang, WANG Wei, ZHOU Zhongfu. Development model for the coalition of surface and underground water into reservoir in the karst areas of peak-cluster depression: Taking example for exploitation of shuidong underground river at Maguan, Puding county, Guizhou[J]. Guizhou Geology, 2005(4):279-283. doi: 10.3969/j.issn.1000-5943.2005.04.012
    [13] 赵良杰, 王莹, 周妍, 曹建文, 杨杨, 王喆. 基于SWAT模型的珠江流域地下水资源评价研究[J/OL]. 地球科学: 1-19. https://kns.cnki.net/kcms/detail/42.1874.P.20220119.1634.006.html.

    ZHAO Liangjie, WANG Ying, ZHOU Yan, CAO Jianwen, YANG Yang, WANG Zhe. Groundwater resources evaluation in the pearl river basin based on swat model[J/OL]. Earth Science, 1-19 . https://kns.cnki.net/kcms/detail/42.1874.P.20220119.1634.006.html.
    [14] Gallegos J J, Hu B X, Davis H. Simulating flow in karst aquifers at laboratory and sub-regional scales using MODFLOW-CFP[J]. Hydrogeology Journal, 2013, 21(8):1749-1760. doi: 10.1007/s10040-013-1046-4
    [15] 姜光辉, 郭芳, 汤庆佳, 李鑫, 曾莘茹. 人工示踪技术在岩溶地区水文地质勘察中的应用[J]. 南京大学学报(自然科学版), 2016, 52(3):503-511.

    JIANG Guanghui, GUO Fang, TANG Qingjia, LI Xin, ZENG Xinru. Application of tracer test techniques in hydrogeological survey in karst area[J]. Journal of Nanjing University(Natural Sciences), 2016, 52(3):503-511.
    [16] 赵良杰, 夏日元, 易连兴, 杨杨, 王喆, 卢海平. 岩溶地下河浊度来源及对示踪试验影响的定量分析[J]. 地球学报, 2016, 37(2):241-246. doi: 10.3975/cagsb.2016.02.12

    ZHAO Liangjie, XIA Riyuan, YI Lianxing, YANG Yang, WANG Zhe, LU Haiping. Quantitative analysis of the source and the effect of turbidity in karst river on tracer test[J]. Acta Geoscientica Sinica, 2016, 37(2):241-246. doi: 10.3975/cagsb.2016.02.12
    [17] Wang C, Wang X, Majdalani S, Guinot V, Jourde H. Influence of dual conduit structure on solute transport in karst tracer tests: An experimental laboratory study[J]. Journal of Hydrology, 2020, 590:125255. doi: 10.1016/j.jhydrol.2020.125255
    [18] 曹建华, 蒋忠诚, 袁道先, 夏日元, 章程. 岩溶动力系统与全球变化研究进展[J]. 中国地质, 2017, 44(5):874-900. doi: 10.12029/gc20170504

    CAO Jianhua, JIANG Zhongcheng, YUAN Daoxian, XIA Riyuan, ZHANG Cheng. The progress in the study of the karst dynamic system and global changes in the past 30 years[J]. Geology in China, 2017, 44(5):874-900. doi: 10.12029/gc20170504
    [19] 蒲俊兵, 蒋忠诚, 袁道先, 章程. 岩石风化碳汇研究进展: 基于 IPCC 第五次气候变化评估报告的分析[J]. 地球科学进展, 2015, 30(10):1081-1090.

    PU Junbing, JIANG Zhongcheng, Yuan Daoxian, ZHANG Cheng. Some opinions on rock-weathering-related carbon sinks from the IPCC fifth assessment report[J]. Advance in Earth Sciences, 2015, 30(10):1081-1090.
    [20] 赵小二, 常勇, 吴吉春. 岩溶地下河污染物运移模型对比研究[J]. 环境科学学报, 2020, 40(4):1250-1259. doi: 10.13671/j.hjkxxb.2019.0390

    ZHAO Xiaoer, CHANG Yong, WU Jichun. A comparative study on two contaminant transport models used in karst underground rivers[J]. Acta Scientiae Circumstantiae, 2020, 40(4):1250-1259. doi: 10.13671/j.hjkxxb.2019.0390
    [21] Madonia P, Cangemi M, Oliveri Y, Germani C. Hydrogeochemical characters of karst aquifers in central Italy and relationship with neotectonics[J]. Water, 2020, 12(7):1926. doi: 10.3390/w12071926
    [22] 杨立铮. 我国南方某些地区地下河的结构特征及其形成和演化[J]. 成都地质学院学报, 1982, 2:54-61.

    YANG Lizheng. Structural characteristics, formation and evolution of underground rivers in some areas of southern China[J]. Journal of Chengdu Institute of Geology, 1982, 2:54-61.
    [23] 蒲俊兵. 重庆地区岩溶地下河发育与分布的基本特征[J]. 中国岩溶, 2013, 32(3):266-279. doi: 10.3969/j.issn.1001-4810.2013.03.004

    PU Junbing. Development and distribution of karst subterranean streams in Chongqing, China[J]. Carsologica Sinica, 2013, 32(3):266-279. doi: 10.3969/j.issn.1001-4810.2013.03.004
    [24] 陈思燕, 曾敏. 四川岩溶地下河空间分布规律研究[J]. 地下水, 2015(3):4-6. doi: 10.3969/j.issn.1004-1184.2015.03.003

    CHEN Siyan, ZENG Min. Study on the spatial distribution regularity of karst ground rivers in Sichuan[J]. Ground water, 2015(3):4-6. doi: 10.3969/j.issn.1004-1184.2015.03.003
    [25] 韦王秋, 左天惠, 张沛全, 李海. 红水河流域岩溶地下河出口分布特征与控制因素[J]. 科学技术创新, 2017(34):17-18. doi: 10.3969/j.issn.1673-1328.2017.34.008

    WEI Wangqiu, ZUO Tinahui, ZHANG Peiquan, LI Hai. Distribution characteristics and controlling factors of karst underground river outlet in Hongshuihe River basin[J]. Science and Technology Innovation, 2017(34):17-18. doi: 10.3969/j.issn.1673-1328.2017.34.008
  • 加载中
图(18) / 表(3)
计量
  • 文章访问数:  1596
  • HTML浏览量:  980
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-01
  • 录用日期:  2022-09-08
  • 修回日期:  2022-09-06
  • 刊出日期:  2022-08-31

目录

    /

    返回文章
    返回