• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

岩溶地下工程地质环境影响区范围划定初步研究

吴晟堂 蒋小珍 马骁 汤振

吴晟堂,蒋小珍,马 骁,等. 岩溶地下工程地质环境影响区范围划定初步研究:以深圳市龙岗区基坑降水为例[J]. 中国岩溶,2022,41(5):825-837 doi: 10.11932/karst20220511
引用本文: 吴晟堂,蒋小珍,马 骁,等. 岩溶地下工程地质环境影响区范围划定初步研究:以深圳市龙岗区基坑降水为例[J]. 中国岩溶,2022,41(5):825-837 doi: 10.11932/karst20220511
WU Shengtang, JIANG Xiaozhen, MA Xiao, TANG Zhen. Study on the delimitation of affected zone of geological environment for karst underground engineering:taking Longgang district, Shenzhen City as an example[J]. CARSOLOGICA SINICA, 2022, 41(5): 825-837. doi: 10.11932/karst20220511
Citation: WU Shengtang, JIANG Xiaozhen, MA Xiao, TANG Zhen. Study on the delimitation of affected zone of geological environment for karst underground engineering:taking Longgang district, Shenzhen City as an example[J]. CARSOLOGICA SINICA, 2022, 41(5): 825-837. doi: 10.11932/karst20220511

岩溶地下工程地质环境影响区范围划定初步研究——以深圳市龙岗区基坑降水为例

doi: 10.11932/karst20220511
基金项目: 国家自然科学基金(42077273);中国地质调查局项目(DD20190266)
详细信息
    作者简介:

    吴晟堂(1995-),男,硕士,主要从事岩溶地质灾害防治研究。E-mail:1047911305@qq.com

    通讯作者:

    蒋小珍(1970-),女,博士,研究员,博士研究生导师,主要从事岩溶地质灾害防治研究。E-mail: 511036641@qq.com

  • 中图分类号: P642

Study on the delimitation of affected zone of geological environment for karst underground engineering:taking Longgang district, Shenzhen City as an example

  • 摘要: 在大量建设城市地下轨道交通及城市更新工程的背景之下,我国城市岩溶地质灾害日趋严重。文章以深圳市3个岩溶地面塌陷事件为例,开展岩溶地下工程地质环境影响区的划定研究。首先运用高频岩溶地下水气压力监测技术对工程影响实际范围进行监测分析,然后结合工程施工参数、岩溶塌陷主要影响因素与水文地质试验参数,采用定性分析和量化计算的综合研究方法,推导出岩溶地下工程地质环境影响范围理论计算经验公式。结果表明:岩溶地下工程影响范围主要与渗透系数、工程深度成正比,与土层厚度成反比,推导的半定量理论公式适用于岩溶承压水条件下,可快速为缺乏地下水监测资料的岩溶地区地下工程安全建设及城市防灾减灾工作提供依据。

     

  • 图  1  研究区地理位置及灾害分布图

    Figure  1.  Geographical location and disaster distribution of the study area

    图  2  龙岗-荷坳盆地水文地质略图(资料来源惠阳幅1∶20万水文地质图)

    Figure  2.  Hydrogeological sketch map of Longgang-Heao basin (Data source from Huiyang 1∶200,000 hydrogeological scheme)

    图  3  数码城站岩溶水等测压水位线图(2020.10.24)

    Figure  3.  Diagram of isometric manometric karst water level at Digital City Station (2020.10.24)

    图  4  5#基坑岩溶水等测压水位线图(2020.04.27)

    Figure  4.  Diagram of isometric manometric karst water level in foundation pit 5# (2020.04.27)

    图  5  龙平站岩溶水等测压水位线图(2021.02.02)

    Figure  5.  Diagram of isometric manometric karst water level at Longping Station (2021.02.02)

    图  6  数码城站片区垂直岩溶发育分布图

    Figure  6.  Vertical karst development and distribution map of Digital City Station

    图  7  岩溶区深基坑诱发灾害示意图

    Figure  7.  Schematic diagram of the disaster induced by deep foundation pit in the karst area

    图  8  工程影响范围划定简化示意图

    Figure  8.  Simplified schematic diagram of delimitation of the affected zone for engineering

    表  1  工程参数及岩溶发育指标一览表

    Table  1.   Engineering parameters and karst development indicators

    基坑
    工程
    基坑
    长度/m
    基坑
    宽度/m
    地面原
    标高/m
    工程
    深度/m
    土层
    厚度/m
    岩溶发育
    深度/m
    钻孔
    /个
    见洞率/% 线岩
    溶率/%
    数码城站 512 16~56 43.0 22.3 6~23 9~24 1876 42.9 24.8
    5#地更新工程 200 150 35.0 19.8 7~25 10~25 1452 29.4 26.8
    龙平站 191 28 35.8 27.0 7~24 9~22 1367 39.2 21.4
    注:依《建筑地基基础设计规范》GB50007-2011表6.6.2划分标准,判定研究区岩溶强发育。
    下载: 导出CSV

    表  2  工地监测信息统计表

    Table  2.   Statistical table of site monitoring information

    工程
    场地
    监测点
    数量/个
    监测点
    平均间距/m
    监测面积/
    km2
    监测
    频率/min
    工程实际
    影响半径/m
    地下水降落漏斗影响范围
    形成日期/年.月.日
    数码城站基坑 19 200 0.52 2~5 850 2020.10.24
    5#工地 74 100 0.85 2~5 560 2020.04.27
    龙平站基坑 8 180 0.31 2~5 820 2021.02.02
    下载: 导出CSV

    表  3  龙岗区塌陷点覆盖层厚度统计表

    Table  3.   Statistical table of overburden thickness on collapse point in Longgang area

    塌陷编号 T01 T02 T03 T04 T05 T06 T07 T08 T09
    覆盖层厚度/m 6 20.6 14 8 9.3 11.6 14.4 9.3 14.8
    下载: 导出CSV

    表  4  场地抽水试验成果表

    Table  4.   Results of site pumping tests

    试验场地 钻孔编号 试验段
    埋深/m
    静止水位
    埋深(h)/m
    水位降深
    (s)/m
    涌水量
    (Q)/m3·d−1
    影响半径
    (R)/m
    平均渗透系数 $\bar {\rm{K}}$/
    m·d−1
    数码城站 SMSW01 8.3~24.8 1.95 6.0 392.1 133.2 6.63
    4.0 336.5 98.8
    2.0 262.4 59.5
    数码城站 SMSW02 4.0~28.0 1.90 6.0 442.5 502.3 67.87
    4.0 302.2 330.9
    2.0 156.8 161.3
    数码城站 SMSW03 12.0~14.2 2.20 9.0 38.7 159.6 2.70
    6.0 23.9 99.3
    3.0 10.8 44.5
    龙平站 LPSW01 4.0~29.5 4.51 6.6 527.2 167.8 6.33
    5.6 450.3 140.8
    4.7 375.6 115.9
    龙平站 LPSW02 4.0~10.8 4.40 3.0 373.0 77.3 23.14
    2.0 262.4 48.6
    1.0 145.9 22.9
    龙平站 LPSW03 15.0~20.0 4.00 10.2 5.3 32.6 0.09
    6.8 3.3 20.4
    3.4 1.5 8.8
    龙平站 LPSW04 11.0~15.6 3.40 7.5 130.3 200.9 7.75
    5.0 98.0 138.9
    2.5 57.9 72.2
    龙平站 LPSW05 13.6~17.0 3.10 10.5 590.9 510.4 28.30
    7.0 496.5 375.4
    3.5 302.2 199.6
    5#地块 SW102 17.5~99.5 3.7.0 2.4 151.9 144.3 37.40
    下载: 导出CSV

    表  5  经验系数α反演结果

    Table  5.   Inversion results of empirical coefficient α

    区域 工程深度
    H/m
    初始水位
    埋深h/m
    土层平均
    厚度d/m
    区域渗透
    系数K/m·d−1
    实际影响
    半径R/m
    理论影响
    半径R′/m
    范围
    误差/%
    经验
    系数(α)
    平均经验
    系数( $\bar \alpha$
    数码城站 22.27 1.9 12.97 37.25 850 848 0.2 5.9 5.9
    龙平站 27.0 3.1 13.31 25.72 820 806 1.7 6.0
    5#地块 19.84 2.38 16.91 37.4 550 559 1.6 5.8
    下载: 导出CSV
  • [1] Lei M, Jiang X, Gao Y. Current Status and Strategic Planning of Sinkhole Collapses in China[J]. Engineering Geology for Society and Territory, 2015, 5:529-533.
    [2] 蒙彦, 雷明堂. 岩溶塌陷研究现状及趋势分析[J]. 中国岩溶, 2019, 38(3):411-417.

    MENG Yan, LEI Mingtang. Analysis of situation and trend of sinkhole collapse[J]. Carsologica Sinica, 2019, 38(3):411-417.
    [3] 张建全, 闫宇蕾,宋伟超,王彪,张克利. 地下工程施工工程影响分区综合研究与应用 [J]. 施工技术, 2020, 49(7):65-67,108.

    ZHANG Jianquan, YAN Yulei, SONG WEichao,WANG Biao,ZHANG Keli. Comprehensive study and application of underground engineering construction influence zoning[J]. Construction Technology,2020,49(7):65-67,108.
    [4] 崔庆龙,沈水龙,吴怀娜,许烨霜. 广州岩溶地区深基坑开挖对周围环境影响的研究 [J]. 岩土力学, 2015, 36(S1):553-557.DOI: 10.16285/j.rsm.2015.S1.096.

    CUI Qinglong, SHEN Shuilong, WU Huaina,XU Yeshuang. Field investigation of deep excavation of metro station on surrounding ground in karst region of guangzhou[J]. Rock and Soil Mechanics, 2015, 36(S1):553-557. DOI: 10.16285/j.rsm.2015.S1.096.
    [5] 历立兵, 侯兴民, 李远东. 一种基坑降水影响半径的有限元计算方法[J]. 岩土力学, 2021, 42(2):574-580.

    LI Libing, HOU Xingmin, LI Yuandong. A finite element method for calculating the influence radius of foundation pit dewatering[J]. Rock and Soil Mechanics, 2021, 42(2):574-580.
    [6] 建筑基坑工程监测技术规范 [S]. 中华人民共和国国家标准. 2009: 94p: A4.

    Technical code for monitoring of building excavation engineering[S]. National standards of the People's Republic of China. 2009:94p:A4.
    [7] 城市轨道交通工程监测技术规范 [S]. 中华人民共和国国家标准. 2014: 0p: A4.

    Code for moilit}ring measurement of urban rail transit engineering [S]. National standards of the People's Republic of China. 2014: 0p:A4
    [8] Gary M K. Maryland's zone of dewatering influence law for limestone quarries [C]. Hydrogeology and engineering geology of sinkholes and karst:1999: 273-277.
    [9] Maryland.gov. Press Release. [EB/OL]. (1998-03-30).

    https://mde.maryland.gov/programs/Pressroom/Pages/399.aspx
    [10] Maryland.gov. Press Release. [EB/OL]. (1998-04-29).

    https://mde.maryland.gov/programs/Pressroom/Pages/393.aspx
    [11] Aston R L. Maryland limestone producers protest discrimination[J]. Engineering and Mining Journal, 1998, 199(4):32RR.
    [12] United States Court of Appeals, Fourth Circuit. Laurel Sand & Gravel, Inc. v. Wilson. [EB/OL]. (2008-03-05) [2022-03-25].

    https://www.courtlistener.com/opinion/1025180/laurel-sand-gravel-inc-v-wilson/
    [13] Dr S F . The Practical Impacts of Karst Regulations on the Communities that Implement Them - a Pair of Case Studies[J]. Springer Netherlands, 2009.
    [14] Brezinski D K. Geologic and anthropogenic factors influencing karst development in the Frederick region of Maryland[J]. Environmental Geosciences, 2007, 14(1):31-48. doi: 10.1306/eg.01050605014
    [15] Lv Yuxiang, Jiang Yongjun, Hu ei, Mao Yang. A review of the effects of tunnel excavation on the hydrology, ecology, and environment in karst areas: Current status, challenges, and perspectives[J]. Journal of Hydrology, 2020, 586:124891. doi: 10.1016/j.jhydrol.2020.124891
    [16] 刘鹏瑞, 刘长宪, 姜超, 王芳, 陈钰, 贾龙. 武汉市工程施工引发岩溶塌陷机理分析[J]. 中国岩溶, 2017, 36(6):830-835. doi: 10.11932/karst20170605

    LIU Pengrui, LIU Changxian, JIANG Chao,WANG Fang,CHEN Yu,JIA Long. Mechanism of karst collapse caused by engineering construction in Wuhan City[J]. Carsologica Sinica, 2017, 36(6):830-835. doi: 10.11932/karst20170605
    [17] 黄健民,吕镁娜,郭宇,陈小月. 广州金沙洲岩溶地面塌陷地质灾害成因分析 [J]. 中国岩溶, 2013, 32(2):167-174.

    HUANG Jianmin, LV Meina, GUO Yu,CHEN Xiaoyue. Research on the reason for geologic disaster by karst surface collapse at Jinshazhou in Guangzhou[J]. Carsologica Sinica,2013,32(2):167-174.
    [18] 耿光旭. 深圳岩溶地区的岩土工程问题及对策[C]. 广东省首届地球科学与工程学术大会论文集. 2017: 99-107.

    GENG Guangxu. Problems and countermeasures of geotechnical engineering in Shenzhen Karst area[C]. Proceedings of the first Earth Science and Engineering Conference of Guangdong Province. 2017:99-107.
    [19] 蒙彦, 郑小战, 雷明堂, 李卓骏, 贾龙, 潘宗源. 珠三角地区岩溶分布特征及发育规律[J]. 中国岩溶, 2019, 38(5):746-751.

    MENG Yan, ZHEN Xiaozhan, LEI Mingtang, LI Zhuojun, JIA Long, PAN Zongyuan. Karst distribution and development in the Pearl River Delta[J]. Carsologica Sinica, 2019, 38(5):746-751.
    [20] 蒋小珍, 雷明堂. 岩溶塌陷灾害的岩溶地下水气压力监测技术及应用[J]. 中国岩溶, 2018, 37(5):786-791.

    JIANG Xiaozhen, LEI Mingtang. Monitoring technique and its application of karst groundwater-air pressure in karst collapse[J]. Carsologica Sinica, 2018, 37(5):786-791.
    [21] 蒋小珍, 雷明堂, 管振德. 湖南宁乡大成桥充水矿山疏干区岩溶系统水气压力监测及突变特征[J]. 中国岩溶, 2016, 35(2):179-189. doi: 10.11932/karst20160207

    JIANG Xiaozhen, LEI Mingtang, GUAN Zhende. Character of water or barometric pressure jump within karst conduit in large strong drainage area of karst water filling mine in Dachengqiao,Ningxiang,Hunan[J]. Carsologica Sinica, 2016, 35(2):179-189. doi: 10.11932/karst20160207
    [22] 王晓明,王秀辉,文望,李功宇. Dupuit稳定井流公式的模型分析 [J]. 煤田地质与勘探, 2014, 42(6):73-75,81

    WANG Xiaoming, WANG Xiuhui, WEN Wang,LI Gongyu. Model analysis of Dupuit’s steady well flow formula[J]. Coal Geology & Exploration,2014,42(6):73-75,81.
    [23] 王军辉,王峰. 论抽水的降落漏斗范围、影响半径与环境影响范围 [J]. 水利学报, 2020, 51(7):827-834

    WANG Junhui, WANG Feng. Discussion on the range of groundwater depression cone,radius of influence and scope of environmental impacts during pumping[J]. Journal of Hydraulic Engineering,2020,51(7):827-834.
    [24] 凤蔚,王晓燕, 刘振英, 李文鹏, 李海涛.松散岩类承压含水层影响半径计算方法 [J]. 人民黄河, 2017, 39(12):57-61.

    FENG Wei, WANG Xiaoyan, LIU Zhenying,LI Wenpeng,LI Haitao. Calculating Methods of Influence Radius in the Confined Aquifer of Loose Stuff[J]. Yellow River,2017,39(12):57-61.
    [25] 钱学溥,于义强. 引用影响半径理论公式及其应用 [J]. 工程勘察, 2019(6):43-49.

    QIAN Xuepu,YU Yiqiang. Theoretical equation on quoted influence radius and its application[J]. Geotechnical Investigation & Surveying,2019(6):43-49.
    [26] Zhou Z, Xu Y L, Zhu C Q, Xu M T,Jin Z Y. Collapse Mechanism of Shallow-Buried Karst Cave Under the Effect of Mining[J]. Geotechnical and Geological Engineering, 2021, 39(2):1521-1532. doi: 10.1007/s10706-020-01573-2
    [27] 潘宗源, 陈学军, 杨鑫, 宋宇, 张铭致. 湖南郴州地区岩溶塌陷分布规律及其影响因素浅析[J]. 中国岩溶, 2021, 40(2):221-229.

    PAN Zongyuan, CHEN Xuejun, YANG Xin,SONG Yu,ZHANG Mingzhi. Distribution and influence factors of sinkholes in the Chenzhou area, Hunan Province[J]. Carsologica Sinica, 2021, 40(2):221-229.
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  1344
  • HTML浏览量:  786
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-10
  • 刊出日期:  2022-12-02

目录

    /

    返回文章
    返回