• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

岩溶基底隧道拱顶沉陷三段四层关键技术研究

覃剑文 李海波 潘光明 田月明

覃剑文,李海波,潘光明,等. 岩溶基底隧道拱顶沉陷三段四层关键技术研究[J]. 中国岩溶,2022,41(5):746-758 doi: 10.11932/karst20220508
引用本文: 覃剑文,李海波,潘光明,等. 岩溶基底隧道拱顶沉陷三段四层关键技术研究[J]. 中国岩溶,2022,41(5):746-758 doi: 10.11932/karst20220508
QIN Jianwen, LI Haibo, PAN Guangming, TIAN Yueming. Study on 'three-section and four-layer' reinforcement technology of tunnel vault subsidence in the karst basement[J]. CARSOLOGICA SINICA, 2022, 41(5): 746-758. doi: 10.11932/karst20220508
Citation: QIN Jianwen, LI Haibo, PAN Guangming, TIAN Yueming. Study on "three-section and four-layer" reinforcement technology of tunnel vault subsidence in the karst basement[J]. CARSOLOGICA SINICA, 2022, 41(5): 746-758. doi: 10.11932/karst20220508

岩溶基底隧道拱顶沉陷三段四层关键技术研究

doi: 10.11932/karst20220508
详细信息
    作者简介:

    覃剑文(1972-),男,高级工程师,长期从事地质灾害防治工程勘查、设计工作。E-mail:631680292@qq.com

    通讯作者:

    李海波(1983-),男,高级工程师,主要从事地质勘查、地球物理勘探、地下空间探测、地质灾害防治和隧道突发地灾应急救援治理等技术管理及研究工作。E-mail: ppbo@163.com

  • 中图分类号: U457;TU761.1+1

Study on "three-section and four-layer" reinforcement technology of tunnel vault subsidence in the karst basement

  • 摘要: 为有效治理岩溶基底城市隧道拱顶地层沉陷地质灾害,在充分探明沉陷区水文地质、工程地质特征的基础上,提出了“三段四层控制技术”,将治理区划分为沉陷区重点加固段、影响区次重点加固段和超前加固段;再根据治理深度和治理顺序进一步把沉陷区重点加固段分为顶部阻浆层、拱顶止浆垫层、拱顶加固层和中间加固层,研究了每段、每层注浆加固机理、浆液类型选择和控制注浆参数。研究成果表明,采用孔内复合止浆技术满足不同深度地层分段注浆为主、垂直孔和定向斜孔相结合,充填注浆、劈裂-挤密注浆相结合,以速凝浆液为主、单液水泥浆为辅,严格控制安全注浆参数,是“三段四层控制技术”安全有效注浆的技术关键,该技术方案在岩溶基底城市隧道拱顶地层沉陷地质灾害治理方面,取得了较好的注浆加固效果,有良好的推广应用价值。

     

  • 图  1  路面沉陷及拱顶破裂沉降情况

    Figure  1.  Situation of pavement subsidence and the rupture and settlement of vault

    图  2  地下水位差异及钻孔喷水图

    Figure  2.  Diagram of groundwater level differences and borehole water spray

    图  3  揭露地下水的部分钻孔位置及其连通串喷深度

    Figure  3.  Locations of some boreholes of exposed groundwater and the depth of the interconnected spray

    图  4  路面沉陷、拱顶破裂沉降的原因分析图

    Figure  4.  Reasons of pavement subsidence and the rupture and settlement of vault

    图  5  治理区横向三段划分示意图

    Figure  5.  Schematic diagram of the horizontal three-section division of the treatment area

    图  6  沉陷区重点加固段分层治理示意图

    Figure  6.  Schematic diagram of layered treatment of the key reinforcement sections in subsidence areas

    图  7  影响区次重点加固段注浆加固层示意图

    Figure  7.  Schematic diagram of the grouting reinforcement layer in the sub-key reinforcement section in the affected area

    图  8  未开挖超前加固段注浆加固层示意图

    Figure  8.  Schematic diagram of the grouting reinforcement layer in the pre-excavated reinforcement section

    图  9  不同类型注浆钻孔间隔布置示意图

    Figure  9.  Schematic diagram of interval layout of different types of grouting boreholes

    图  10  顶部阻浆层钻探注浆原理示意图

    Figure  10.  Schematic diagram of the drilling grouting principle of the top slurry barrier layer

    图  11  拱部止浆垫钻探注浆原理示意图

    Figure  11.  Schematic diagram of the drilling grouting principle of the vault cushion layer of slurry stopping

    图  12  拱顶加固层钻探注浆原理图

    Figure  12.  Schematic diagram of drilling and grouting of the reinforcement layer at the top of vault

    图  13  中间加固层钻探注浆原理示意图

    Figure  13.  Schematic diagram of drilling and grouting principle of intermediate reinforcement layer

    图  14  孔内复合式止浆技术原理图

    Figure  14.  Schematic diagram of the combined technology of slurry-stopping in the hole

    图  15  YK2+683-YK2+710治理区域三段注浆量分布图

    Figure  15.  Distribution of grouting amount in the third section of YK2+683-YK2+710 treatment area

    图  16  拱顶各监测点每日沉降数据曲线

    Figure  16.  Daily settlement curve of each monitoring point of the vault

    图  17  YK2+693处注浆压力与拱顶沉降量关系曲线

    Figure  17.  Relationship between grouting pressure and vault settlement at YK2+693

    图  18  YK2+693处每日注浆量与拱顶沉降量关系曲线

    Figure  18.  Relationship between daily grouting amount and vault settlement at YK2+693

    图  19  检查孔芯样内浆脉分布情况

    Figure  19.  Distribution of grout veins in the core sample

    表  1  治理段部分钻孔地下水位及互相串通情况

    Table  1.   Groundwater levels and the interconnection of some boreholes in the treatment section

    喷水孔号 喷水深度/m 串喷孔号 串喷深度/m 喷水孔号 喷水深度/m 串喷孔号 串喷深度/m
    B3-2补 2.0 X4-4 7.2 X4-6 7.5
    B3-1 6.3 C2-3补 6.1 C2-2 7.0
    B4-1 6.1 C2-4补 6.5 C2-2补
    C2-3补
    7.0
    6.2
    X5-1 7.2 X3-2
    X4-5
    8.0
    7.5
    B4-7补 6.9 B3-7 8.5
    X2-4 6.3 B4-10补 6.3
    B4-9补 5.0 B4-3补 6.1 B3-4 8.0
    X2-3 4.5
    注:B3-2补是指原设计B3-2孔遇到障碍无法施工,移位重打的钻孔编号,以下同。
    下载: 导出CSV

    表  2  各加固层注浆机理、浆液类型和控制注浆参数表

    Table  2.   Grouting mechanism, slurry type and grouting control parameters of each reinforcement layer

    序号 注浆加固
    层位
    注浆
    类型
    浆液
    类型
    水泥浆平均
    密度/g·cm−3
    Vc∶Vgt 混合浆液
    初凝时间/s
    注浆速率
    /L·min−1
    终压
    (不大于)/MPa
    1 顶部阻浆层 充填注浆 C-Gt混合浆液 1.5 1∶1 50~90 40 0.3
    2 劈裂—挤密注浆 C-Gt混合浆液 1.6 2∶1 30~50 20 0.8
    3 拱顶止浆垫层 充填注浆 C-Gt混合浆液 1.6 1∶1~2∶1 30~50 20 0.5
    4 拱顶加固层 充填注浆 C-Gt混合浆液 1.5 1∶1 50~90 40 0.5
    5 劈裂—挤密注浆 C-Gt混合浆液 1.5 1∶1 30-50 20 0.8~1.0
    6 中间加固层 充填—劈裂—挤密 单双液交替 1.5 1∶1 90~150 20~40 1.0~1.5
    7 未开挖超前加固层 劈裂—挤密 单双液交替 1.5 1∶1 50~90 20~40 1.0~1.2
    8 影响区加固层 劈裂—挤密 单双液交替 1.5 1∶1 50~90 20~40 1.0~1.2
    注:配浆使用普通硅酸盐水泥,水泥标号P.O 42.5R;GT浆液密度控制在1.2-1.3 g·cm−3。单液浆密度平均1.5 g·cm−3
    下载: 导出CSV

    表  3  沉陷区重点加固段各加固层钻孔数量、注浆量和注浆终压统计表

    Table  3.   Statistics of drilling quantity, grouting quantity and final grouting pressure of each reinforcement layer in the key reinforcement section of the subsidence area

    钻孔种类 设计钻孔数/个 优化后钻孔数/个 注浆量/m3 注浆终压范围/MPa
    顶部阻浆层(A序)/垂直孔 30 26 91.59 0.3~0.8
    拱顶止浆垫层(B序)/垂直孔 30 28 42.72 0.3~0.5
    拱顶加固层(C序)/定向斜孔 35 31 96.60 0.5~1.0
    中间加固层(D序)/垂直孔 30 24 108.63 1.0~1.5
    补强孔/垂直孔 6 6 10.06 0.8~1.0
    共计 131 115 349.54
    下载: 导出CSV
  • [1] 蒋小珍, 雷明堂, 管振德. 单层土体结构岩溶土洞的形成机理[J]. 中国岩溶, 2012, 31(4):426-432. doi: 10.3969/j.issn.1001-4810.2012.04.012

    JIANG Xiaozhen, LEI Mingtang, GUAN Zhende. Formation mechanism of karst soil cave with single-layer soil structure[J]. Carsologica Sinica, 2012, 31(4):426-432. doi: 10.3969/j.issn.1001-4810.2012.04.012
    [2] 罗小杰, 罗程. 岩溶地面塌陷三机理理论及其应用[J]. 中国岩溶, 2021, 40(2):171-188.

    LUO Xiaojie, LUO Cheng. Three mechanism theory of karst ground collapse and its application[J]. Carsologica Sinica, 2021, 40(2):171-188.
    [3] 张健, 李术才, 张乾青, 李亮亮, 贺鹏. 覆盖型岩溶地基注浆处理与效果检测分析[J]. 建筑结构学报, 2017, 38(9):167-173. doi: 10.14006/j.jzjgxb.2017.09.020

    ZHANG Jian, LI Shucai, ZHANG Qianqing, LI Liangliang, HE Pen. Analysis of covered karst foundation treatment and grouting effect[J]. Journal of Building Structure, 2017, 38(9):167-173. doi: 10.14006/j.jzjgxb.2017.09.020
    [4] 刘强, 张可能, 彭环云, 张云毅, 汪洋. 高速公路岩溶路基注浆效果综合评价[J]. 沈阳工业大学学报, 2014(5): 591-595.

    LIU Qiang, ZHANG Keneng, PENG Huanyun, ZHANG Yunyi, WANG Yang. Comprehensive evaluation of grouting effect of expressway karst subgrade [J]. Journal of Shenyang University of Technology, 2014 (5): 591-595
    [5] 甘鹏路. 富水软弱地层浅埋暗挖隧道地层变形规律及预测研究[D]. 杭州: 浙江大学, 2016

    GAN Penglu. Study on formation deformation law and prediction of shallow buried tunnel in water rich soft stratum [D]. Hangzhou: Zhejiang University, 2016
    [6] 王鹏超. 贵阳浅埋暗挖地铁施工引起的地表变形规律及控制措施研究[D]. 包头: 内蒙古科技大学, 2021

    WANG Pengchao. Study on the deformation law and control measures of surface deformation caused by the construction of Guiyang shallow buried underground excavation subway [D]. Baotou: Inner Mongolia University of Science and Technology, 2021
    [7] 牟翔. 地表注浆下浅埋暗挖地铁车站超前小导管支护参数研究[D]. 重庆: 重庆交通大学, 2020

    MOU Xiang. Study on advance small conduit support parameters of shallow buried underground excavation subway station under surface grouting [D]. Chongqing: Chongqing Jiaotong University, 2020
    [8] 郑钦文. 浅埋暗挖黄土隧道下穿火车站场区变形控制技术研究[D]. 西安: 西安建筑科技大学, 2017

    ZHENG Qinwen. Research on deformation control technology of shallow buried and concealed excavated loess tunnel under railway station [D]. Xi'an: Xi'an University of Architecture and Technology, 2017.
    [9] 王国强. 浅埋暗挖地铁隧道特殊黄土地层注浆预加固技术应用研究[J]. 四川建筑科学研究, 2015, 41(5):31-34,52. doi: 10.3969/j.issn.1008-1933.2015.06.007

    WANG Guoqiang. Study on application of grouting pre-reinforcement technology in special loess stratum of shallow buried and concealed metro tunnel[J]. Sichuan Institute of Architectural Sciences, 2015, 41(5):31-34,52. doi: 10.3969/j.issn.1008-1933.2015.06.007
    [10] 赵朋. 粉细砂地层浅埋暗挖车站施工关键技术研究[D]. 石家庄: 石家庄铁道大学, 2016

    ZHAO Peng. Research on key technology of shallow buried and concealed excavation station construction in silty fine sand stratum [D]. Shijiazhuang: Shijiazhuang Railway University, 2016
    [11] 宗振宇. 浅埋暗挖软弱富水渗流地层变形特征及控制研究[D]. 北京: 北京交通大学, 2018

    ZONG Zhenyu. Study on deformation characteristics and control of weak water-rich seepage stratum in shallow buried and concealed excavation [D]. Beijing: Beijing Jiaotong University, 2018
    [12] 于兆成. 砂土地层大断面浅埋隧道地表沉降规律及控制研究[D]. 青岛: 青岛理工大学, 2018

    YU Zhaocheng. Study on surface settlement law and control of large section shallow buried tunnel in sandy soil [D]. Qingdao: Qingdao University of Technology, 2018
    [13] 王师. 地铁车站暗挖通道施工监测及数值模拟[D]. 沈阳: 沈阳建筑大学, 2019

    WANG Shi. Construction monitoring and numerical simulation of underground tunnel in subway station [D]. Shenyang: Shenyang Architecture University, 2019
    [14] 彭悦. 浅埋扩挖隧道大变形处治技术研究[D]. 重庆: 重庆交通大学, 2019

    PENG Yue. Research on large deformation treatment technology of shallow buried expanded tunnel [D]. Chongqing: Chongqing Jiaotong University, 2019
    [15] 刘鹏. 浅埋暗挖隧道衬砌外水压力分布及堵水限排技术研究[D]. 青岛: 青岛理工大学, 2016

    LIU Peng. Study on external water pressure distribution and water plugging and drainage restriction technology of shallow buried and concealed tunnel lining [D]. Qingdao: Qingdao University of technology, 2016
    [16] 程飞. 淤泥质隧道暗挖施工加固方案优化分析[D]. 西安: 长安大学, 2018

    CHENG Fei. Optimization analysis of reinforcement scheme for mucky tunnel excavation [D]. Xi'an: Chang'an University, 2018
    [17] 张连震. 地铁穿越砂层注浆扩散与加固机理及工程应用[D]. 济南: 山东大学, 2017

    ZHANG Lianzhen. Mechanism and engineering application of grouting diffusion and reinforcement of subway crossing sand layer [D]. Jinan: Shandong University, 2017
    [18] 孙锋, 张顶立, 王臣, 房倩, 李兵. 劈裂注浆抬升既有管道效果分析及工程应用[J]. 岩土力学, 31(3): 932-938

    SUN Feng, ZHANG Dingli, WANG Chen, FANG Qian, LI Bing. Effect analysis and engineering application of splitting grouting to lift existing pipeline [J]. Geotechnical Mechanics, 2010,31 (3): 932-938
    [19] 孙锋, 张顶立, 陈铁林, 张晓平. 土体劈裂注浆过程的细观模拟研究[J]. 岩土工程学报, 2021, 32(3):474-480.

    SUN Feng, ZHANG Dingli, CHEN Tielin, ZHANG Xiaoping. Meso-simulation of soil splitting grouting process[J]. Journal of Geotechnical Engineering, 2021, 32(3):474-480.
    [20] 陈立生, 沈成明, 彭惠, 廖少明, 孙连元. 一种复杂环境条件下隧道内微扰动注浆控制方法[P]. CN101255798A, 2008年

    CHEN Lisheng, SHEN Chengming, PENG Hui, LIAO Shaoming, SUN Lianyuan. A micro disturbance grouting control method in tunnel under complex environmental conditions [P]. CN101255798A, 2008
    [21] 葛以衡, 赵国强, 夏晨欢, 廖少明. 隧道内微扰动注浆工艺[P]. CN 101255799A , 2008

    GE Yiheng, ZHAO Guoqiang, XIA Chenhuan, LIAO Shaoming. Micro-disturbance grouting technology in tunnel [P]. CN101255799A, 2008.
    [22] 王松根, 宋修广, 李英勇, 张思峰, 张宏博, 管延华. 分层多次调压调浆注浆方法[P]. CN 101230570A, 2008

    WANG Songgen, SONG Xiuguang, LI Yingyong, ZHANG Sifeng, ZHANG Hongbo, GUAN Yanhua. Layered multiple pressure and slurry regulating grouting method [P]. CN101230570A, 2008
    [23] 刘人太, 张庆松, 李术才, 李海燕, 原小帅, 张霄, 韩伟伟, 张伟杰, 王凤刚. 一种膏状速凝注浆材料及其制备方法[P]. CN102001847A, 2010

    LIU Rentai, ZHANG Qingsong, LI Shucai, LI Haiyan, YUAN Xiaoshuai, ZHANG Xiao, HAN Weiwie, ZHANG Weijie, WANG Fenggang. The invention relates to a paste quick setting grouting material and a preparation method [P]. CN102001847A, 2010.
  • 加载中
图(19) / 表(3)
计量
  • 文章访问数:  1503
  • HTML浏览量:  1002
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-10
  • 刊出日期:  2022-12-02

目录

    /

    返回文章
    返回