• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂岩溶水系统势汇区建坝成库可行性研究

胡大儒 郑克勋 赵代尧 陈占恒

胡大儒,郑克勋,赵代尧,等. 复杂岩溶水系统势汇区建坝成库可行性研究:以北盘江流域普岔河水库为例[J]. 中国岩溶,2022,41(5):736-745 doi: 10.11932/karst20220507
引用本文: 胡大儒,郑克勋,赵代尧,等. 复杂岩溶水系统势汇区建坝成库可行性研究:以北盘江流域普岔河水库为例[J]. 中国岩溶,2022,41(5):736-745 doi: 10.11932/karst20220507
HU Daru, ZHENG Kexun, ZHAO Daiyao, CHEN Zhanheng. Feasibility study on dam and reservoir construction in the catchment area of complex karst water system: Taking Pucha Reservoir of Beipan River as an example[J]. CARSOLOGICA SINICA, 2022, 41(5): 736-745. doi: 10.11932/karst20220507
Citation: HU Daru, ZHENG Kexun, ZHAO Daiyao, CHEN Zhanheng. Feasibility study on dam and reservoir construction in the catchment area of complex karst water system: Taking Pucha Reservoir of Beipan River as an example[J]. CARSOLOGICA SINICA, 2022, 41(5): 736-745. doi: 10.11932/karst20220507

复杂岩溶水系统势汇区建坝成库可行性研究——以北盘江流域普岔河水库为例

doi: 10.11932/karst20220507
详细信息
    作者简介:

    胡大儒(1988-),男,硕士,高级工程师,主要从事工程地质、岩溶水文等领域研究工作。E-mail:hudaru@ghidri.com.cn

    通讯作者:

    郑克勋(1982-),男,硕士,正高级工程师,主要从事工程地质、岩溶水文等领域研究工作。E-mail:zhengkexun@ghidri.com.cn

  • 中图分类号: TV221.2

Feasibility study on dam and reservoir construction in the catchment area of complex karst water system: Taking Pucha Reservoir of Beipan River as an example

  • 摘要: 北盘江流域沿线山高谷深,岩溶水文地质条件复杂,局部区域水资源短缺,岩溶渗漏问题成为水利水电工程建设的瓶颈。文章综合地质调查测绘、钻探及物探、水文地质试验、岩溶水系统分析、地下水均衡分析等方法,论证了PCH水库不会发生邻谷渗漏及绕坝基深部的岩溶管道型渗漏,但发生溶隙型渗漏的可能性较大。采用有限元法模拟溶隙渗漏显示:随着T1yn1-1灰岩溶蚀率的增大,坝基抗滑稳定系数稍有降低,潜在失稳模式为后缘剪断T1yn1-2岩体,前缘沿T1yn1-2层内岩屑夹泥型软弱结构面剪出;坝基渗漏量呈线性增加,T1yn1-1灰岩溶隙密集带为坝基主要渗漏区。当溶隙密集带沿T1yn1-1灰岩与T1yn1-2泥灰岩接触带水平发育且集中分布时,坝基抗滑稳定系数将明显减小,坝基渗漏量将明显增大;当溶隙密集带垂直发育、分散发育或主要分布于坝后区域时,其对坝基抗滑稳定及坝基渗漏量影响微弱。岩溶水文地质分析及数值模拟均显示,复杂岩溶水系统势汇区下游区域多以溶隙渗漏为主,其工程影响有限,具备建坝成库条件。

     

  • 图  1  工程区岩溶水文地质图

    Figure  1.  Karst hydrogeological map of the project area

    图  2  工程区三维地质模型示意图

    Figure  2.  3D geological model of the project area

    图  3  KS1溶洞出口图

    Figure  3.  Karst cave exit of KS1

    图  4  K5地下岩溶暗河进口图

    Figure  4.  Karst underground river entrance of K5

    图  5  坝基渗漏模式示意图

    Figure  5.  Schematic diagram of the leakage mode of dam foundation

    图  6  钻孔CT测试成果图

    Figure  6.  CT test results in drill hole

    图  7  有限元网格划分示意图

    Figure  7.  Schematic diagram of the finite element mesh

    图  8  稳定系数及渗漏量与溶蚀率关系曲线

    Figure  8.  Relationship between stability factor, leakage and karst fissure rate

    图  9  0%溶蚀率时总水头渗流场云图

    Figure  9.  Field nephogram of the total head seepage with the karst fissure rate of 0%

    图  11  50%溶蚀率时总水头渗流场云图

    Figure  11.  Field nephogram of the otal head seepage with the karst fissure rate of 50%

    图  10  25%溶蚀率时总水头渗流场云图

    Figure  10.  Field nephogram of the total head seepage with the karst fissure rate of 25%

    图  12  稳定系数及渗漏量与溶隙密集形态关系曲线

    Figure  12.  Relationship between stability factor, leakage and karst fissure forms

    表  1  工程区岩溶基本特征统计表

    Table  1.   Statistics of the basic karst features in the project area

    编号分布位置出口高程/m流量/L·s−1
    汛期枯期极枯
    S1普岔河干支汇合处990755017
    S2滴水沟左岸1#冲沟上游1 017510
    S3左岸1号冲沟源头1 125210
    S4坝轴线右岸上游侧1 019510
    S5岩溶盲谷左岸后坡1 004151515
    KS1坝轴线右岸1 1301030
    KS2滴水沟左岸吊水岩1 10050100.5
    KS3坝轴线左岸1 035830
    KS4坝轴线左岸995520
    KS7坝址下游暗河出口85130020040
    KS8坝址下游岩溶管道出口9001251.5
    KS9岩溶盲谷内侧右壁945720
    下载: 导出CSV

    表  2  工程区岩溶水系统区划表

    Table  2.   Division of the karst water system in the project area

    编号地层岩性分布位置发育岩溶统计
    T1yn1-1灰岩库区S1、S2、KS2
    T1yn1-3+4泥质灰岩坝址左岸S3、S5、KS3、KS4
    T1yn1-3+4泥质灰岩坝址右岸S4、KS1
    T1yn1-1灰岩坝址下游K5-KS7、K6-KS8
    T1yn1-1灰岩河床深部潜在岩溶渗漏通道
    下载: 导出CSV

    表  3  岩土体物理力学参数建议值表

    Table  3.   Physical and mechanical parameters of rock and soil

    地层类别物质成分密度
    /g·cm−3
    抗剪断强度渗透系数
    /cm·s−1
    tgϕc/Kpa
    T1yn1-1岩体灰岩2.651.0085010−4
    T1yn1-2岩体泥灰岩2.600.8065010−5
    层面岩屑夹泥2.150.455010−3
    T1f岩体泥页岩2.550.6555010−6
    Qal冲积砂卵砾石2.200.45010−2
    Ql湖积淤泥质粉土2.150.251010−5
    Qcol崩积块碎石土2.200.551010−1
    下载: 导出CSV

    表  4  溶蚀率模拟计算结果表

    Table  4.   Simulation results of the karst fissure rate

    溶蚀率/%0102025304050
    Fs2.6782.6682.6632.6602.6562.6432.638
    Q/m3·d−1225.0236.3248.5257.0261.0275.0283.5
    下载: 导出CSV

    表  5  溶隙密集带形态模拟结果表

    Table  5.   Simulation results with different karst fissure forms

    发育
    形态
    水平
    分散
    坝前
    垂直
    分散
    坝前
    分散
    水平
    坝前
    集中
    水平
    坝前
    坝前
    水平
    分散
    坝后
    水平
    分散
    Fs2.6602.6702.6652.6302.6532.698
    Q/m3·d−1257.0232.0240.0291.5237.5243.0
    下载: 导出CSV
  • [1] 沈春勇, 余波, 郭维祥. 水利水电工程岩溶勘察与处理[M]. 北京: 中国水利水电出版社, 2015.

    SHEN Chunyong, YU Bo, GUO Weixiang. Karst survey and treatment of water conservancy and hydropower engineering [M]. Beijing: China Water & Power Press, 2015.
    [2] 韩行瑞. 岩溶水文地质学[M]. 北京: 地质出版社, 2015.

    HAN Xingrui. Karst Hydrogeology[M]. Beijing: Geological Publishing House, 2015.
    [3] 潘欢迎. 岩溶流域水文模型及应用研究[D]. 武汉: 中国地质大学(武汉), 2014.

    PAN Huanying. Study and application of hydrologic model in karst basin[D]. Wuhan: China University of Geosciences (Wuhan), 2014.
    [4] 石朋, 侯爰冰, 马欣欣, 陈喜, 张志才. 西南喀斯特流域水循环研究进展[J]. 水利水电科技进展, 2012, 32(1):69-73.

    SHI Peng, HOU Yuanbing, MA Xinxin, CHEN Xi, ZHANG Zhicai. Advances in Science and Technology of Water Resources[J]. Advances in Science and Technology of Water Resources, 2012, 32(1):69-73.
    [5] 陈静, 罗明明, 廖春来, 马瑞, 周宏, 邹胜章, 陈植华. 中国岩溶湿地生态水文过程研究进展[J]. 地质科技情报, 2019, 38(6):221-230. doi: 10.19509/j.cnki.dzkq.2019.0626

    CHEN Jing, LUO Mingming, LIAO Chunlai, MA Rui, ZHOU Hong, ZUO Shengzhang, CHEN Zhihua. Review of eco-hydrological process in karst wetlands of China[J]. Geological Science and Technology Information, 2019, 38(6):221-230. doi: 10.19509/j.cnki.dzkq.2019.0626
    [6] 万佳威, 张勤军, 石树静. 岩溶塌陷不确定性预测评价综述[J]. 中国岩溶, 2017, 36(6):764-769. doi: 10.11932/karst20170601

    WAN Jiawei, ZHANG Qinjun, SHI Shujing. Overview of uncertainty assessment on karst collapse prediction[J]. Carsologica Sinica, 2017, 36(6):764-769. doi: 10.11932/karst20170601
    [7] 任新红. 南广铁路岩溶路基注浆效果检测方法与评价指标研究[D]. 成都: 西南交通大学, 2012.

    REN Xinhong. Study on grouting detection method and assessment indicators of karst roadbed grouting effect in Nanning-Guangzhou railway[D]. Chengdu: Southwest Jiaotong University, 2012.
    [8] 杨雄兵, 王立志, 刘高, 黄迪, 李京泽, 杨发军. 某水库右坝段坝基渗漏特征及原因分析[J]. 水电能源科学, 2018, 36(11):76-80.

    YANG Xiongbing, WANG Lizhi, LIU Gao, HUANG Di, LI Jingze, YANG Fajun. Analysis of seepage characteristics and causes of dam foundation of the right dam of a reservoir[J]. Water Resources and Power, 2018, 36(11):76-80.
    [9] 金仁祥. 某水库坝基渗透稳定性研究[J]. 岩土力学, 2004, 25(1):157-159. doi: 10.3969/j.issn.1000-7598.2004.01.034

    JIN Renxiang. Study on seepage stability of a gravity dam foundation[J]. Rock and Soil Mechanics, 2004, 25(1):157-159. doi: 10.3969/j.issn.1000-7598.2004.01.034
    [10] Olivier Kaufmann, John Deceuster, Yves Quinif. An electrical resistivity imaging-based strategy to enable site-scale planning over covered palaeokarst features in the Tournaisis area (Belgium)[J]. Engineering Geology, 2012, 133-134:49-65. doi: 10.1016/j.enggeo.2012.01.017
    [11] Asbjornsen H, Goldsmith G R, Alvarado-barrientosl M S, Rebel K, Van Osch F P, Rietkerk M, Chen J, Gotsch S, Tobon C, Geissert D R, Gomez-Tagle A, Vache K, Dawson T E. Ecohydrological advances and applications in plant-water relations research: A review[J]. Journal of Plant Ecology, 2014, (1/2): 3-22.
    [12] 李天祺, 彭涛, 郭印. 井间地震层析成像技术在岩溶勘察中的应用[J]. 水文地质工程地质, 2009, 36(6):127-130. doi: 10.3969/j.issn.1000-3665.2009.06.028

    LI Tianqi, PENG Tao, GUO Yin. Application of cross-hole seismic computerized tomography technology to karst caves survey[J]. Hydrogeology & Engineering Geology, 2009, 36(6):127-130. doi: 10.3969/j.issn.1000-3665.2009.06.028
    [13] 张祯武, 陈志强, 高成城, 任水源. 用示踪探测技术优化岩溶水库防渗设计[J]. 水利水电技术, 2017, 48(2):148-154. doi: 10.13928/j.cnki.wrahe.2017.02.025

    ZHANG Zhenwu, CHEN Zhiqiang, GAO Chengcheng, REN Shuiyuan. Tracing detection technique based optimization of anti seepage design for karst reservoir[J]. Water Resources and Hydropower Engineering, 2017, 48(2):148-154. doi: 10.13928/j.cnki.wrahe.2017.02.025
    [14] 梁添才, 陈清. 高密度电法三极装置在岩溶探测中的应用[J]. 工程地球物理学报, 2019, 16(5):770-774. doi: 10.3969/j.issn.1672-7940.2019.05.035

    LIANG Tiancai, CHEN Qing. Application of high-density electrical three-pole device to karst exploration[J]. Chinese Journal of Engineering Geophysics, 2019, 16(5):770-774. doi: 10.3969/j.issn.1672-7940.2019.05.035
    [15] 郑克勋, 张国军. 窄巷口水电站左岸防渗线喀斯特渗漏管道探测研究[J]. 贵州水力发电, 2012, 26(2):10-20. doi: 10.3969/j.issn.1007-0133.2012.02.003

    ZHENG Kexun, ZHANG Guojun. Study on the detection of karst leakage pipeline along the left bank anti seepage line of Zhaixiangkou hydropower station[J]. Guizhou Water Power, 2012, 26(2):10-20. doi: 10.3969/j.issn.1007-0133.2012.02.003
    [16] 赵瑞, 张强, 许模, 张楠. 基于数值模拟的复杂岩溶库区渗漏研究[J]. 南水北调与水利科技, 2016, 14(3):150-155.

    ZHAO Rui, ZHANG Qiang, XU Mo, ZHANG Nan. Reservoir leakage of complex karst area based on numerical simulation[J]. South-to-North Water Transfers and Water Science& Technology, 2016, 14(3):150-155.
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  1727
  • HTML浏览量:  1077
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-01
  • 网络出版日期:  2022-12-06
  • 刊出日期:  2022-10-25

目录

    /

    返回文章
    返回