Karst hydrogeological problems and countermeasures of a proposed railway in plateau slope area of southeast Yunnan
-
摘要: 研究区位于云贵高原南缘滇东南高原斜坡区,属珠江源头河段南盘江流域与红河流域的地表分水岭地带,侵蚀切割强烈,地形条件复杂,广泛出露的三叠系中统个旧组含水层组富水性强,岩溶强烈发育,地下河管道、洼地、落水洞等广布。通过野外调查、观测、示踪试验、实验测试等手段,利用水文地质学、岩溶学等理论方法,分析研究区岩溶含水层富水性、岩溶发育强度、大泉地下河及管道分布、地热分布情况,及其对拟建铁路选线的影响,计算隧道涌水量,提出隧道施工尽量避开地下水富集区、岩溶强发育区、大泉地下河主管道径流区、地热异常区、岩溶砂岩地层区等建议措施,减少拟建铁路施工可能面临的岩溶水文地质危害及其对地下水环境造成的破坏,为强岩溶发育区的工程建设提供参考建议。Abstract: The study area is located in the plateau slope area of southeast Yunnan at the southern margin of Yunnan-Guizhou Plateau, which is the surface watershed zone between Nanpanjiang River Basin and Honghe River Basin at the source of the Pearl River. There exist intense erosion and cutting, complicated topographic and geomorphic conditions and geological structure. The study area belongs to Gejiu sub-region in the stratigraphic region of South China. The widely exposed middle Triassic Gejiu formation and other aquifer groups are rich in water. Due to the complicated hydrogeological conditions, the study area is divided into 2 first-level water systems, 7 second-level water systems, 26 third-level water systems, and 12 fourth-level water systems. Karst is strongly developed with abundant precipitation and strong hydrodynamic effect. Underground river pipelines, depressions and sinkholes are also widely distributed. There are 9 large springs and 20 underground rivers (underflows). Through field investigation, observation, tracer tests and experiments, the influence of karst hydrogeological conditions and problems on the route selection of a proposed railway in the study area are analyzed and assessed under the guidance of geological and karstological theories. The study shows that 80% of the aquifers are the carbonate aquifer group with uneven water abundance from the intermediate to extremely strong degrees. Groundwater mainly exists in karst pipeline. Karst is intensively developed in the study area where the tertiary dissolution process creates the vertical distribution of multi-layer karst caves. At the depth of 100 m, strong karst caves are developed with at least 1 layer or at most 3-4 layers. Large springs, underground rivers and pipelines are also widely distributed. The length of karst pipelines ranges from 6 km to37.75 km. The maximum 6 m3s−1. tracer test results show that there exist underground dissolved pools, or lakes in the main pipeline of underground rivers. It is predicted that the middle line of the tunnel will suffer the largest water inflow, followed in turns by the south line, the north line and the through-line. The through-line is expected to experience relatively small risk of water inflow in tunnel excavation, and hence it is recommended in route selection. Geothermal resources are distributed near the contact zone between the Bozhushan granite body and the Cambrian strata in the west of Wenshan. The temperature of hot springs generally ranges from 45° to 50°. In the belt-shaped geothermal reservoir, temperatures are 70-110 ℃ by analogy of those in the neighboring area. The gray and thin medium dolomite intercalated with calcareous dolomite in the middle Cambrian Longha formation (Є2l) shows serious desertification. The surface sanding dolomite is broken with poor stability, and can be broken by hand. Consequently, accidents such as surrounding rock collapse and roof falling are quite possibly to occur in tunnel excavation. In this study, suggestions to solve karst geological problems in the study area are put forward. Several areas should be avoided in tunnel excavation, such as the areas with rich groundwater, especially those with strong water abundance, the areas with intense Karst development, especially the vertical development areas of underground and surface karst, the runoff area of the main pipeline of Daquan underground river where the route should be planned as far as possible above the recharge area or water level of the main pipeline, the geothermal anomaly area exposed by granites, and the areas distributed with the karst sandstone stratum. These suggestions are expected to reduce the karst hydrogeological hazards and the damage to groundwater environment that the proposed railway construction may face, and to provide reference for the engineering construction of karst areas with intense development.
-
Key words:
- hydrogeology /
- karst geology /
- suggestions on route selection /
- southeast Yunnan
-
表 1 岩溶含水层组特征表
Table 1. 1 Characteristics of karst aquifer group
含水层组类型 地层代号 岩性 岩溶发育特征 富水性 均匀状岩溶含水岩组 T2g3、T2g2、T1y3、C3m、C2h、C1b、C1d 灰岩、白云岩、白云岩夹灰岩、泥晶灰岩、泥晶泥质白云岩 地表洼地、漏斗、落水洞广布,地下发育较大型的洞穴、地下河系统 地下水循环交替迅速,以大泉、地下河集中排泄为主,枯雨期流量变幅1~30倍;Mk=9.0~13.1 L·s−1·km−2,Qd=0.83~28.1 L·s−1,Cv=0.1~2.73,pH=7.82;富水性极强 T2f2、T2g、T2g1、P1y、D3g、D2g、D2d、Dg、O1x 灰岩、白云岩、灰岩、白云质灰岩、白云岩 含水层呈条带状展布,岩溶发育强烈,落水洞、洼地、地下河发育 枯雨期泉水流量变幅1~10倍,最大15倍;Mk=3.28~12.81 L·s−1·km−2,Qq=0.13~21.11 L·s−1·m−1,pH=7.10~8.15,Cv=0.68~10.03;富水性强 碳酸盐夹碎屑岩 O1hn、Є3b 泥质灰岩、白云岩夹粉砂质泥岩;白云岩、砂质白云岩 岩体破碎,完整性较差,岩溶较发育,以网状溶蚀裂隙、小溶洞为主 Mk=6.07~10.13 L·s−1·km−2,Qd=18.79 L·s−1,Cv=3.99,pH=6.71~7.86;富水性强 碳酸盐与碎屑岩互层 Є2t、Є1m 石英砂岩、粉砂岩、泥岩与灰岩、白云质灰岩互层;白云质灰岩、灰岩、板岩互层 发育以网状溶蚀裂隙、基岩裂隙、溶孔、小溶洞为主,地下水主要以分散排泄的泉水为主 Mk=4.5~10.55 L·s−1·km−2,Qd=19.71~43.15 L·s−1,Cv=1.22~2.44,
pH=6.86~7.83;富水性中等-强碎屑岩夹碳酸盐岩 T2f1、T1y2、T1y1、Є1d、Є1ch、D1p、Ddl 泥岩夹灰岩、砂岩夹白云岩、灰岩;石英砂岩、粉砂岩、白云岩;硅质岩夹灰岩 发育基岩裂隙、网状溶蚀裂隙、小溶洞为主,地下河、岩溶大泉少见,分散排泄的泉点较多,流量小 Mk=2.48~6.6 L·s−1·km−2,Qd=2.5~33.05 L·s−1,Cv=0.47~1.39,pH=7.11~7.60;富水性中等-强 表 2 线路隧道最大涌水量预测结果表
Table 2. Prediction results of maximum water inflow in line tunnel
序号 隧道规模
/m隧道正常涌水量
Qs /m3·d−1预测隧道最大
涌水量Qo /m3·d−1线路 1 8 955 24 970.97 49 941.94 中线方案 2 7 215 22 708.96 45 417.93 3 7 395 20 760.43 62 281.3 4 7 695 19 728.00 59 184 5 7 715 15 243.17 30 486.34 6 16 635 89 703.81 269 111.4 小计 193 115.34 516 422.91 7 4 150 10 328.61 15 492.91 南线方案 8 12 215 102 075.96 306 227.9 9 12 783.1 72 461.36 108 692 10 4 350 7 414.44 22 243.32 11 6 219 15 747.47 23 621.2 小计 208 027.84 476 277.33 12 3 725 6 492.81 19 478.44 北线方案 13 4 295 15 760.78 47 282.34 14 7 115 15 845.37 47 536.1 15 5 805 25 093.19 75 279.58 16 138 535 57 829.54 173 488.6 17 13 650 16 171.37 24 257.06 小计 137193.06 387 322.12 18 3 558 7 065.76 10 598.64 贯通方案 19 4 635 8 610.34 25 831.03 20 4 225 7 408.08 22 224.25 21 3 019.71 5 279.35 15 838.05 22 6 535.3 8 918.25 26 754.75 23 6 273.35 18 548.92 55 646.77 24 4 466.85 13 918.10 20 877.16 25 3 504.23 10 766.01 32 298.02 小计 80 514.81 210 068.67 合计 618 851.06 1 856 553.17 -
[1] 张加桂. 云南大理-瑞丽铁路工程地质问题探讨[C]. 2011年全国工程地质学术年会论文集. 2011: 397-404.ZHANG Jiagui. Discussion on engineering geology of Dali - Ruili railway in Yunnan [C]. Proceedings of the 2011 National Academic Conference on Engineering Geology. 2011: 397-404. [2] 毛晓长, 吴中海, 李贵书, 尹福光. 泛亚铁路大理至瑞丽沿线地质构造综合研究主要进展和成果[J]. 中国地质调查, 2015, 2(4):13-23.MAO Xiaochang, WU Zhonghai, LI Guishu, YIN Fuguang. The main progress and achievements on comprehensive research of geological structure along the Dali-Ruili segment of the Pan-Asia railway network in Yunnan, Chian[J]. Geological Survey of China, 2015, 2(4):13-23. [3] 吴中海, 赵希涛, 范桃园, 叶培盛. 泛亚铁路滇西大理至瑞丽沿线主要活动断裂与地震地质特征[J]. 地质通报, 2012, 31(Z1):191-217.WU Zhonghai, ZHAO Xitao, FAN Taoyuan, YE Peisheng. Active faults and seismologic characteristics along the Dali-Ruili railway in western Yunnan Province[J]. Geological Bulletin of China, 2012, 31(Z1):191-217. [4] 周春景, 吴中海. 滇西大理至瑞丽铁路沿线地温场特征及其工程地质意义[J]. 地质通报, 2012, 31(Z1):326-336.ZHOU Chunjing, WU Zhonghai. The characteristics of geothermal field along the Dali-Ruili railway in western Yunnan Province and their implications for geo-engineering[J]. Geological Bulletin of China, 2012, 31(Z1):326-336. [5] 康晓波, 王宇, 张华. 杞麓湖泄水暗河淤塞的不良环境效应分析[J]. 水文地质工程地质, 2008, 35(6):121-124.KANG Xiaobo, WANG Yu, ZHANG Hua. An analysis of bad environmental effects of clogging of the discharging underground river of the Qilu Lake[J]. Hydrogeology & Engineering Geology, 2008, 35(6):121-124. [6] 宗宁, 付开隆, 马建军. 黔桂铁路扩容改造工程主要岩溶问题及对策[J]. 路基工程, 2007(2):152-154.ZONG Ning, FU Kailong, MA Jianjun. Main karst problems and countermeasures of Qiangui railway expansion reconstruction project[J]. Subgrade Engineering, 2007(2):152-154. [7] 王章琼, 柯茂东, 张兵, 李元松, 王亚军. 湖北鹤峰太坪隧道特大溶洞发育特征及稳定性评价[J]. 中国地质灾害与防治学报, 2019, 30(4): 48-53.WANG Zhangqiong, KE Maodong, ZHANG Bing, LI Yuansong, WANG Yajun. Characteristics and engineering evaluation of extra large-scale karst cavern of Taiping Tunnel in Hefang of Hubei Province [J].The Chinese Journal of Geological Hazard and Control, 2019, 30 (4): 48-53. [8] 杜世回. 西康铁路增建第二线岩溶问题概述[J]. 铁道勘察, 2009, 35(3):16-18.DU Shihui. Summary for karst problems in the supplemented second Xikang railway[J]. Railway Investigation and Surveying, 2009, 35(3):16-18. [9] 杜宇本, 蒋良文, 胡卸文, 许模, 雷明堂,胡清波. 高速铁路复杂岩溶地质勘察及灾害防治[J]. 铁道工程学报, 2021, 38(4):16-21.DU Yuben, JIANG Liangwen, HU Xiewen, XU Mo, LEI Mingtang,HU Qingbo. Geological investigation and disaster prevention of complex karst on highspeed railway[J]. Journal of Railway Engineering Society, 2021, 38(4):16-21. [10] 李小和, 曹柏树. 宜万线的主要工程地质问题及勘察方法[J]. 铁道工程学报, 2005(S1):260-267.LI Xiaohe, CAO Baishu. The main geology problems and survey methods of Yichang-Wangzhou railway[J]. Journal of Railway Engineering Society, 2005(S1):260-267. [11] 杜宇本, 蒋良文, 胡清波, 崔建宏, 毛邦燕, 冯涛. 西南及邻区高速铁路岩溶工程地质分区研究[J]. 铁道标准设计, 2019, 63(6):11-16.DU Yuben, JIANG Liangwen, HU Qingbo, CUI Jianhong, MAO Bangyan, FENG Tao. Study on karst engineering geological zoning of high speed railway in southwest and adjacent areas in China[J]. Railway Standard Design, 2019, 63(6):11-16. [12] 吴治生. 岩溶隧道的环境地质问题[J]. 铁道工程学报, 2006(1):70-73,99.WU Zhisheng. Environmental geology problem of tunnel in karst zone[J]. Journal of Railway Engineering Society, 2006(1):70-73,99. [13] 李杰, 薛正年, 杨宏志, 杨少伟. 基于RS和GIS的岩溶地质公路选线生态评价方法研究[J]. 公路, 2018, 63(6):220-226.LI Jie, XUE Zhengnian, YANG Hongzhi, YANG Shaowei. Research on ecological evaluation method of karst geological highway route selection based on RS and GIS[J]. Highway, 2018, 63(6):220-226. [14] 高伟, 杨艳娜, 李豫馨, 许模. 岩溶地区隧道工程地质选线适宜性评价[J]. 人民珠江, 2016, 37(3):32-37.GAO Wei, YANG Yanna, LI Yuxin, XU Mo. Evaluation of rationality of tunnel engineering geological line selection in karst area[J]. Pearl River, 2016, 37(3):32-37. [15] 郑宗利, 关惠军, 苟想伟, 石恒岳, 于咏妍. 岩溶隧道突涌水预警体系的建立[J]. 灾害学, 2022, 37(1): 41-46.ZHENG Zongli, GUAN Huijun, GOU Xiangwei, SHI Hengyue, YU Yongyan. Establishment of early-warning system for water inrush in karst tunnel [J]. Journal of Catastrophology , 2022, 37(1): 41-46. [16] 黄新连. 隧道超前地质预报中几个问题的探讨[J]. 铁道勘察, 2010, 36(4):48-50.HUANG Xinlian. Some issues in geological prediction on tunnels[J]. Railway Investigation and Surveying, 2010, 36(4):48-50. [17] 张华, 张贵, 王宇, 方永林, 代旭升, 王波, 何绕生, 罗为群, 蓝芙宁. 岩溶断陷盆地跨孔CT成像探测岩溶孔隙及赋水状态的实验研究[J]. 中国岩溶, 2020, 39(5):737-744.ZHANG Hua, ZHANG Gui, WANG Yu, FANG Yonglin, DAI Xusheng, WANG Bo, HE raosheng, LUO Weiqun, LAN Funing. Experimental study on the detection of karst poros by cross-hole CT imaging and groundwater occurrence in the Luxi karst fault-depression basin[J]. Carsologica Sinica, 2020, 39(5):737-744. [18] 何禹, 李永涛, 朱亚军. 钻孔电磁波CT技术在深部岩溶勘探中的应用[J]. 工程地球物理学报, 2010, 7(4):451-455. doi: 10.1088/1742-2140/7/4/M01HE Yu, LI Yongtao, ZHU Yajun. Application of drilling electromagnetic CT to deep cavern and fracture prospecting[J]. Chinese Journal of Engineering Geophysics, 2010, 7(4):451-455. doi: 10.1088/1742-2140/7/4/M01 [19] 韦建昌, 邵羽, 梁铭, 翟少磊, 蓝日彦, 黄彬华. 超前水平钻探在岩溶隧道地质预报中的应用研究[J]. 中外公路, 2020, 40(3):220-226.WEI Jianchang, SHAO Yu, LIANG Ming, ZHAI Shaolei, LAN Riyan, HUANG Binhua. Application of advanced horizontal drilling in geological prediction of karst tunnel[J]. Journal of China & Foreign Highway, 2020, 40(3):220-226. [20] 张华, 任世川, 王劲. 新建文山至蒙自铁路水文地质专题研究调查报告[R]. 昆明: 云南省地质环境监测院: 2021.44-47.ZHANG Hua, REN Shichuan, WANG Jin. Investigation report on hydrogeology of newly built Wenshan-Mengzi Railway[R]. Kunming: Yunnan Institute of Geological Environment Monitoring: 2021.44-47. [21] 张贵, 何绕生, 王波, 张文鋆, 周翠琼. 云南华宁县盘溪大龙潭水文地质特征[J]. 贵州大学学报(自然科学版), 2020, 37(5):40-45.ZHANG Gui, HE Raosheng, WANG Bo, ZHANG Wenjun, ZHOU Cuiqiong. Hydrogeological characteristics of Dalongtan, Panxi, Huaning county of Yunnan province[J]. Journal of Guizhou University (Natural Science Edition), 2020, 37(5):40-45. [22] 王宇, 张贵, 张华. 云南省岩溶水文地质环境地质调查与研究[M]. 北京: 地质出版社, 2018.WANG Yu, ZHANG Gui, ZHANG Hua. Investigation and study of karst hydrogeology and environmental geology in Yunnan Province [M]. Beijing: Geological Publishing House, 2018. [23] 王波, 张华, 王宇, 张贵, 张文鋆, 高瑜, 罗为群. 泸西喀斯特断陷盆地地表水与地下水流域边界与水动力性质[J]. 中国岩溶, 2020, 39(3):319-326.WANG Bo, ZHANG Hua, WANG Yu, ZHANG Gui, ZHANG Wenjun, GAO Yu, LUO Weiqun. Watershed boundaries and hydrodynamic properties of surface water and groundwater in Luxi karst fault-depression basin[J]. Carsologica Sinica, 2020, 39(3):319-326. [24] 莫美仙, 王宇, 李峰, 虞慧. 云南南洞地下河系统边界及性质研究[J]. 中国岩溶, 2019, 38(2):173-185.MO Meixian, WANG Yu, LI Feng, YU Hui. Study on underground river system boundaries and properties of Nandong in Yunnan Province[J]. Carsologica Sinica, 2019, 38(2):173-185. [25] 赵一, 李衍青, 覃星铭, 洪涛, 程瑞瑞, 蓝芙宁. 南洞地下河岩溶管道展布及结构特征的示踪试验解析[J]. 中国岩溶, 2017, 36(2):226-233.ZHAO Yi, LI Yanqing, QIN Xingming, HONG Tao, CHENG Ruirui, LAN Funing. Tracer tests on distribution and structural characteristics of karst channels in Nandong underground river drainage[J]. Carsologica Sinica, 2017, 36(2):226-233. [26] 王宇, 王梓溦. 岩溶地下水富集的地貌组合形态[J], 中国岩溶, 2015, 34(4): 314-324.WANG Yu, WANG Ziwei. Patterns of karst geomorphologic combinnationg in areas with rich groundwater[J], Carsologica Sinica, 2015,34 (4) : 314-324. [27] 张华, 康晓波, 杨文兴. 云南通海县岳家营暗河管道水质评价[J]. 云南地质, 2014, 33(4): 588-593.ZHANG Hua, KANG Xiaobo, YANG Wenxing. The assessment of tube water in Yuejiayin buried river in Tonghai [J]Yunnan Geology, 2014, 33 (4): 588-593. [28] 王宇. 岩溶高原地下水径流系统垂向分带[J]. 中国岩溶, 2018, 37(1): 1-8.WANG Yu. Vertical zoning of groundwater runoff system in karst plateau [J]. Carsologica Sinica, 2018, 37(1): 1-8. [29] 陶时雨, 张世涛, 张东泽, 张磊, 黄威虎. 滇东南薄竹山地区温泉地质特征及成因分析[J]. 云南师范大学学报(自然科学版), 2015, 35(6):65-69.TAO Shiyu, ZHANG Shitao, ZHANG Dongze, ZHANG Lei, HUANG Weihu. Analysis of geolgica characteristics and genesis of hot springs in Bozhushan area in southeast of Yunnan Province[J]. Journal of Yunnan Normal University (Natural Science), 2015, 35(6):65-69. [30] 张良喜. 白云岩岩溶砂化形成机理及其工程特性研究[D]. 成都: 成都理工大学, 2012.ZHANG Liangxi. Study on formation mechanism and engineering characteristics of dolomite karst sanding [D]. Chengdu: Chengdu University of Technology, 2012. [31] 张良喜, 张海泉, 赵其华, 何文秀. 四川坪头水电站白云岩砂化特征及发育分布规律[J]. 人民长江, 2012, 43(19):42-44, 78.ZHANG Liangxi, ZHANG Haiquan, ZHAO Qihua, HE Wenxiu. Characteristics and distribution of dolomite sandification at Pingtou hydropower station[J]. Yangtze River, 2012, 43(19):42-44, 78.