Response characteristics of forward modeling of 3D high-density resistivitymethod on different devices in the fault-water-filled cave
-
摘要: 高阻碳酸盐岩中的低阻断层和充水溶洞是岩溶区地下水勘查的主要目标体。根据高阻中找低阻的原则,建立碳酸盐岩类裂隙溶洞水赋存模式的断层-溶洞地电模型,利用RES3D软件进行温纳、施伦贝格、偶极-偶极三种采集装置的正反演模拟计算,从三维反演结果、剖面、电测深曲线三个维度,对比分析不同装置下断层-溶洞目标体的地电响应特征和规律。结果显示:(1) 探测深度内,温纳、施伦贝格、偶极-偶极装置可有效识别断层及其上盘三倍于电极距规模的充水溶洞,无法分辨断层下盘二倍于电极距规模的充水溶洞;(2) 相同模型和观测条件下,偶极-偶极装置对目标体的识别能力最强,其三维反演结果可识别溶洞下边界,剖面中形成左凸低阻圈闭异常,不同测深点的曲线类型、拐点、极值点与模型设计最为贴近,且拐点对应岩性界面,极值点位于地质体的中心深度。该工作对野外观测方式的选取和地质解译有一定指导意义。Abstract:
Low blocking layers and water-filled caves in high resistivity carbonate rocks are the main target bodies for groundwater exploration in karst areas. Three-dimensional imaging by high-density resistivity can obtain rich and high-precision geological anomaly information in any direction in the whole underground space of the survey area through multi-line and multi-direction observation, which is one of the most commonly used methods for water exploration of carbonate fissure caves. According to the principle of finding low resistance in high resistance, the water occurrence model of carbonate fissure karst cave in overlying karst areas is simplified into a combined geoelectric model of fault-karst cave, and the physical property parameters of various bodies are assigned according to the resistivity characteristics of common media in the karst area of south China. The specific parameters of the model are as follows: the surface overlying layer is cultivated soil with a thickness of 3 m and a resistivity of 100 Ω·m. In the fractured limestone with an underlying resistivity of 4,000 Ω·m, a tensile water-rich fault, with a dip angle of 78° and a width of 10m, is developed with a resistivity of 800 Ω·m. Water-filled cave 1, with a diameter of 15 m and a central burial depth of 17.5 m, is developed in the hanging wall of the fault, and Water-filled cave 2, with a diameter of 10m and a central burial depth of 15 m, is developed in the footwall. The resistivity of both caves is 25 Ω·m. Given the burial depth, resolution, working efficiency and other factors of the target body, the mesh of the 3D model is divided into x×y=50×30 electrodes. The number of layers is 12; the electrode distance is 5m; the measurement range of x direction is 0-245 m; the measurement range of y direction is 0-145 m. RES3D software has been used to perform forward and inverse simulation calculation of Winner, Schlumberger and Dipole-dipole acquisition devices. Inversion results within the range of detection depth are displayed in a three-dimensional manner, and XY horizontal slices are displayed on the model interface (Z=0 m, 3 m, 10 m, 25 m, and the maximum detection depth). To further explore the response characteristics of the model on different devices, XZ profile① across the karst cave and fault area (y=67.5 m), XZ profile② far away from the karst cave (y=7.5 m), and the sounding curves of different points (Ground sounding point I of Karst cave 1, Ground sounding point II of Karst cave 2, Ground sounding point III of Karst cave, and Ground sounding point IV far from the karst cave area) are extracted. The electrical characteristics of the three devices at and away from karst caves, the development depth and boundary of Karst caves 1 and 2, the inclination of faults, the burial depth at the top, the horizontal width, the inclination of the dip and the boundary of the hanging wall are analyzed. Through the three-dimensional forward and inverse calculation of the fault-water-filled karst cave, combining with the typical profile and electrical sounding curve, we analyze the response characteristics and laws of the target body in different devices and draw the following conclusions, (1) Within the detection depth, Winner, Schlumberger, Dipole-dipole devices can effectively identify the fault and the cave of the upper wall three times the size of electrode distance of Cave 1. The target body is a concentric circle of low resistance trap anomaly with green ribbon and color gradient. These three devices cannot distinguish the fault footwall of two times the size of the electrode distance of Cave 2. (2) Under the same model and observation conditions, the Dipole-dipole device has the strongest recognition ability for the target body. Three-dimensional inversion results can identify the lower boundary of the cave, and the left convex low resistance trap anomaly is formed in the profile. The curve types, inflection points and extreme points of different sounding points are closest to the model design. Inflection points correspond to the lithology of interface. And extreme points are located at the central depth of the geological body. Therefore, when using the three-dimensional high-density resistivity method for water exploration in the karst area of south China, we can prioritize Dipole-dipole observation method with the careful consideration of selecting the electrode distance. This study is of guiding significance for the selection of field observation mode and geological interpretation. -
介质类型 岩溶水 完整灰岩 裂隙灰岩 耕植土 电阻率/Ω·m <50 10 313~56 785 451~5 786 93.56~260.3 表 2 断层-溶洞地电模型设计参数
Table 2. Designed parameters of fault-cave geoelectric model
地质体 电阻率
ρ0/Ω·mx水平向范围
x0/my水平向范围
y0/m顶界埋深
zu0/m底界埋深
Zb0/m中心埋深
Zm0/m倾角
θ0/°围岩 4 000 无限延伸 无限延伸 − − − − 覆盖层 100 无限延伸 无限延伸 0 3 1.5 − 断层 800 117.5~127.5 无限延伸 3 − − 78 溶洞1 25 102.5~117.5 62.5~77.5 10 25 17.5 − 溶洞2 25 127.5~137.5 65~75 10 20 15 − 表 3 地质体在不同装置下的反演电性参数与模型设计差异表
Table 3. Differences between inversed resistivity and model designed parameter in different devices
地质体 温纳装置反演
电阻率值ρw/Ω·mρw-ρ0 施伦贝格反演
电阻率值ρs/Ω·mρs-ρ0 偶极-偶极反演
电阻率值ρp/Ω·mρp-ρ0 围岩 1 200~4 767 −2 800~767 1 460~5 680 −2 540~680 870~5 680 −3 130~1 680 覆盖层 87~350 −13~250 90~260 −10~160 80~195 −20~95 断层 400~2 280 −400~1 480 293~2 200 −507~1 400 200~2 060 −600~1 260 溶洞 1 100~3 400 1 075~3 375 1 020~2 670 995~2 645 480~2 100 455~2 075 表 4 目标体在不同装置下的反演几何参数
Table 4. Inversion interpretation results in different devices
目标体 装置 x水平向范围x/m y水平向范围y/m 顶界埋深zu0/m 底界埋深Zb0/m 中心埋深Zm0/m 倾角θ0/° 溶洞1 温纳 99~126 55~105 − − − − 施伦贝格 102~126 60~102 −10.5 − − − 偶极-偶极 105~129 65~80 −10 27 18.5 − 断层 温纳 115~127.5 无限延伸 −5 − − 83 施伦贝格 115~127.5 无限延伸 −3.9 − − 60 偶极—偶极 117.5~127.5 无限延伸 −3.2 − − 70 -
[1] 张美良, 林玉石, 冉景丞, 陈会明. 贵州荔波岩溶洞穴发育特征[J]. 中国岩溶, 2000, 19(1):13-20. doi: 10.3969/j.issn.1001-4810.2000.01.003ZHANG Meiliang, LIN Yushi, RAN Jingcheng, CHEN Huiming. The characteristics of karst caves development in Libl, Guizhou[J]. Carsologica Sinica, 2000, 19(1):13-20. doi: 10.3969/j.issn.1001-4810.2000.01.003 [2] 罗利川, 梁杏, 周宏, 谢凯, 陈标典. 香溪河流域岩溶洞穴发育与分布特征[J]. 中国岩溶, 2018, 37(3):450-461.LUO Lichuan, LIANG Xing, ZHOU Hong, XIE Kai, CHEN Biaodian. Development and distribution characteristics of karst caves in the Xiangxi River basin[J]. Carsologica Sinica, 2018, 37(3):450-461. [3] Redhaounia B, Bédir M, Gabtni H, et al. 2016. Hydro-geophysical characterization for groundwater resources potential of fractured limestone reservoirs in Amdoun Monts(North-western Tunisia)[J]. Journal of Applied Geophysics, 128: 150-162. [4] 胡树林, 陈烜, 帅恩华. 超高密度电阻率法在岩溶及破碎带探测中的应用[J]. 物探与化探, 2011, 35(6):821-824.HU Shulin, CHEN Xuan, SHUAI Enhua. The application of the ultra-high density resistivity method to the investigation of karst caves and fracture zones[J]. Geophysical and Geochemical Exploration, 2011, 35(6):821-824. [5] 王志鹏, 刘江平, 王鸣谦, 易磊. 高密度电法对带破碎状溶壳溶洞探测数值模拟[J]. 工程地球物理学报, 2019, 16(2):193-202. doi: 10.3969/j.issn.1672-7940.2019.02.010WANG Zhipeng, LIU Jiangping, WANG Mingqian, YI Lei. Detection numerical simulation of karst cave with broken shell by high density resistivity method[J]. Chinese Journal of Engineering Geophysics, 2019, 16(2):193-202. doi: 10.3969/j.issn.1672-7940.2019.02.010 [6] 杨妍妨. 高密度电阻率法在识别岩溶区断层结构特征中的应用[J]. 桂林理工大学学报, 2021, 41(1):62-69. doi: 10.3969/j.issn.1674-9057.2021.01.008YANG Yanfang. Electrical resistivity tomography to identify fault structures in karst terrains[J]. Journal of Guilin University of Technology, 2021, 41(1):62-69. doi: 10.3969/j.issn.1674-9057.2021.01.008 [7] 朱庆俊, 李伟, 李凤哲, 孙银行, 李戍. 广西隆安县地下水储水构造的地质-地球物理模型及其地球物理响应特征分析[J]. 中国岩溶, 2011, 30(1):34-40. doi: 10.3969/j.issn.1001-4810.2011.01.006ZHU Qingjun, LI Wei, LI Fengzhe, SUN Yinhang, LI Shu. Analysis on geologic-geophysical model and geophysical response of groundwater reservoir in Longan County, Guangxi[J]. Carsologica Sinica, 2011, 30(1):34-40. doi: 10.3969/j.issn.1001-4810.2011.01.006 [8] Loke M H, Barker R D. 1996. Practical techniques for 3D resistivity surveys and data inversion[J]. Geophysical Prospecting, 44(3): 499-523. [9] White R M S, Collins S, Denne R, et al. 2001. A new survey design for 3D IP inversion modelling at Copper Hill[J]. Exploration Geophysics, 32(4): 152-155. [10] 强建科, 阮百尧. 不同电阻率测深方法对旁侧不均匀体的反映[J]. 物探与化探, 2003(5):379-382.QIANG Jianke, RUAN Baiyao. The reflection of the lateral inhomogeneous body by different resistivity sounding methods[J]. Geophysical and Geochemical Exploration, 2003(5):379-382. [11] 黄俊革, 王家林, 阮百尧. 三维高密度电阻率E-SCAN法有限元模拟异常特征研究[J]. 地球物理学报, 2006(4):1206-1214. doi: 10.3321/j.issn:0001-5733.2006.04.037HUANG Junge, WANG Jialin, RUAN Baiyao. A study on FEM modeling of anomalies of 3-D high-density E-SCAN resistivity survey[J]. Chinese Journal of Geophysics, 2006(4):1206-1214. doi: 10.3321/j.issn:0001-5733.2006.04.037 [12] 施龙青, 翟培合, 魏久传, 朱鲁, 韩进, 尹会永, 于小鸽. 三维高密度电法在底板水探测中应用[J]. 地球物理学进展, 2009, 24(2):733-736. doi: 10.3969/j.issn.1004-2903.2009.02.050SHI Longqing, ZHAI Peihe, WEI Jiuchuan, ZHU Lu, HAN Jin, YIN Huiyong, YU Xiaoge. Application of three-dimensional high density resistivity to detection of floor water[J]. Progress in Geophysics, 2009, 24(2):733-736. doi: 10.3969/j.issn.1004-2903.2009.02.050 [13] 施龙青, 牛超, 翟培合, 魏久传, 朱鲁, 高卫富. 三维高密度电法在顶板水探测中应用[J]. 地球物理学进展, 2013, 28(6):3276-3279. doi: 10.6038/pg20130655SHI Longqing, NIU Chao, ZHAI Peihe, WEI Jiuchuan, ZHU Lu, GAO Weifu. Application of three-dimensional high density resistivity technique in detecting roof water[J]. Progress in Geophysics, 2013, 28(6):3276-3279. doi: 10.6038/pg20130655 [14] 马静晨, 李娜. 三维高密度电法在隐伏构造富水性勘探中的应用[J]. 城市地质, 2014, 9(1):43-45. doi: 10.3969/j.issn.1007-1903.2014.01.011MA Jincheng, LI Na. Application of 3D high-density electrical method to detection of the groundwater exploration in concealed structure[J]. Urban Geology, 2014, 9(1):43-45. doi: 10.3969/j.issn.1007-1903.2014.01.011 [15] 刘明伟. 组合三维与真三维高密度电法在高速公路溶洞探测中效果的对比研究[J]. 公路隧道, 2016(3):41-46+50.LIU Mingwei. Comparative study on the effect of combined 3D and true 3D high-density electrical method in karst cave detection of expressway[J]. Highway Tunnel, 2016(3):41-46+50. [16] 张欣, 赵明阶, 汪魁, 荣耀, 刘强. 电法三维成像技术在隧道岩溶探测中的应用[J]. 中国岩溶, 2016, 35(3):291-298. doi: 10.11932/karst20160307ZHANG Xin, ZHAO Mingjie, WANG Kui, RONG Yao, LIU Qiang. Application of 3D electrical resistivity tomography to a tunnel in a karst area[J]. Carsologica Sinica, 2016, 35(3):291-298. doi: 10.11932/karst20160307 [17] 李昊. 三维高密度电阻率法数值及物理模拟实验研究[D]. 长春: 吉林大学, 2012LI Hao. Research on numerical and physical simulation experiment of 3D high density resistivity method[D]. Changchun: Jilin University, 2012 [18] 白登海, 王立凤, 孙洁, 朱金芳, 黄宗林, 黄丹青, 何兆海, 祖金华, 廉雨方, Quentin Yarie, Volker Schaepe. 福州八一水库—尚干断裂的高密度电法和瞬变电磁法试验探测[J]. 地震地质, 2002(4):557-564. doi: 10.3969/j.issn.0253-4967.2002.04.010BAI Denghai, WANG Lifeng, SUN Jie, ZHU Jinfang, HUANG Zonglin, HUANG Danqing, HE Zhaohai, ZU Jinhua, LIAN Yufang, Quentin Yarie, Volker Schaepe. DC and TEM test sounding for the Bayi Reservoir-Shanggan Fault in Fuzhou city, Fujian province, China[J]. Seismology and Geology, 2002(4):557-564. doi: 10.3969/j.issn.0253-4967.2002.04.010 [19] 黄真萍, 吴伟达, 张义, 胡晓娟. 三维高密度电法高分辨数值模拟与分析[J]. 工程地质学报, 2015, 23(4):795-800. doi: 10.13544/j.cnki.jeg.2015.04.031HUANG Zhenping, WU Weida, ZHANG Yi, HU Xiaojuan. Numerical simulation and analysis of 3D high density resistivity method with high resolution[J]. Journal of Engineering Geology, 2015, 23(4):795-800. doi: 10.13544/j.cnki.jeg.2015.04.031 [20] 黄真萍, 胡艳, 朱鹏超, 李文灵. 高密度电阻率勘测方法分辨率研究与探讨[J]. 工程地质学报, 2014, 22(5):1015-1021. doi: 10.13544/j.cnki.jeg.2014.05.035HUANG Zhenping, HU Yan, ZHU Pengchao, LI Wenling. Analysis of resolution in fluence factors of High Density Resistivity Electrical Method and application[J]. Journal of Engineering Geology, 2014, 22(5):1015-1021. doi: 10.13544/j.cnki.jeg.2014.05.035 [21] Dey A, Morrison H F. Resistivity modeling for arbitrarily shaped three-dimensional structures[J]. Geophysics, 1979, 44(4):753. doi: 10.1190/1.1440975 [22] Loke H M. 2-D and 3-D Electrical Imaging Surveys[J]. Reports on the Researches, 2013, 31:67-72. [23] 傅良魁. 电法勘探教程[M]. 武汉: 地质出版社, 1983FU Liangkui. Tutorial on electrical prospecting[M]. Wuhan: Geological Publishing House, 1983 [24] 朱瑞, 李朝辉, 时向阳, 任云峰, 吴松, 张连忠. 三维高密度电法在隐伏断层探测中的应用[J]. 人民黄河, 2019, 41(11):106-109+143. doi: 10.3969/j.issn.1000-1379.2019.11.022ZHU Rui, LI Zhaohui, SHI Xiangyang, REN Yunfeng, WU Song, ZHANG Lianzhong. Application of 3D electrical resistivity tomography to buried fault detection[J]. Yellow River, 2019, 41(11):106-109+143. doi: 10.3969/j.issn.1000-1379.2019.11.022 [25] 郑智杰, 敖文龙, 曾洁, 甘伏平, 张伟. 综合物探法在柳州泗角村岩溶塌陷区调查中的应用[J]. 水文地质工程地质, 2017, 44(5):143-149. doi: 10.16030/j.cnki.issn.1000-3665.2017.05.22ZHENG Zhijie, AO Wenlong, ZENG Jie, GAN Fuping, ZHANG Wei. Application of integrated geophysical methods to karst collapse investigation in the Sijiao village near Liuzhou[J]. Hydrogeology and Engineering Geology, 2017, 44(5):143-149. doi: 10.16030/j.cnki.issn.1000-3665.2017.05.22 [26] 桂林冶金地质学院, 广西物探队, 广西航空物探队. 广西区域岩石物性调查报告[R]. 2005:29-30Guilin Metallurgical Institute. Guangxi geophysical prospecting team, Guangxi airborne geophysical prospecting team. Guangxi regional rock physical investigation report[R]. 2005: 29-30 [27] 郑智杰, 陈贻祥, 甘伏平. 岩溶区岩土层地球物理性质浅析:以吉利岩溶塌陷区为例[J]. 地球物理学进展, 2016, 31(2):920-927.ZHENG Zhijie, CHEN Yixiang, GAN Fuping. Brief analysis of the geophysical properties of rock and soil in karst area: Taking Geely karst collapse area as an example[J]. Progress in Geophysics, 2016, 31(2):920-927. [28] 李清林, 秦建增, 谢汝一, 张晓普. 高密度电阻率二维层析成像在郯庐断裂带山东潍坊段试验结果的初步分析[J]. 地震地质, 2006(4):589-596. doi: 10.3969/j.issn.0253-4967.2006.04.006LI Qinglin, QIN Jianzeng, XIE Ruyi, ZHANG Xiaopu. A preliminary study on the experimental result of 2D resistivity tomography survey along Tanlu fault zone in Weifang, Shandong[J]. Seismology and Geology, 2006(4):589-596. doi: 10.3969/j.issn.0253-4967.2006.04.006 [29] 宋希利, 宫述林, 邢立亭. 高密度电法在地下空洞探测中的应用研究[J]. 工程地球物理学报, 2010, 7(5):599-602.SONG Xili, GONG Shulin, XING Liting. Applications of high-density electrical method to underground cavity detection[J]. Chinese Journal of Engineering Geophysics, 2010, 7(5):599-602. [30] 曹崇本, 周世恩. 岩溶蓄水构造电阻率模型建立及其在物探找水中的应用[J]. 贵州地质, 2014, 31(3):223-228. doi: 10.3969/j.issn.1000-5943.2014.03.012CAO Chongben, ZHOU Shien. Building and significance of karst reservoir structure resistivity model in geophysical water exploration[J]. Guizhou Geology, 2014, 31(3):223-228. doi: 10.3969/j.issn.1000-5943.2014.03.012 [31] 谢忠球, 温佩琳, 喻振华. 提高高密度电阻率成像分辨力的数据处理技术[A]//湖南省地球物理论丛[C]. 长沙: 中南大学出版社. 2001XIE Zhongqiu, WEN Peilin, YU Zhenhua. Data processing techniques to improve the resolution of high density resistivity imaging[A]//Collection of Geophysical Papers in Hunan Province[C]. Changsha: Central South University Press