Imprints of millennial-scale events during the MIS3 revealed by stalagmite δ13C records in China
-
摘要: 基于山西阳泉市莲花洞石笋8个230Th年代和109个δ13C数据,获取了末次冰期54.5~41.1 ka BP期间平均分辨率为120年的δ13C记录。综合对比亚洲季风区29°~41°N之间5条独立定年的、高分辨率石笋δ13C记录表明:不同洞穴石笋δ13C记录在相同生长时段具有较好的重现性,δ13C指标能够有效指示洞穴上覆地区土壤CO2产率,从而反映洞穴外部环境与季风气候的变化。δ13C记录的5个千年尺度亚洲夏季风增强事件在定年误差范围内响应于格陵兰冰芯记录的Dansgaard-Oeschger(DO)10~14事件,而2个弱季风过程与北大西洋钻孔记录Heinrich 5和Heinrich 5a事件密切联系。这种石笋δ13C记录的空间一致性表明亚洲夏季风及其控制下的区域生态环境波动在千年尺度上通过海-气耦合响应于北高纬气候变化。Abstract:
During the last glacial period, a series of millennial-scale abrupt climatic events, including Heinrich events and Dansgaard-Oeschger events, exerted influential and profound impacts on the global climate systems. Due to advantages of high resolution, multiple proxies and 230Th dating methods, Chinese stalagmite δ18O records reveal distinct teleconnections between the climates in the northern high latitudes and the Asian monsoon domain. Generally, during cold Stadials in the northern high latitudes, Asian summer monsoon was weak and stalagmite δ18O values shifted positively, and during warm Interstadials, Asian summer monsoon was strong and stalagmite δ18O values shifted negatively. However, accompanied with the wide application comes a hot debate on the interpretation of stalagmite δ18O. It is suggested that Chinese stalagmite δ18O could possibly reflect Asian summer monsoon which is related with the average monsoonal intensity or the overall moisture transport to China, but could not merely represent local precipitation changes. For instance, during Stadials, under the influence of weak Asian summer monsoon, precipitation in southern China might increase, indicating inconsistent changes of "rainfall" and "wind". Climates in the monsoon marginal regions, namely northern China, are found in consistent behavior in terms of "rainfall" and “wind” changes. Besides, calcite δ13C is also potential for the reconstruction of paleoclimatology and paleo-environment, thus, to some extent, could compensate the shortage of calcite δ18O which lacks changing signals of local environment. Yangquan City in Shanxi Province is located at the Loess Plateau and the northern edge of the Asian monsoon. Multi-proxy records induced from stalagmites in this region can provide us a better understanding of the "wind" and "rainfall" aspects of the monsoonal climate. At an elevation of 1,200 m above sea level, Lianhua Cave (38°10′N, 113°43′E) is developed in the Ordovician limestone, with a narrow entrance and passages. Relative humidity in the inner cave reaches 98%-100%, and the temperature in July reaches 11°C, close to the mean annual ground temperature. Average annual precipitation is 515 mm (AD 1970-AD 2000; recorded in a meteorological station of Yangquan, 20 km from the cave). Sample LH36 is candle-shaped, 206 mm in length and 80–110 mm in diameter. After halved and polished, we find clear growth layers in the sample and it is composed of milky-white and yellowish calcite. Alternating changes of the petrography and brown weathered layers are observed at the depth of 33-35 mm and 145-150 mm, indicating two growth hiatuses. Considering the hiatuses, we use the depth section of 37-145 mm for this study, which grew in the (Marine Isotope Stage) MIS3. On the polished profile, we drill 109 samples with a 0.3 mm-diameter carbide dental bur at 1 mm intervals, 50 μg each, for stable isotope analyses. Measurements are carried out by the usage of a Finnigan-MAT 253 mass spectrometer equipped with an automated Kiel Carbonate Device at College of Geography Science, Nanjing Normal University. The analytical errors are better than ± 0.06‰ for δ18O and ± 0.05‰ for δ13C. Eight powder samples for 230Th dating are drilled with 0.9 mm-diameter carbide dental bur, 70-130 mg each. Chemical procedures and U-Th isotopic measurement are performed on a multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS), Thermo Finnigan NEPTUNE, at the High-Precision Mass Spectrometry and Environment Change Laboratory (HISPEC), Department of Geosciences, National Taiwan University, and at the Isotope Laboratory, College of Geography Science, Nanjing Normal University. Uncertainties in isotopic data and dates are relative to AD 1950, and are given at the 2σ level. Based on 8 230Th dates and 109 sets of stable isotope data of LH36, we obtain a paleoclimate record with an average resolution of 120 years from 54.5 to 41.1 ka BP during the MIS3. Both Hendy test and Replication test indicate an equilibrium fractionation of isotopes during the stalagmite deposition. Comparison with other four independently-dated, high-resolution stalagmite δ13C records between 29°N and 41°N in the Asian monsoon region shows that the stalagmite δ13C records from different caves have good reproducibility during the overlapped growth period. We suggest that speleothem δ13C effectively indicates soil CO2 production in the overlying area of the cave, reflecting changes in the cave’s external environment and Asian summer monsoon. Five millennial-scale Asian summer monsoon intensification events correspond to the Dansgaard-Oeschger (DO) 10-14 cycles recorded in the Greenland ice core within dating errors, and the two weak monsoon processes are closely related to the Heinrich Event 5 and Heinrich Event 5a in the North Atlantic. The spatial consistency of stalagmite δ13C records in China suggests that the Asian summer monsoon and the related regional ecological environment fluctuations sensitively respond to climate changes at northern high latitudes through sea-air coupling on the millennial timescale. -
Key words:
- Loess Plateau /
- stalagmite δ13C records /
- Marine Isotope Stage 3 /
- abrupt climatic event
-
图 1 亚洲季风区莲花洞与其他四个洞穴地理位置图
注:红色五边形为莲花洞(113°43′E,38°10′N),黑色三角形为其他四个洞穴:珍珠洞(113°42′E,38°15′N[19])、黄金洞(118°38′E,40°17′N[26])、永兴洞(111°14′E,31°35′N[27])、羊子洞(107°47′E,29°47′N[28]);底图数据来源于US National Park Service。
Figure 1. Locations of Lianhua cave (pentagon) and other caves mentioned in this paper (triangle)
表 1 石笋LH36测年结果
Table 1. 230Th dating results for stalagmite LH36
样品编号 238U
/ppb232Th
/pptδ234U
(测量值)230Th/238U
(活度比)230Th/232Th
原子比 /x 10−3)Age (ka)
(未校正)Age (ka)
(校正后)Age (ka BP)
(距1950年)δ234U
(初始值)LH36-33 233.4 ± 0.3 281.0 ± 6.0 1 922 ± 3 0.822 ± 0.002 11.258 ± 0.240 34.73 ± 0.10 34.72 ± 0.10 34.64 ± 0.10 2 120 ± 3 LH36-37 161.9 ± 0.1 2 600.0 ± 20.0 1 571 ± 2 0.839 ± 0.002 0.861 ± 0.008 41.20 ± 0.10 41.10 ± 0.10 41.08 ± 0.14 1 765 ± 3 LH36-51 97.5 ± 0.1 2 088.5 ± 6.8 1 474 ± 3 0.825 ± 0.003 0.635 ± 0.003 42.41 ± 0.20 42.20 ± 0.23 42.13 ± 0.23 1 660 ± 3 LH36-80 95.6 ± 0.1 8 014.6 ± 30.1 1 630 ± 3 0.928 ± 0.006 0.183 ± 0.001 45.30 ± 0.36 44.52 ± 0.53 44.44 ± 0.53 1 849 ± 4 LH36-95 102.6 ± 0.1 11 506.8 ± 53.9 1 196 ± 3 0.842 ± 0.006 0.124 ± 0.001 50.31 ± 0.46 49.06 ± 0.78 48.99 ± 0.78 1 373 ± 5 LH36-113 156.9 ± 0.2 8 096.9 ± 27.0 2 478 ± 4 1.400 ± 0.007 0.447 ± 0.003 52.66 ± 0.31 52.31 ± 0.36 52.23 ± 0.36 2 873 ± 6 LH36-127 140.9 ± 0.2 11 597.0 ± 59.6 1 500 ± 3 1.021 ± 0.007 0.205 ± 0.002 54.11 ± 0.46 53.31 ± 0.60 53.24 ± 0.60 1 743 ± 5 LH36-147 256.9 ± 0.3 10 714.7 ± 42.4 991 ± 3 0.899 ± 0.005 0.356 ± 0.002 61.97 ± 0.44 61.46 ± 0.51 61.39 ± 0.51 1 179 ± 4 注:年龄误差为2σ,230Th的衰变常数为9.1705×10−6 yr−1[31];234U的衰变常数为2.8221 ×10−6 yr−1[31];238U的衰变常数为1.55125×10−10 yr−1[32];校正年龄是假设初始230Th/232Th原子数比值为(4.4 ± 2.2) ×10−6;年龄(ka BP)是相对于公元1950年;δ234U初始值是依据公式δ234U初始值= δ234U校正值 x eλ234×T获得,T是230Th年龄。 -
[1] Heinrich H. Hartmut. Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130, 000 years[J]. Quaternary Research, 1988, 29(2):142-152. doi: 10.1016/0033-5894(88)90057-9 [2] Dansgaard W, Johnsen S J, Clausen H B, Dahl-Jensen D, Gundestrup N S, Hammer C U, Hvidberg C S, Steffensen J P, Sveinbjornsdottir A E, Jouzel J. Evidence for general instability of past climate from a 250-kyr ice-core record[J]. Nature, 1993, 364(6434):218-220. doi: 10.1038/364218a0 [3] Grootes P M, Stuiver M, White J W C, Johnsen S, Jouzel J. Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores[J]. Nature, 1993, 366(6455):552-554. doi: 10.1038/366552a0 [4] Naafs B, Hefter J, Stein R. Millennial-scale ice rafting events and Hudson Strait Heinrich(-like) Events during the late Pliocene and Pleistocene: a review[J]. Quaternary Science Reviews, 2013, 80:1-28. doi: 10.1016/j.quascirev.2013.08.014 [5] Voelker A. Global distribution of centennial-scale records for Marine Isotope Stage (MIS) 3: a database[J]. Quaternary Science Reviews, 2002, 21(10):1185-1212. doi: 10.1016/S0277-3791(01)00139-1 [6] Wang Y J, Cheng H, Edwards R L, Anti Z S, Shen J Y, Dorale J A. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China[J]. Science, 2001, 294(5550):2345-2348. doi: 10.1126/science.1064618 [7] Carolin S A, Cobb K M, Adkins J F, Clark B, Conroy J L, Lejau S, Malang J, Tuen A A l. Varied response of Western Pacific hydrology to climate forcings over the Last Glacial Period[J]. Science, 2013, 340(6140):1564-1566. doi: 10.1126/science.1233797 [8] Wang X F, Edwards R L, Auler A S, Cheng H, Kong X, Wang Y, Cruz F W, Dorale J A, Chiang H W. Hydroclimate changes across the Amazon lowlands over the past 45, 000 years[J]. Nature, 2017, 541(7636):204-207. doi: 10.1038/nature20787 [9] Dong J G, Shen C C, Wang Y, Wang Y, Hu H M, Banerjee Y, Huang Y. Multicentennial to millennial–scale changes in the East Asian summer monsoon during Greenland interstadial 25[J]. Quaternary Research, 2022:195-206. [10] Woods A, Rodbell D T, Abbott M B, Hatfield R G, Chen C, Lehmann S B, McGee D, Weidhaas N, Tapia P M, Valero-Garcés B L, Bush M B, Stoner J S. Andean drought and glacial retreat tied to Greenland warming during the last glacial period[J]. Nature Communications, 2020, 11(1):5153. doi: 10.1038/s41467-020-18675-3 [11] Wang Y J, Cheng H, Edwards R L, Kong X, Shao X, Chen S, Wu J, Jiang X, Wang X, An Z. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224, 000 years[J]. Nature, 2008, 451(7182):1090-1093. doi: 10.1038/nature06692 [12] Cheng H, Edwards R L, Sinha A, Spötl C, Yi L, Chen S, Kelly M M, Kathayat G, Wang X, Li X, Kong X, Wang Y, Ning Y, Zhang H. The Asian monsoon over the past 640, 000 years and ice age terminations[J]. Nature, 2016, 541(7635):640-646. [13] Maher B. Holocene variability of the East Asian summer monsoon from Chinese cave records: a re-assessment[J]. Holocene, 2008, 18(6):861-866. doi: 10.1177/0959683608095569 [14] Dayem A, Molnar P, Battisti B, Roe G. Lessons learned from oxygen isotopes in modern precipitation applied to interpretation of speleothem records of paleoclimate from eastern Asia[J]. Earth and Planetary Science Letters, 2010, 295:219-230. [15] Caley T, Roche D, Renssen H. Orbital Asian summer monsoon dynamics revealed using an isotope-enabled global climate model[J]. Nature Communications, 2014, 5:5371. doi: 10.1038/ncomms6371 [16] Zhang H, Griffiths M, Huang J, Cai Y, Wang C, Zhang F, Cheng H, Ning Y, Hu C, Xie S. Antarctic link with east Asian summer monsoon variability during the Heinrichs stadial–Bolling interstadial transition[J]. Earth and Planetary Science Letters, 2016, 453:243-251. doi: 10.1016/j.jpgl.2016.08.008 [17] Chiang J C H, Herman M J, Yoshimura K, Fung I Y. Enriched East Asian oxygen isotope of precipitation indicates reduced summer seasonality in regional climate and westerlies[J]. Proceedings of the National Academy of Sciences, 2020, 117:14745-14750. doi: 10.1073/pnas.1922602117 [18] Cheng H, Zhang H W, Zhao J Y, Li H Y, Ning Y F, Kathayat G. Chinese stalagmite paleoclimate researches A review and perspective[J]. Science China Earth Sciences, 2019, 62:1489-1513. doi: 10.1007/s11430-019-9478-3 [19] Li Y X, Rao Z G, Xu Q H, Zhang S R, Liu X K, Wang Z L, Cheng H, Edwards R L, Chen F. Inter-relationship and environmental significance of stalagmite δ13C and δ18O records from Zhenzhu Cave, north China, over the last 130 ka[J]. Earth and Planetary Science Letters, 2020, 536:116-149. [20] He C, Liu Z, Otto-Bliesner B L, Brady E, Bao Y. Hydroclimate footprint of pan-Asian monsoon water isotope during the last deglaciation[J]. Science Advances, 2021, 7:eabe2611. doi: 10.1126/sciadv.abe2611 [21] Fohlmeister J, Voarintsoa N, Lechleitner F A, Boyd M, Brandtstaetter S, Jacobson M, Oster J L. Main Controls on the Stable Carbon Isotope Composition of Speleothems[J]. Geochimica et CosmochimicaActa, 2020, 279:67-87. doi: 10.1016/j.gca.2020.03.042 [22] 陈剑舜, 张伟宏, 陈仕涛, 邵庆丰, 赵侃, 尹敬文, 朱丽东. 小冰期气候的湖北石笋碳同位素记录[J]. 沉积学报, 2020, 38(3):497-504. doi: 10.14027/j.issn.1000-0550.2019.058CHEN Jianshun, ZHANG Weihong, CHEN Shitao,SHAO Qingfeng, ZHAO Kan, YIN Jingwen, ZHU Lidong. Carbon isotope record in stalagmites from Hubei during the Little Ice Age[J]. Acta Sedimentologica Sinica, 2020, 38(3):497-504. doi: 10.14027/j.issn.1000-0550.2019.058 [23] 张伟宏, 吴江滢. 辽宁暖和洞石笋δ13C对全新世气候变化的生态响应[J]. 海洋地质与第四纪地质, 2012, 32(3):147-154.ZHANG Weihong, WU Jiangying. Ecological response of δ13C to Holocene climate changes from stalagmite record in Nuanhe Cave, Liaoning[J]. Marine Geology & Quaternary Geology, 2012, 32(3):147-154. [24] 孔兴功, 汪永进, 吴江滢, Cheng Hai, Edwards R L, Wang Xianfeng. 南京葫芦洞石笋δ13C对冰期气候的复杂响应与诊断[J]. 中国科学(D辑:地球科学), 2005, 48(12):2174-2181.KONG Xinggong, WANG Yongjin, WU Jiangying, CHENG Hai, Edwards R L, WANG Xianfeng. Complicated responses of stalagmite δ13C to climate change during the last glaciation from Hulu Cave, Nanjing, China[J]. Science in China (Series D), 2005, 48(12):2174-2181. [25] 姜修洋, 孔兴功, 汪永进, 程海, 张春霞. 神农架三宝洞倒数第二次冰期高分辨率石笋δ13C记录[J]. 第四纪研究, 2011, 31(1):1-7. doi: 10.3969/j.issn.1001-7410.2011.01.01JIANG Xiuyang, KONG Xinggong, WANG Yongjin, CHENG Hai, ZHANG Chunxia. A high-resolution stalagmite δ13C record from Sanbao cave over the penultimate glaciation[J]. Quaternary Sciences, 2011, 31(1):1-7. doi: 10.3969/j.issn.1001-7410.2011.01.01 [26] Liang Y J, Zhao K, Wang Y J, Edwards R L, Cheng H, Shao Q F, Chen S, Wang J Y, Zhu J J. Different response of stalagmite δ18O and δ13C to millennial-scale events during the last glacial, evidenced from Huangjin Cave, northern China[J]. Quaternary Science Reviews, 2022, 276:107305. doi: 10.1016/j.quascirev.2021.107305 [27] 王萌, 陈仕涛, 黄琬淳, 蔡雯沁, 龚清霖, 梁怡佳, 王先锋, 汪永进. 石笋灰度和同位素对末次冰期气候事件的响应[J]. 自然资源学报, 2020, 35(12):3064-3075. doi: 10.31497/zrzyxb.20201220WANG Meng, CHEN Shitao, HUANG Wanchun, CAI Wenqin, GONG Qinglin, LIANG Yijia, WANG Xianfeng, WANG Yongjin. The response of stalagmite gray-level and isotopes to the climatic events during the last glacial period[J]. Journal of Natural Resources, 2020, 35(12):3064-3075. doi: 10.31497/zrzyxb.20201220 [28] Wu Y, Li T Y, Yu T L, Shen C C, Chen C J, Zhang J, Li J Y, Wang T, Huang R, Xiao S Y. Variation of the Asian summer monsoon since the last glacial-interglacial recorded in a stalagmite from southwest China[J]. Quaternary Science Reviews, 2020, 234:106-261. [29] Shen C C, Wu C C, Cheng H, Edwards R L, Hsieh Y T, Gallet S, Chang C C, Li T Y, Lam D D, Kano A, Hori M, Spötl C. High-precision and high-resolution carbonate 230Th dating by MC-ICP-MS with SEM protocols[J]. Geochimica et CosmochimicaActa, 2012, 99:71-86. doi: 10.1016/j.gca.2012.09.018 [30] Shao Q F, Pons-Branchu E, Zhu Q P, Wang W, Valladas H, Fontugne, M. High precision U/Th dating of the rock paintings at Mt. Huashan, Guangxi, southern China[J]. Quaternary Research, 2017, 88(1):1-13. doi: 10.1017/qua.2017.24 [31] Cheng H, EdWards R L, Shen C C, Polyak V J, Asmerom Y, Woodhead J, Hellstrom J, Wang Y, Kong X, Spötl C. Improvements in 230Th dating, 230Th and 234U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry[J]. Earth and Planetary Science Letters, 2013, 371-372:82-91. doi: 10.1016/j.jpgl.2013.04.006 [32] Jaffey A H, Flynn K F, Glendenin L E, Bentley W C, Essling A M. Precision Measurement of Half-Lives and Specific Activities of 235U and 238U[J]. Physical Review C, 1971, 4:1889-1906. doi: 10.1103/PhysRevC.4.1889 [33] Duan W H, Ruan J H, Luo W J, Li T Y, Tian L J, Zeng G N, Zhang D Z, Bai Y J, Li J L, Tao T, Zhang P Z, Baker A, Tan M. The transfer of seasonal isotopic variability between precipitation and drip water at eight caves in the monsoon regions of China[J]. Geochimica et Cosmochimica Acta, 2016, 183, 250-266. [34] Hendy C H. Isotopic geochemistry of speleothems—I. Calculation of effects of different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators[J]. Geochimica et CosmochimicaActa, 1971, 35(8):801-824. doi: 10.1016/0016-7037(71)90127-X [35] Dorale J A, Liu Z H. Limitations of Hendy Test criteria in judging the paleoclimatic suitability of speleothems and the need for replication[J]. Journal of Cave and Karst Studies, 2009, 71(1):73-80. [36] Genty D, Baker A, Massault M, Proctor C, Gilmour M, Pons-Branchu E, Hamelin B. Dead carbon in stalagmites: Carbonate bedrock paleodissolution vs. ageing of soil organic matter. Implications for 13C variations in speleothems[J]. Geochimica et CosmochimicaActa, 2001, 65(20):3443-3457. doi: 10.1016/S0016-7037(01)00697-4 [37] 杨华, 王宝清, 孙六一, 任军峰, 黄正良, 武春英. 鄂尔多斯盆地中奥陶统马家沟组碳酸盐岩碳、氧稳定同位素特征[J]. 天然气地球科学, 2012, 23(4):616-625.YANY Hua, WANG Baoqing, SUN Liuyi, REN Junfeng, HUANG Zhengliang, WU Chunying. Characteristics of Oxygen and Carbon Stable Isotopes for Middle Ordovician Majiagou Formation Carbonate Rocks in the Ordos Basin[J]. Natural Gas Geoscience, 2012, 23(4):616-625. [38] Genty D, Blamart D, Ouahdi R, Proctor C, Gilmour M, Pons-Branchu E, Hamelin B. Precise dating of Dansgaard-Oeschger climate oscillations in western Europe from stalagmite data[J]. Nature, 2003, 421(6925):833-837. doi: 10.1038/nature01391 [39] Mcdermott F. Palaeo-climate reconstruction from stable isotope variations in speleothems: a review[J]. Quaternary Science Reviews, 2004, 23(7):901-918. [40] Campos M C, Chiessi C M, Voigt I, Piola A R, Kuhnert H, Mulitza S. δ13C decreases in the upper western South Atlantic during Heinrich Stadials 3 and 2[J]. Climate of the Past, 2017, 13(4):345-358. doi: 10.5194/cp-13-345-2017 [41] Dorale J A, Gonzalez L A, Reagan M K, Pickett D A, Baker R G. A high-resolution record of Holocene climate change in speleothem calcite from cold water cave[J]. Science, 1992, 258(5088):1626-1630. doi: 10.1126/science.258.5088.1626 [42] Fairchild I J, Mcmillan E A. Speleothems as indicators of wet and dry periods[J]. International Journal of Speleology, 2007, 36(2):69-74. doi: 10.5038/1827-806X.36.2.2 [43] Huang W, Wang Y J, Cheng H, Richard L E, Wang Q. Multi-scale Holocene Asian monsoon variability deduced from a twin-stalagmite record in southwestern China[J]. Quaternary Research, 2016, 86(1):34-44. doi: 10.1016/j.yqres.2016.05.001 [44] 罗维均, 王世杰, 刘秀明. 洞穴现代沉积物δ13C值的生物量效应及机理探讨: 以贵州4个洞穴为例[J]. 地球化学, 2007, 36(4):344-350. doi: 10.3321/j.issn:0379-1726.2007.04.002LUO Weijun, WANG Shijie, LIU Xiuming. Biomass effect on car-bon isotope ratios of modern calcite deposition and its mechanism: A case study of 4 caves in Guizhou Province, China[J]. Geochimica, 2007, 36(4):344-350. doi: 10.3321/j.issn:0379-1726.2007.04.002 [45] 饶志国, 陈发虎, 曹洁, 张平中, 张平宇. 黄土高原西部地区末次冰期和全新世有机碳同位素变化与C3/C4植被类型转换研究[J]. 第四纪研究, 2005, 1:107-114. doi: 10.3321/j.issn:1001-7410.2005.01.015RAO Zhiguo, CHEN Fahu, CHAO Jie, ZHANG Pingzhong, ZHANG Pingyu. Variation of soil organic carbon isotope and C3/C4 vegetation type transition in the western loess plateau during the last glacial and Holocene periods[J]. Quaternary Sciences, 2005, 1:107-114. doi: 10.3321/j.issn:1001-7410.2005.01.015 [46] 周斌, 沈承德, 郑洪波, 赵美训, 孙彦敏. 黄土高原中部晚第四纪以来植被演化的元素碳碳同位素记录[J]. 科学通报, 2009, 54(9):1262-1268. doi: 10.1360/csb2009-54-9-1262ZHOU Bin, SHEN Chengde, ZHENG Hongbo, ZHAO Meixun, SUN Yanmin. Vegetation evolution on the central Chinese Loss Plateau since late Quaternary evidenced by elemental carbon isotopic composition[J]. Chinese Science Bulletin, 2009, 54(9):1262-1268. doi: 10.1360/csb2009-54-9-1262 [47] Sun B Y, Liu W G, Sun Y B, An Z S. The precipitation "threshold value" on C4/C3 abundance of the Loess Plateau, China[J]. Science Bulletin, 2015, 60(7):718-725. [48] Sun Y B, Kutzbach J, An Z S, Clemens, S, Liu Z Y, Liu W G, Liu X D, Shi Z G, Zheng, W P, Liang L J, Yan Y, Li Y. Astronomical and glacial forcing of East Asian summer monsoon variability[J]. Quaternary Science Reviews, 2015(115):132-142. [49] 吴秀平, 丁明虎, 侯典炯, 孙维君, 杜文涛, 张德忠, 季顺川. 末次冰期晚期黄土高原西部万象洞高分辨率石笋δ13C记录时频分析[J]. 干旱区资源与环境, 2012, 26(11):42-47.WU Xiuping, DING Minghu, HOU Dianjiong, SUN Weijun, DU Wentao, ZHANG Dezhong, JI Shunchuan. Time - frequency analysis of carbon isotope record of stalagmite from Wanxiang Cave, western Loess Plateau, during the late of last Glacial[J]. Journal of Arid Land Resources and Environment, 2012, 26(11):42-47. [50] Yin J J, Li H C, Rao Z G, Shen C C, Mii H S, Pillutla R K, Hu H M, Li Y X, Feng X H. Variations of monsoonal rain and vegetation during the past millennium in Tiangui Mountain, North China reflected by stalagmite δ18O and δ13C records from Zhenzhu Cave[J]. Quaternary International, 2017, 447:89-101. doi: 10.1016/j.quaint.2017.06.039 [51] Li Y X, Zhang S R, Liu X K, Gao Y L, Rao Z G. Variations of the stable isotopic composition of precipitation and cave drip water at Zhenzhu cave, north China: a two-year monitoring study[J]. Journal of Cave and Karst Studies, 2019, 81(2):123-135. doi: 10.4311/2018ES0128 [52] Bereiter B, Eggleston S, Schmitt J, Nehrbass-Ahles C, Stocker T F, Fischer H, Kipfstuhl S, Chappellaz J. Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present[J]. Geophysical Research Letters, 2015, 42(2):542-549. doi: 10.1002/2014GL061957 [53] Dippery J K, Tissue D T, Thomas R B, Strain B R. Effects of low and elevated CO2 on C3 and C4 annuals .1.growth and biomass allocation[J]. Oecologia, 1995, 101(1):13-20. doi: 10.1007/BF00328895 [54] 汪镇, 田军. 晚中新世C4植被扩张与大气二氧化碳分压的关系[J]. 海洋地质与第四纪地质, 2021, 41(5):160-172.WANG Zhen, TIAN Jun. The Late Miocene C4 vegetation expansion and its relation with the partial pressure of carbon dioxide in atmospheric[J]. Marine Geology & Quaternary Geology, 2021, 41(5):160-172. [55] North Greenland Ice Core Project. High-resolution record of Northern Hemisphere climate extending into the last interglacial period[J]. Nature, 2004, 431:147-151. doi: 10.1038/nature02805 [56] 刘殿兵, 汪永进, 陈仕涛. 神农架天鹅洞石笋76~58 ka B. P. 时段DO事件[J]. 沉积学报, 2007, 25(1):131-138. doi: 10.3969/j.issn.1000-0550.2007.01.017LIU Dianbing, WANG Yongjin, CHEN Shitao. DO Events During 76-58 ka B. P. from a Stalagmite in Tian'e Cave Shennongjia Area[J]. Acta Sedimentologica Sinica, 2007, 25(1):131-138. doi: 10.3969/j.issn.1000-0550.2007.01.017 [57] 董西瑀, 程海, Kathayat Gayatri, 张帆, 李瀚瑛, 张海伟, 赵景耀, 宁有丰, 李向磊, 成星, 曲晓丽. 石笋记录的印度季风Heinrich 2事件结束过程[J]. 第四纪研究, 2019, 39(4):878-893. doi: 10.11928/j.issn.1001-7410.2019.04.08DONG Xiyu, CHENG Hai, Kathayat Gayatri, ZHANG Fan, LI Hanying, ZHANG Haiwei, ZHAO Jingyao, NING Youfeng, LI Xianglei, CHENG Xing, QU Xiaoli. The termination period of Heinrich 2 event recorded by stalagmite in Indian monsoon domain[J]. Quaternary Sciences, 2019, 39(4):878-893. doi: 10.11928/j.issn.1001-7410.2019.04.08 [58] Chiang J, Friedman A R. Extratropical cooling, interhemispheric thermal gradients, and tropical climate change[J]. Annual Review of Earth and Planetary Sciences, 2012, 40(1):383-412. doi: 10.1146/annurev-earth-042711-105545 [59] Song Y G, Zeng M X, Chen X L, Li Y, Chang H, An Z S, Guo X H. Abrupt climatic events recorded by the Ili loess during the last glaciation in Central Asia: Evidence from grain-size and minerals[J]. Journal of Asian Earth Sciences, 2018, 155:58-67. doi: 10.1016/j.jseaes.2017.10.040 [60] Sandeep N, Swapna P, Krishnan R, Farneti R, Prajeesh A G, Ayantika D C, Manmeet S. South Asian monsoon response to weakening of Atlantic meridional overturning circulation in a warming climate[J]. Climate Dynamics, 2020, 54(7-8):3507-3524. [61] Broecker W S, Peteet D M, Rind D. Does the ocean–atmosphere system have more than one stable mode of operation[J]. Nature, 1985, 315(6014):21-26. doi: 10.1038/315021a0 [62] Hong X W, Lu R Y. The Meridional Displacement of the Summer Asian Jet, Silk Road Pattern, and Tropical SST Anomalies[J]. Journal of Climate, 2016, 29(10):3753-3766. doi: 10.1175/JCLI-D-15-0541.1 [63] Hong X W, Lu R Y, Li S L. Amplified summer warming in Europe–West Asia and Northeast Asia after the mid-1990s[J]. Environmental Research Letters, 2017, 12(9):094007. doi: 10.1088/1748-9326/aa7909