Review and prospect of research on the role of micro-organisms in karst carbon cycle
-
摘要: 全球气候变化问题使岩溶系统碳循环的研究倍受关注,有关微型生物及其碳酸酐酶在岩溶系统碳循环中的作用的认识也在不断深入。文章回顾了微型生物及其碳酸酐酶在碳酸盐岩风化以及碳酸盐岩沉积过程中的作用过程及作用机制,指出未来的研究需结合不同岩溶生态环境,量化微型生物及其碳酸酐酶对岩溶生态系统碳增汇的影响,为深入研究微型生物及其碳酸酐酶对岩溶碳汇的贡献、增加岩溶生态系统碳汇的能力、助力实现碳中和提供参考。Abstract:
The issue of global climate change has drawn much attention to the research on the carbon cycle of karst systems. Carbonate rock is the largest known carbon pool on the earth. It is easy to make CO2 in the atmosphere sink continuously through karstification, and enter into the pedosphere and hydrosphere in the form of inorganic carbon, and actively participate in the global carbon cycle through a series of dynamic processes such as migration and transformation, resulting in carbon sink effect. On the other hand, under the catalysis and regulation of organisms during the geological history, the deposition of carbonate rocks can also absorb atmospheric CO2 and produce a huge sink effect. Therefore, strengthening the study of weathering and depositional processes of carbonate rocks will help to study the karst carbon cycle and increase the karst carbon sink. Various microscopic organisms are distributed on the surface of carbonate rocks, and they have strong adaptability, which can affect the weathering and deposition processes of carbonate rocks through their own metabolism and the interactive network within the community. Carbonic Anhydrase (CA) is a zinc containing metalloenzyme, and it can efficiently catalyze the hydration of CO2 (CO2+H2O↔HCO3−+H−). CA and CA producing microorganisms are widely distributed in the soil and water in the karst area, and CA has good relative stability in the karst environment. CA and CA producing microorganisms can significantly promote the dissolution of carbonate rocks, and can also significantly promote the deposition of carbonate rocks under certain conditions. At present, more and more researchers begin to pay attention to how to use CA or CA producing micro-organisms to increase the carbon storage in the karst area, so as to increase the karst carbon sink. At present, some studies have proved that bacteria, fungi, actinomycetes and microalgae isolated from karst areas can participate in the process of karst carbon cycle. A large number of studies have found that micro-organisms such as bacillus, phosphorus dissolving bacteria, microalgae and their CA can promote the weathering of carbonate rocks. At the same time, atmospheric CO2 as a carbon source can be used by aquatic photosynthetic organisms, resulting in the migration and transformation process of "inorganic carbon → organic carbon → inert organic carbon", and finally forming a long-term stable carbon sink. Based on the results of the field in-situ soil column experiment and the indoor soil column simulation experiment, we estimated the annual increase in soil carbon storage caused by soil micro-organisms and their CA in the karst area of southwest China. The results showed that it was equivalent to the carbon emissions of China's thermal power plants in 2015 (the data came from the China Statistical Yearbook). It was considered that the soil micro-organisms and their CA in the karst area had the potential of carbon sequestration that could not be ignored. Micro-organisms promote the weathering of carbonate rocks mainly through mechanical and physical action, chemical degradation and enzymatic action such as production and secretion of CA. On the other hand, some micro-organisms such as cyanobacteria, bacillus, microalgae and their CA can also use atmospheric CO2 and Ca2+ in the environment to induce calcium carbonate deposition, thereby realizing the capture of atmospheric CO2. Micro-organisms promote the deposition of carbonate rocks mainly by capturing and adhering, performing metabolic activities to change environmental conditions, and producing biological enzymes such as secretions and CA. In addition, the weathering and deposition of carbonate rocks promoted by micro-organisms is a complex process involving multiple factors, which is related to the types of micro-organisms and the substances they secrete (enzymes, peptides, proteins, etc.), environmental conditions (pH, temperature, ion concentration, etc.), and various mechanisms can also interact. Researchers need to integrate various factors to reveal the mechanisms of micro-organisms promoting the weathering and deposition of carbonate rocks. At present, studies on the effects of micro-organisms and their CA on weathering and deposition carbon sinks of carbonate rocks are mainly based on laboratory simulation experiments, and mainly focused on the promotion of micro-organisms and their CA on weathering or deposition of carbonate rocks to increase karst carbon sinks. Therefore, this paper reviews the research results on the role and mechanisms of micro-organisms and their CA in weathering and deposition of carbonate rocks, and points out that in the future, it is necessary to quantitatively study the impact of micro-organisms and their CA on enhancement of carbon sinks in karst ecosystems in combination with different karst ecological environments. This review provides a reference for in-depth study of the contribution of micro-organisms and their CA to karst carbon sinks, and to increase the carbon sink capacity of karst ecosystems to help achieve carbon neutrality. -
[1] IPCC. “Summary for policymakers, AR6 climate change 2021: The physical science basis”. [2] 袁道先. 现代岩溶学和全球变化研究[J]. 地学前缘, 1997(Z1):21-29. doi: 10.3321/j.issn:1005-2321.1997.01.003YUAN Daoxian. Modern karstologyand global change study[J]. Earth Science Frontiers, 1997(Z1):21-29. doi: 10.3321/j.issn:1005-2321.1997.01.003 [3] 李强. 流域尺度岩溶碳循环过程: “岩溶作用与碳中和”专栏特邀主编寄语[J]. 地球学报, 2022:1-4. doi: 10.3975/cagsb.2021.090701LI Qiang. Karst carbon cycle process at watershed scale: guest editor’s preface to “Karst process and carbon neutralization”[J]. Acta Geoscientica Sinica, 2022:1-4. doi: 10.3975/cagsb.2021.090701 [4] 袁道先. 碳循环与全球岩溶[J]. 第四纪研究, 1993(1):1-6. doi: 10.3321/j.issn:1001-7410.1993.01.001YUAN Daoxian. Carbon cycle and global karst[J]. Quaternary science, 1993(1):1-6. doi: 10.3321/j.issn:1001-7410.1993.01.001 [5] CAO Jianhua, HU Bill, GROVES Chris, HUANG Fen, YANG Hui, ZHANG Chunlai. Karst dynamic system and the carbon cycle[J]. Zeitschrift für geomorphologie, Supplementary issues, 2016, 60(2):35-55. [6] 曹建华. 岩溶与地球碳循环[J]. 地球, 2021(4):40-44.CAO Jianhua. Karst and earth's carbon cycle[J]. Earth, 2021(4):40-44. [7] 刘再华. 大气CO2两个重要的汇[J]. 科学通报, 2000(21):2348-2351. doi: 10.3321/j.issn:0023-074X.2000.21.020LIU Zaihua. Two important sinks of atmospheric CO2[J]. Chinese Science Bulletin, 2000(21):2348-2351. doi: 10.3321/j.issn:0023-074X.2000.21.020 [8] 曹建华, 袁道先, 潘根兴, 林玉石. 岩溶动力系统中的生物作用机理初探[J]. 地学前缘, 2001(1):203-209. doi: 10.3321/j.issn:1005-2321.2001.01.027CAO Jianhua, YUAN Daoxian, PAN Genxing, LIN Yushi. Preliminary studyon biological action in karst dynamic system[J]. Earth Science Frontiers, 2001(1):203-209. doi: 10.3321/j.issn:1005-2321.2001.01.027 [9] 许玫英, 孙国萍, 郭俊. 微生物生态系统代谢网络研究进展[J]. 微生物学报, 2010, 50(4):438-443. doi: 10.13343/j.cnki.wsxb.2010.04.001XU Meiying, SUN Guoping, GUO Jun. Advances in microbial eco-systems metabolic network study-A review[J]. Acta Microbiologica Sinica, 2010, 50(4):438-443. doi: 10.13343/j.cnki.wsxb.2010.04.001 [10] LIU Zaihua, DREYBRODT Wolfgang. Significance of the carbon sink produced by H2O-carbonate-CO2-aquatic phototroph Interaction on Land[J]. Science Bulletin, 2015, 60(2):182-191. doi: 10.1007/s11434-014-0682-y [11] 孙海龙, 刘再华, 杨睿, 陈波, 杨明星, 曾庆睿. 珠江流域水化学组成的时空变化特征及对岩石风化碳汇估算的意义[J]. 地球与环境, 2017, 45(1):57-65. doi: 10.14050/j.cnki.1672-9250.2017.01.008SUN Hailong, LIU Zaihua, YANG Rui, CHEN Bo, YANG Mingxing, ZENG Qingrui. Spatial and seasonal variations of hydrochemistry of the Peral river and implications for estimating the rock weathering-related carbon sink[J]. Earth and Environment, 2017, 45(1):57-65. doi: 10.14050/j.cnki.1672-9250.2017.01.008 [12] YANG R, CHEN B, LIU H, LIU Z, YAN H. Carbon sequestration and decreased CO2 emission caused by terrestrial Aquatic photosynthesis: insights from diel hydrochemicalvariations in an epikarst spring and two spring-fed pondsin different seasons[J]. Applied Geochemistry, 2015, 63:248-260. doi: 10.1016/j.apgeochem.2015.09.009 [13] 刘再华. 岩石风化碳汇研究的最新进展和展望[J]. 科学通报, 2012, 57(Z1):95-102.LIU Zaihua. New progress and prospectsinthe studyof rock-weathering-related carbon sinks[J]. Chinese Science Bulletin, 2012, 57(Z1):95-102. [14] 丁丽君, 连宾. 碳酸钙微生物风化试验研究[J]. 中国岩溶, 2008, 27(3):197-200. doi: 10.3969/j.issn.1001-4810.2008.03.001DING Lijun, LIAN Bin. Experimentation of microbial weathering to CaCO3[J]. Carsologica Sinica, 2008, 27(3):197-200. doi: 10.3969/j.issn.1001-4810.2008.03.001 [15] LI Wei, YU Longjiang, HE Qiufang, WU Yun, YUAN Daoxian, CAO Jianhua. Effects of microbes and their carbonic anhydrase on Ca2+and Mg2+ migration in column-built leached soil-limestone karst systems[J]. Applied Soil Ecology, 2005, 29(3):274-281. doi: 10.1016/j.apsoil.2004.12.001 [16] LI Wei, ZHOU Pengpeng, JIA Liping, YU Longjiang, LI Xueli, ZHU Min. Limestone dissolution induced by fungal mycelia, Acidic materials, and carbonic anhydrase from fungi[J]. Mycopathologia, 2009, 167(1):37-46. doi: 10.1007/s11046-008-9143-y [17] WANG Chenwei, LI Wei, SHEN Taiming, CHENG Wenli, YAN Zhuang, YU Longjiang. Influence of soil bacteria and carbonic anhydrase on karstification intensity and regulatory factors in a typical karst area[J]. Geoderma, 2018, 313:17-24. doi: 10.1016/j.geoderma.2017.10.016 [18] 连宾, 袁道先, 刘再华. 岩溶生态系统中微生物对岩溶作用影响的认识[J]. 科学通报, 2011, 56(26):2158-2161. doi: 10.1360/csb2011-56-26-2158LIAN Bin, YUAN Daoxian, LIU Zaihua. Effect of microbes on karstification in karst ecosystems[J]. Chinese Science Bulletin, 2011, 56(26):2158-2161. doi: 10.1360/csb2011-56-26-2158 [19] 严壮, 汪夏雨, 李为, 余龙江. 岩溶区水生生态系统微藻的生物碳泵效应[J]. 微生物学报, 2019, 59(6):1012-1025. doi: 10.13343/j.cnki.wsxb.20180469YAN Zhuang, WANG Xiayu, LI Wei, YU Longjiang. Biological carbon pump effect of microalgae in aquatic ecosystems of karst areas[J]. Acta Microbiologica Sinica, 2019, 59(6):1012-1025. doi: 10.13343/j.cnki.wsxb.20180469 [20] SMITH K S, FERRY J G. Prokaryotic carbonic anhydrases[J]. Fems Microbiology Reviews, 2000, 24(4):335-366. doi: 10.1111/j.1574-6976.2000.tb00546.x [21] LI Wei, YU Longjiang, YUAN Daoxian, WU Yun, ZENG Xiandong. A study of the activity and ecological significance of carbonic anhydrase from soil and Its microbes from different karst ecosystems of southwest China[J]. Plant and Soil, 2005, 272(1-2):133-141. doi: 10.1007/s11104-004-4335-9 [22] PAN Weizhi, NZUNG’A Sila Onesmus, LI Wei, HUANG Qibo, SHEN Taiming, WANG Chenwei, QIN Xiaoqun, YU Longjiang. The ecological importance and influence of land use on carbonic anhydrase activity of waters in the upstream section of the Wujiang river basin[J]. Journal of Resources and Ecology, 2015, 6(4):230-236. doi: 10.5814/j.issn.1674-764x.2015.04.006 [23] NZUNG’A Sila Onesmus, PAN Weizhi, SHEN Taiming, LI Wei, QIN Xiaoqun, WANG Chenwei, ZHANG Liankai, YU Longjiang. Comparative study of carbonic anhydrase activity in watersamong different geological eco-environments of Yangtze river basin and its ecological significance[J]. Journal of Environmental Sciences, 2018, 66:173-181. doi: 10.1016/j.jes.2017.05.027 [24] 申泰铭, 李为, 张强, 张阳, 张红辉, 余龙江. 流域不同地质生态环境中水体碳酸酐酶活性特征:以桂江流域为例[J]. 中国岩溶, 2012, 31(4):409-414. doi: 10.3969/j.issn.1001-4810.2012.04.009SHEN Taiming, LI Wei, ZHANG Qiang, ZHANG Yang, ZHANG Honghui, YU Longjiang. Carbonic anhydrase activity of the water-body in different eco-environments of River basins: A case study in the Guijiang river basin[J]. Carsologica Sinica, 2012, 31(4):409-414. doi: 10.3969/j.issn.1001-4810.2012.04.009 [25] 潘伟志, NZUNG’A Sila Onesmus, 申泰铭, 李为, 王晨玮, 余龙江. 长江流域不同地质生态环境土壤碳酸酐酶活性、有机碳含量及其相关性[J]. 中国岩溶, 2016, 35(2):173-178. doi: 10.11932/karst20160206PAN Weizhi, NZUNG'A Sila Onesmus, SHEN Taiming, LI Wei, WANG Chenwei, YU Longjiang. Soil carbonicanhydrase activity, soil organic carbonand their relationships in different geological eco-environments of the Changjiang river basin[J]. Carsologica Sinica, 2016, 35(2):173-178. doi: 10.11932/karst20160206 [26] 余龙江, 吴云, 李为, 曾宪东. 西南岩溶区土壤细菌胞外碳酸酐酶的稳定性研究[J]. 生命科学研究, 2004(4):365-370. doi: 10.3969/j.issn.1007-7847.2004.04.014YU Longjiang, WU Yun, LI Wei, ZENG Xiandong. Study on stability of extracellular carbonic anhydrase from soil bacteria in karst areas of Southwest China[J]. Life Science Research, 2004(4):365-370. doi: 10.3969/j.issn.1007-7847.2004.04.014 [27] 李为, 余龙江, 余俊峰, 贾丽萍, 吴云. 岩溶环境因子对细菌胞外碳酸酐酶表达及活性的影响[J]. 微生物学通报, 2005(5):35-39. doi: 10.3969/j.issn.0253-2654.2005.05.008LI Wei, YU Longjiang, YU Junfeng, JIA Liping, WU Yun. Effects of karst environmental factors on expression and activity of bacterial extracellular carbonic anhydrase[J]. Microbiology China, 2005(5):35-39. doi: 10.3969/j.issn.0253-2654.2005.05.008 [28] 黄芬, 黄艳梅, 高喜, 曹建华. 岩溶环境因子对桂林毛村岩溶区土壤微生物胞外碳酸酐酶活性的影响[J]. 南方农业学报, 2015, 46(10):1792-1797. doi: 10.3969/j:issn.2095-1191.2015.10.1792HUANG Fen, HUANG Yanmei, GAO Xi, CAO Jianhua. Effects of karst environmental factors on activity of soil microorganic extracellular carbonic anhydrase of karst Area in Maocun Village, Guilin[J]. Journal of Southern Agriculture, 2015, 46(10):1792-1797. doi: 10.3969/j:issn.2095-1191.2015.10.1792 [29] LIU Zaihua. Role of carbonic anhydrase as an activator in carbonate rock dissolution and its implication for atmospheric CO2 sink[J]. Acta Geologica Sinica-English Edition, 2001, 75(3):275-278. [30] LI Wei, YU Longjiang, WU Yun, JIA Liping, YUAN Daoxian. Enhancement of Ca2+ release from limestone by microbial extracellular carbonic anhydrase[J]. Bioresource Technology, 2007, 98(4):950-953. doi: 10.1016/j.biortech.2006.03.021 [31] XIE Tengxiang, WU Yanyou. The Role of microalgae and their carbonic anhydrase on the biological dissolution of limestone[J]. Environmental Earth Sciences, 2014, 71(12):5231-5239. doi: 10.1007/s12665-013-2925-7 [32] SHEN Taiming, LI Wei, PAN Weizhi, LIN Shengyan, ZHU Min, YU Longjiang. Role of bacterial carbonic anhydrase during CO2 capture in the CO2-H2O-carbonate system[J]. Biochemical Engineering Journal, 2017, 123:66-74. doi: 10.1016/j.bej.2017.04.003 [33] LI Wei, LIU Liping, CHEN Weishan, YU Longjiang, LI Wenbing, YU Haizhen. Calcium carbonate precipitation and crystal morphology induced by microbial carbonic anhydrase and other biological factors[J]. Process Biochemistry, 2010, 45(6):1017-1021. doi: 10.1016/j.procbio.2010.03.004 [34] LI Wei, LIU Liping, ZHOU Pengpeng, CAO Long, YU Longjiang, JIANG Shiyun. Calcite precipitation induced by bacteria and bacterially produced carbonic anhydrase[J]. Current Science, 2011, 100(4):502-508. [35] LI Wei, CHEN Weishan, ZHOU Pengpeng, ZHU Shilin, YU Longjiang. Influence of initial calcium ion concentration on the precipitation and crystal morphology of calcium carbonate induced by bacterial carbonic anhydrase[J]. Chemical Engineering Journal, 2013, 218:65-72. doi: 10.1016/j.cej.2012.12.034 [36] LI Wei, CHEN Weishan, ZHOU Pengpeng, CAO Long, YU Longjiang. Influence of initial pHon the precipitation and crystal morphology of calcium carbonate induced by microbial carbonic anhydrase[J]. Colloids and Surfaces B:Biointerfaces, 2013, 102:281-287. doi: 10.1016/j.colsurfb.2012.08.042 [37] LI Wei, CHEN Weishan, ZHOU Pengpeng, YU Longjiang. Influence of enzyme concentration on bio-sequestration of CO2 in carbonate form using bacterial carbonic anhydrase[J]. Chemical Engineering Journal, 2013, 232:149-156. doi: 10.1016/j.cej.2013.07.069 [38] 李为, 曹龙, 周蓬蓬, 余龙江. 温度对细菌碳酸酐酶催化碳酸钙沉积的影响[J]. 地球与环境, 2013, 41(4):371-377.LI Wei, CAO Long, ZHOU Pengpeng, YU Longjiang. Effects of temperature on CaCO3 precipitation catalyzed by bacterial carbonic anhydrase[J]. Earth and Environment, 2013, 41(4):371-377. [39] XIAO Leilei, LIAN Bin. Heterologously expressed carbonic anhydrase from Bacillus Mucilaginosus promoting CaCO3 formation by capturing atmospheric CO2[J]. Carbonates and Evaporites, 2016, 31(1):39-45. doi: 10.1007/s13146-015-0239-4 [40] LÜ Xianfu, HE Qiufang, WANG Zhijun, CAO Min, ZHAO Jingyao, JIANG Jianjian, ZHAO Ruiyi, ZHANG Hong. Calcium carbonate precipitation mediated by bacterial carbonic anhydrase in a karst cave: Crystal morphology and stable isotopic fractionation[J]. Chemical Geology, 2019, 530:119331. doi: 10.1016/j.chemgeo.2019.119331 [41] 蔡丽希, 楚云猛, 张光亚. 可用于二氧化碳捕获过程的微生物碳酸酐酶的挖掘与改造[J]. 生物工程学报, 2019, 35(1):1-12.CAI Lixi, CHU Yunmeng, ZHANG Guangya. Mining and engineering of microbial carbonic anhydrases for biomimetic carbon dioxide sequestration[J]. Chinese Journal of Biotechnology, 2019, 35(1):1-12. [42] BERNER R A, LASAGA A C, GARRELS R M. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years[J]. American Journal of Science, 1983, 283(7):641-683. doi: 10.2475/ajs.283.7.641 [43] CURL Rane L. Carbon shifted but not sequestered[J]. Science, 2012, 335(6069):655-655. [44] LIU Zaihua, DREYBRODT Wolfgang, LIU Huan. Atmospheric CO2 sink: silicate weathering or carbonate weathering?[J]. Applied Geochemistry, 2011, 26:S292-S294. doi: 10.1016/j.apgeochem.2011.03.085 [45] LIU Zaihua, DREYBRODT Wolfgang, WANG Haijing. A new direction in effective accounting for the atmospheric CO2 budget: Considering the combined action of carbonate dissolution, The global water cycle and photosynthetic uptake of DIC by aquatic organisms[J]. Earth-Science Reviews, 2010, 99(3-4):162-172. doi: 10.1016/j.earscirev.2010.03.001 [46] LIU Zaihua, MACPHERSON G L, GROVES Chris, MARTIN Jonathan B, YUAN Daoxian, ZENG Sibo. Large and active CO2 uptake by coupled carbonate weathering[J]. Earth-Science Reviews, 2018, 182:42-49. doi: 10.1016/j.earscirev.2018.05.007 [47] TANG Yuan, CHENG JianZhong, LIAN Bin. Characterization of endolithic culturable microbial communities in carbonate rocks from a typical karst canyon in Guizhou (China)[J]. Polish Journal of Microbiology, 2016, 65(4):413-423. doi: 10.5604/17331331.1227667 [48] WU Yanwen, ZHANG Jinchi, WANG Lingjian, WANG Yingxiang. A rock-weathering bacterium isolated from rock surface and its role in ecological restoration on exposed carbonate rocks[J]. Ecological Engineering, 2017, 101:162-169. doi: 10.1016/j.ecoleng.2017.01.023 [49] WU Yanwen, ZHANG Jinchi, GUO Xiaoping. An indigenous soil bacterium facilitates the mitigation of rocky desertification in carbonate mining areas[J]. Land Degradation & Development, 2017, 28(7):2222-2233. [50] PASTORE Giovanni, WEIG Alfons R, VAZQUEZ Eduardo, SPOHN Marie. Weathering of calcareous bedrocks is strongly affected by the activity of soil microorganisms[J]. Geoderma, 2022, 405:115408. doi: 10.1016/j.geoderma.2021.115408 [51] 谢腾祥, 吴沿友. 碳酸钙中的碳能被微藻利用吗[J]. 地球与环境, 2014, 42(2):168-173.XIE Tengxiang, WU Yanyou. Can carbon in calcium carbonate be utilized by microalgae[J]. Earth and Environment, 2014, 42(2):168-173. [52] YAN Zhuang, SHEN Taiming, LI Wei, CHENG Wenli, WANG Xiayu, ZHU Min, YU Qiwen, XIAO Yutian, YU Longjiang. Contribution of microalgae to carbon sequestration in a natural karst wetland aquatic ecosystem: An in-situ mesocosm study[J]. Science of The Total Environment, 2021, 768:144387. doi: 10.1016/j.scitotenv.2020.144387 [53] 李为, 曾宪东, 栗茂腾, 周蓬蓬, 余龙江. 微藻及其碳酸酐酶对石灰岩土壤系统中钙元素迁移的驱动作用实验研究[J]. 矿物岩石地球化学通报, 2011, 30(3):261-264. doi: 10.3969/j.issn.1007-2802.2011.03.003LI Wei, ZENG Xiandong, LI Maoteng, ZHOU Pengpeng, YU Longjiang. Experimental study on driving effects of microalgae and its carbonic anhydrase on migration of calcium in a simulative soil-limestone karst system[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2011, 30(3):261-264. doi: 10.3969/j.issn.1007-2802.2011.03.003 [54] 申泰铭, 邢必果, 李为, 余龙江. 不同种类微生物及其碳酸酐酶对CO2-H2O-碳酸盐系统中碳酸盐岩的溶蚀作用[J]. 矿物岩石地球化学通报, 2014, 33(6):797-800. doi: 10.3969/j.issn.1007-2802.2014.06.007SHEN Taiming, XING Biguo, LI Wei, YU Longjiang. Characteristics of carbonate rock corrosion by different kinds of microbes and their carbonic anhydrase in the CO2-H2O-carbonate system[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2014, 33(6):797-800. doi: 10.3969/j.issn.1007-2802.2014.06.007 [55] 申泰铭. 微生物及碳酸酐酶对岩溶土壤生态系统碳储存的贡献及其机制[D]. 武汉: 华中科技大学, 2018.SHEN Taiming. Contribution and mechanism of microbes and carbonic anhydrase to carbon storage in karst soil ecosystems[D]. Wuhan: Huazhong University of Science and Technology, 2018. [56] 王倩, 支崇远. 硅藻碳酸酐酶对石灰岩岩溶的作用及其生态意义[J]. 上海地质, 2007(4):25-27.WANG Qian, ZHI Chongyuan. Function of limestone corrosion by diatom carbonic anhydrase in karst and ecological significance[J]. Shanghai Geology, 2007(4):25-27. [57] LI Qiang, HE Yuanyuan, LI Zhongyi. The promoting effect of soil carbonic anhydrase on the limestone dissolution rate in SW China[J]. Carbonates and Evaporites, 2017, 32(2):147-154. doi: 10.1007/s13146-015-0281-2 [58] 肖雷雷. 碳酸酐酶参与矿物—微生物相互作用的分子证据及矿物风化的碳汇效应[D]. 南京: 南京师范大学, 2015.XIAO Leilei. Molecular evidence for the involvement of carbonic anhydrase in mineral-microbe interactions andthe carbon sink effect of mineral weathering[D]. Nanjing: Nanjing Normal University, 2015. [59] 李永双, 范周周, 国辉, 周金星, 彭霞薇. 菌剂添加对不同树种根际土壤微生物及碳酸钙溶蚀的影响[J]. 中国岩溶, 2020, 39(6):854-862.LI Yongshuang, FAN Zhouzhou, GUO Hui, ZHOU Jinxing, PENG Xiawei. Effects of microorganisms agent addition on soil microbes in different rhizosphere soils and calcium carbonate dissolution[J]. Carsologica Sinica, 2020, 39(6):854-862. [60] XIE Tengxiang, WU Yanyou. The biokarst system and its carbon sinks in response to pH changes: A simulation experiment with microalgae[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(3):827-843. doi: 10.1002/2016GC006628 [61] 王建萍, 李琼芳, 董发勤, 张文静, 郭玉婷, 黄婷, 刘媛媛. 3种常见细菌胞外特征有机酸对方解石的溶蚀研究[J]. 岩石矿物学杂志, 2015, 34(3):387-392.WANG Jianping, LI Qiongfang, DONG Faqin, ZHANG Wenjing, GUO Yuting, Huang Ting, Liu Yuanyuan. A study of the dissolution of calcite by three common bacterial typical extracellular organic acids[J]. Acta Petrologica et Mineralogica, 2015, 34(3):387-392. [62] 连宾, 陈烨, 朱立军, 杨瑞东. 微生物对碳酸盐岩的风化作用[J]. 地学前缘, 2008, 15(6):90-99. doi: 10.3321/j.issn:1005-2321.2008.06.012LIAN Bin, CHEN Ye, ZHU Lijun, YANG Ruidong. Progress inthe study of the weathering of carbonate cock by microbes[J]. Earth Science Frontiers, 2008, 15(6):90-99. doi: 10.3321/j.issn:1005-2321.2008.06.012 [63] 贾丽萍, 李为, 朱敏, 贺秋芳, 刘彦, 余龙江. 典型细菌、真菌、放线菌对石灰岩动态溶蚀效果比较[J]. 应用与环境生物学报, 2007(1):126-130. doi: 10.3321/j.issn:1006-687X.2007.01.028JIA Liping, LI Wei, ZHU Min, HE Qiufang, LIU Yan, YU Longjiang. Dynamic corrosion effects of different microbes on limestone[J]. Chinese Journal of Applied and Environmental Biology, 2007(1):126-130. doi: 10.3321/j.issn:1006-687X.2007.01.028 [64] XIAO Leilei, HAO Jianchao, WANG Weiying, LIAN Bin, SHANG Guangdong, YANG Yunwen, LIU Congqiang, WANG Shijie. The up-regulation of carbonic anhydrase genes of Bacillus Mucilaginosus under soluble Ca2+ deficiency and the heterologously expressed enzyme promotes calcite dissolution[J]. Geomicrobiology Journal, 2014, 31(7):632-641. doi: 10.1080/01490451.2014.884195 [65] 翁金桃. 碳酸盐岩在全球碳循环过程中的作用[J]. 地球科学进展, 1995(2):154-158.WENG Jintao. The effect of carbonate rocks on global carbon cycle[J]. Advances in Earth Science, 1995(2):154-158. [66] MIRJAFARI Parissa, ASGHARI Koorosh, MAHINPEY Nader. Investigating the application of enzyme carbonic anhydrase for CO2 sequestration purposes[J]. Industrial & Engineering Chemistry Research, 2007, 46(3):921-926. [67] KAUR Gurvinder, DHAMI Navdeep Kaur, GOYAL Shweta, MUKHERJEE Abhijit, REDDY M Sudhakara. Utilization of carbon dioxide as an alternative to urea in biocementation[J]. Construction and Building Materials, 2016, 123:527-533. doi: 10.1016/j.conbuildmat.2016.07.036 [68] BOQUET E, BORONAT A, RAMOS-CORMENZANA A. Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon[J]. Nature, 1973, 246(5434):527-529. doi: 10.1038/246527a0 [69] BANKS Eric D, TAYLOR Nicholas M, GULLEY Jason, LUBBERS Brad R, GIARRIZZO Juan G, BULLEN Heather A, HOEHLER Tori M, BARTON Hazel A. Bacterial calcium carbonate precipitation in cave environments: A function of calcium homeostasis[J]. Geomicrobiology Journal, 2010, 27(5):444-454. doi: 10.1080/01490450903485136 [70] COURADEAU Estelle, BENZERARA Karim, GÉRARD Emmanuelle, MOREIRA David, BERNARD Sylvain, BROWN Gordon E, LÓPEZ-GARCÍA Purificación. An early-branching microbialite cyanobacterium forms intracellular carbonates[J]. Science, 2012, 336(6080):459-462. doi: 10.1126/science.1216171 [71] HAN Jinxin, LIAN Bin, LING Hongwen. Induction of calcium carbonate by Bacillus cereus[J]. Geomicrobiology Journal, 2013, 30(8):682-689. doi: 10.1080/01490451.2012.758194 [72] LIU Zhen, ZHANG Yuqing, FA Keyu, ZHAO Hongfei, QIN Shugao, YAN Ru, WU Bin. Desert soil bacteria deposit atmospheric carbon dioxide in carbonate precipitates[J]. CATENA, 2018, 170:64-72. doi: 10.1016/j.catena.2018.06.001 [73] LIU Yan, LIU Zaihua, ZHANG Jinliu, HE Yuanyuan, SUN Hailong. Experimental study on the utilization of DIC by oocystis solitaria wittr and its influence on the precipitation of calcium carbonate in karst and non-karst waters[J]. Carbonates and Evaporites, 2010, 25(1):21-26. doi: 10.1007/s13146-009-0002-9 [74] 汪智军, 殷建军, 蒲俊兵, 袁道先. 钙华生物沉积作用研究进展与展望[J]. 地球科学进展, 2019, 34(6):606-617. doi: 10.11867/j.issn.1001-8166.2019.06.0606WANG Zhijun, YIN Jianjun, PU Junbing, YUAN Daoxian. Biological processes responsible for travertine deposition: A review and future prospect[J]. Advances in Earth Science, 2019, 34(6):606-617. doi: 10.11867/j.issn.1001-8166.2019.06.0606 [75] 刘璐, 李福春, 李磊, 张宠宏, 吕杰杰. 细菌碳酸酐酶促进形成的碳酸盐矿物[J]. 中国岩溶, 2017, 36(4):433-440. doi: 10.11932/karst20170402LIU Lu, LI Fuchun, LI Lei, ZHANG Chonghong, LV Jiejie. Carbonic anhydrase excreted induces the formation of carbonate minerals[J]. Carsologica Sinica, 2017, 36(4):433-440. doi: 10.11932/karst20170402 [76] CIZER Özlem, RUIZ-AGUDO Encarnación, RODRIGUEZ-NAVARRO Carlos. Kinetic effect of carbonic anhydrase enzyme on the carbonation reaction of lime mortar[J]. International Journal of Architectural Heritage, 2018, 12(5):779-789. doi: 10.1080/15583058.2017.1413604 [77] KANTH Bashistha Kumar, MIN Kiha, KUMARI Shipra, JEON Hancheol, JIN Eon Seon, LEE Jinwon, PACK Seung Pil. Expression and characterization of codon-optimized carbonic anhydrase from dunaliella species for CO2 sequestration application[J]. Applied Biochemistry and Biotechnology, 2012, 167(8):2341-2356. doi: 10.1007/s12010-012-9729-1 [78] DHAMI Navdeep Kaur. Biomineralization of calcium carbonate polymorphs by the bacterial strains isolated from calcareous sites[J]. Journal of Microbiology and Biotechnology, 2013, 23(5):707-714. doi: 10.4014/jmb.1212.11087 [79] LIU Renlu, HUANG Shanshan, ZHANG Xiaowen, SONG Yongsheng, HE Genhe, WANG Zaifeng, LIAN Bin. Bio-mineralisation, characterization, and stability of calcium carbonate containing organic matter[J]. RSC Advances, 2021, 11(24):14415-14425. doi: 10.1039/D1RA00615K [80] 周雪莹, 杜叶, 连宾. 不同培养条件对胶质芽孢杆菌诱导碳酸钙晶体形成的影响[J]. 微生物学报, 2010, 50(7):955-961.ZHOU Xueying, DU Ye, LIAN Bin. Effects of different culture conditions on carbonic anhydrase form Bacillus Mucilaginosus inducing calcium carbonate crystal formation[J]. Acta Microbiologica Sinica, 2010, 50(7):955-961. [81] DE MUYNCK Willem, VERBEKEN Kim, DE BELIE Nele, VERSTRAETE Willy. Influence of temperature on the effectiveness of a biogenic carbonate surface treatment for limestone conservation[J]. Applied Microbiology and Biotechnology, 2013, 97(3):1335-1347. doi: 10.1007/s00253-012-3997-0 [82] 蒋建建, 刘子琦, 贺秋芳, 段逸凡, 吕现福, 赵瑞一. 岩溶洞穴微生物沉积碳酸钙:以贵州石将军洞为例[J]. 生态学报, 2014, 34(8):2028-2038.JIANG Jianjian, LIU Ziqi, HE Qiufang, DUAN Yifan, LV Xianfu, ZHAO Ruiyi. Karst cave bacterial calcium carbonate precipitation: The Shijiangjun cave in Guizhou, China[J]. Acta Ecologica Sinica, 2014, 34(8):2028-2038. [83] 袁亮. 微生物碳酸酐酶诱导CaCO3沉淀的影响因素及生成机理[J]. 生物技术通报, 2020, 36(8):79-86.YUAN Liang. Influencing factors and formation mechanism of CaCO3 precipitation induced by microbial carbonic anhydrase[J]. Biotechnology Bulletin, 2020, 36(8):79-86. [84] 王红梅, 吴晓萍, 邱轩, 刘邓. 微生物成因的碳酸盐矿物研究进展[J]. 微生物学通报, 2013, 40(1):180-189. doi: 10.13344/j.microbiol.china.2013.01.018WANG Hongmei, WU Xiaoping, QIU Xuan, LIU Deng. Microbially induced carbonate precipitation: A review[J]. Microbiology China, 2013, 40(1):180-189. doi: 10.13344/j.microbiol.china.2013.01.018 [85] BOROWITZKA Michael A, LARKUM A W D. Calcification in algae: Mechanisms and the role of metabolism[J]. Critical Reviews in Plant Sciences, 1987, 6(1):1-45. doi: 10.1080/07352688709382246 [86] 荣辉, 钱春香, 李龙志. 微生物水泥胶结机理[J]. 硅酸盐学报, 2013, 41(3):314-319. doi: 10.7521/j.issn.04545648.2013.03.07RONG Hui, QIAN Chunxiang, LI Longzhi. Cementation mechanism of microbe cement[J]. Journal of The Chinese Ceramic Society, 2013, 41(3):314-319. doi: 10.7521/j.issn.04545648.2013.03.07 [87] GINSBURG RN. Controversies about stromatolites: Vices and virtues[J]. Symposium controversies in modern geology, 1991:25-36. [88] KAMENNAYA Nina, AJO-FRANKLIN Caroline, NORTHEN Trent, JANSSON Christer. Cyanobacteria as biocatalysts for carbonate mineralization[J]. Minerals, 2012, 2(4):338-364. doi: 10.3390/min2040338 [89] BRAISSANT O, DECHO A W, DUPRAZ C, GLUNK C, PRZEKOP K M, VISSCHER P T. Exopolymeric substances of sulfate-reducing bacteria: Interactions with calcium at alkaline pH and implication for formation of carbonate minerals[J]. Geobiology, 2007, 5(4):401-411. doi: 10.1111/j.1472-4669.2007.00117.x [90] ZHUANG Dingxiang, YAN Huaxiao, TUCKER Maurice E, ZHAO Hui, HAN Zuozhen, ZHAO Yanhong, SUN Bin, LI Dan, PAN Juntong, ZHAO Yanyang, MENG Ruirui, SHAN Guanghe, ZHANG Xinkang, TANG Rongzhen. Calcite precipitation induced by Bacillus Cereus MRR2 cultured at different Ca2+ concentrations: Further insights into biotic and abiotic Calcite[J]. Chemical Geology, 2018, 500:64-87. doi: 10.1016/j.chemgeo.2018.09.018 [91] 卢园园, 陈龙照, 余倩怡, 程超, 程扬健. 尖孢镰刀菌(fusarium oxysporum)诱导矿化回收稀土离子La(Ⅲ)[J]. 微生物学报, 2021, 61(6):1621-1631.LU Yuanyuan, CHEN Longzhao, YU Qianyi, CHENG Chao, CHENG Yangjian. Fusarium oxysporum induces mineralization recovery rare earth ions lanthanum(III)[J]. Acta Microbiologica Sinica, 2021, 61(6):1621-1631. [92] YANG Lin, SHE Lan, ZHOU Jianguo, CAO Ying, MA Xiaoming. Interaction of lysozyme during calcium carbonate precipitation at supramolecular level[J]. Inorganic Chemistry Communications, 2006, 9(2):164-166. doi: 10.1016/j.inoche.2005.05.026
点击查看大图
计量
- 文章访问数: 1157
- HTML浏览量: 848
- PDF下载量: 64
- 被引次数: 0