Geothermal reservoir structure and heat flow characteristics of proterozoic metamorphic rock series of Dahongshan group in Honghe river basin
-
摘要: 经过地热地质调查、物探验证和分析论证,在红河流域中段的戛洒盆地古元古界大红山群变质岩系中钻探获得了可供开发利用的热矿水。勘探孔深2 200.71 m,大红山群第4至第5段(Pt1dhs4-5)热储层富水性强,钻孔涌水量1 089 m3·d−1,孔底测温84.3 ℃,地热水矿化度9 777 mg·L−1,水化学类型为Cl-Na型,水化学成分复杂。此次成功的勘探研究,揭示了大红山变质岩系的热储特征及地热资源潜力,拓展了地热水勘探开发的新领域。综合研究认为,大红山群变质岩系中的硬脆性大理岩、石英片岩、火成岩等热储层(带)、导热导水的深大断裂及上覆隔水隔热的三叠系红层等盖层,构成了较为典型的带状热储。热储层赋存承压地热水,主要由地下水在重力和热力作用下,沿区域深大断裂带的主干和次级导热导水断裂作深循环逐渐增温和对流运动所形成,实测地热增温率为3.0 ℃·(100 m)−1。Abstract:
Hot mineral water for development and utilization has been drilled from the metamorphic rock series of Dahongshan group of paleoproterozoic in the Gasa basin in the middle part of the Honghe river basin through geothermal geological survey, geophysical exploration and analysis. The exploration hole depth is 2,200.71 m, and the water intake target layer of 4th to 5th section of Dahongshan group (Pt1dhs4-5) thermal reservoir is rich in water with 1,089 m3·d−1 of borehole water inflow, 84.3 ℃ of borehole bottom temperature and 9,777 mg·L−1 of degree of mineralization of geothermal water. The hydrochemistry type is Cl-Na type, and the hydrochemistry composition is complex. The successful exploration revealed the thermal reservoir characteristics and geothermal resource potential of Dahongshan metamorphic rock series, and expanded a new field of geothermal water exploration and development. The terrestrial heat flow value of the study region is 73.3 mW·m−2. Hot springs are sparsely distributed along the Honghe fault zone,and the water temperature is generally 25 ℃ to 40 ℃. The current fault activity is relatively weak. Due to the continuous activity of the fault, the brittle dolomite marble and schist in the metamorphic rock series of the Dahongshan group distributed in the Jiasa area have formed a water-bearing fissure zone, forming a deep permeable rock zone. The overlying Quaternary loose layers and Triassic clastic rock layers are soft and flexible rock layers in the Jiasa valley basin, with good structural plane closure and poor permeability, and the thermal conductivity of rocks is as low as 2.4 W·(m·k)−1 to 2.6 W·(m·k)−1, making the layer a good thermal reservoir caprock. The high-density cold water formed by Ailao mountain and the deep structural fissure water are exchanged in the layer, forming the geothermal water of the target mining layer. The content of cation Na+ in geothermal water is significantly higher than that of K+、Ca2+、Mg2+, the milliequivalent content is 88.3%, the anion content is mainly Cl− which accounts for 81.47% of the components;the pH value is 8.14, the content of SiO2 is 75.65 mg·L−1, and the content of ion F− is 7.46 mg·L−1. The degree of mineralizationand the content of ionic components of waterare high, indicating that the metamorphic rock series with salt-bearing minerals and metamorphic minerals in the geothermal water circulation route has dissolved a large amount of minerals through deep circulation. The Cl− and Na+ ions in the thermal fluid are mainly derived from chlorapayite and sodalite in the first to third volcanic lava section of Dahongshan group(Pt1dhs4-5). The heat source in the study area mainly comes from the rising heat flow along the fault zone and regional geothermal heating. Near the Honghe fault, which penetrates deep into the mantle,the groundwater communicates smoothly with the deep heat source, absorbing the energy released by the deep magma, radioactive decay and tectonic movement, forming underground hot water. Under the action of water pressure difference and density difference, geothermal water migrates to the shallow part along the Ailao mountain piedmont fault, Shuitang-Yuanjiang fault, fault of heat conduction and water conduction such as F1, and structual fracture zone. When geothermal water migrates through the soluble rocks and the rock strata with hard brittle fracture in the metamorphic rock series of the Dahongshan group, it forms a thermal reservoir, and the water-bearing voids are mainly joint fractures. -
表 1 区域地层简表
Table 1. Brief table of regional strata
界 系 统 组 段 代号 厚度/m 地层岩性及水文地质特征 分布特征 新生界 第四系 全新统 Qp 181.4 砂质黏土,下部为砂砾石层,砂砾石层厚23.6 m,富水性弱。 分布于戛洒盆地。 中生界 侏罗系 下统 冯家河组 J1f 1 085 泥质岩、粉砂岩、细砂岩不等厚互层。地下径流模数<0.5 L·s−1·km−2,泉流量<0.1 L·s−1。为HCO3-Ca·Mg型水,矿化度<0.5 g·L−1,富水性弱。 分布于戛洒盆地东部。 三叠系 上统 舍资组 T3s 444~758 泥岩夹砂岩、泥灰岩、长石石英砂岩夹泥岩、粉砂岩。裂隙率1%~2%,地下径流模数0.5~1 L·s−1·km−2,泉流量0.1~0.5 L·s−1。为HCO3-Ca、HCO3-Ca·Na型水,矿化度<0.5 g·L−1。 盆地东侧大面积出露,盆地内没有该层分布。 干海子组 T3g 347~1 665 页岩、含砾页岩和炭质页岩,地下径流模数<0.5 L·s−1·km−2,泉流量<0.1 L·s−1。为HCO3·Ca型水,矿化度<0.5 g·L−1。 戛洒盆地南侧、北侧大面积出露,东侧条带状出露,钻探揭露视厚度为347 m。 祥云组 T3x >1 832 泥岩、页岩、长石石英砂岩夹煤层,平均地下径流模数0.529 L·s−1·km−2,泉流量0.1~0.5 L·s−1。为HCO3-Ca·Mg型水,矿化度<0.5 g·L−1。 戛洒盆地外围西北侧大面积分布。 古元古界 大红山群 Pt1dhs >1 590 炭质白云石大理岩、细纹状二云石英炭质板岩、炭质钠长石英岩、炭质石英岩夹炭质板岩,炭质大理岩及炭质绢云片岩、深灰色石榴二云片岩、石英白云石大理岩夹炭质板岩、白云石大理岩,富水性较强。 仅戛洒盆地外围东北侧小面积出露。 哀牢山群 阿龙组 Pt1a >2 250 大理岩、透辉角闪斜长变粒岩、石榴角闪斜长片麻岩、斜长角闪岩、矽线黑云(或二云)二长片麻岩、黑云斜长片麻岩、钾长方柱透辉岩、含石墨电气黑云斜长变粒岩、石榴黑云斜长片麻岩、变粒岩夹矽线黑云片麻岩、黑云钾长方柱透辉岩,富水性强。 哀牢山山前断裂西侧大面积出露。有文献认为大红山群与哀牢山群的阿龙组是平行关系[14]。 ν 辉长岩 仅戛洒盆地外围东北侧小面积出露。 表 2 红河断裂代表性温泉点概况
Table 2. Overview of representative hot spring points of Honghe fault
泉点位置 水量/L·s−1 水温/℃ 泉点与断层的关系 金平勐桥乡麻木树 5.62 90~103 出露于断裂带哀牢山群片麻岩 金平勐桥乡茅草坪 0.38 40 金平勐桥乡小热水塘 5.1 52 金平勐桥乡石洞 0.99 38 红河他龙-元阳排沙河 1.35~19 23~51.5 出露于断层西盘哀牢山群片麻岩 新平戛洒硬寨 0.48 43 出露于断层F1东盘三叠系泥岩 元江热水塘 3.2 42 出露于断层东盘昆阳群 元江红河农场 3.1 25 出露于隐伏断裂带 -
[1] 范承均, 熊家镛, 王义昭. 云南区域地质志[M]. 北京: 地质出版社, 1990FAN Chengjun, XIONG Jiayong, WANG Yizhao. Regional geology of Yunnan Province [M]. Beijing: Geological Publishing House, 1990. [2] 王宇. 红河断裂南段活动性分析[J]. 地质灾害与环境保护, 1994, 5(2): 28-35WANG Yu. Activity analysis of the southern section of the Red River fault [J]. Journal of Geological Hazards and Environment Preservation, 1994, 5(2): 28-35. [3] 潘桂堂, 肖庆辉, 陆松年, 邓晋福, 冯益民. 中国大地构造单元划分[J]. 中国地质, 2009, 36(1):1-16. doi: 10.3969/j.issn.1000-3657.2009.01.001PAN Guitang, XIAO Qinghui, LU Songnian, DENG Jinfu, FENG Yimin. Subdivision of tectonic units in China[J]. Geology in China, 2009, 36(1):1-16. doi: 10.3969/j.issn.1000-3657.2009.01.001 [4] 陈墨香, 汪集旸. 中国地热研究的回顾与展望[J]. 地球物理学报, 1994, 37(S1):320-338.CHEN Moxiang, WANG Jiyang. Review and prospect on geothermal studies in china[J]. Chinese Journal of Geophysics, 1994, 37(S1):320-338. [5] 廖志杰, 赵平, 多吉, 等. 滇藏地热带[M]. 北京: 科学出版社, 1999年LIAO Zhijie, ZHAO Ping, DUO Ji, et al. Yunnan-Tibet geothermal belt-geothermal resources[M]. Beijing: Science Press, 1999 [6] 汪集旸, 熊亮萍, 庞中和, 等. 中低温对流系统[M]. 北京: 科学出版社, 1993年WANG Jiyang, XIONG Liangping, PANG Zhonghe, et al. Low-medium temperature geothermal system[M]. Beijing: Science Press, 1993 [7] 蔺文静, 刘志明, 王婉丽, 王贵玲. 中国地热资源及其潜力评估[J]. 中国地质, 2013, 40(1):312-321. doi: 10.3969/j.issn.1000-3657.2013.01.021LIN Wenjing, LIU Zhiming, WANG Wanli, WANG Guiling. The assessment of geothermal resources potential of China[J]. Geology in China, 2013, 40(1):312-321. doi: 10.3969/j.issn.1000-3657.2013.01.021 [8] 匡耀求, 黄宁生, 吴志峰, 胡振宇, 孙波. 大地热流对中国西部环境与生态演变的影响及其研究意义[J]. 地球科学进展, 2003, 18(1):22-27. doi: 10.3321/j.issn:1001-8166.2003.01.004KUANG Yaoqiu, HUANG Ningsheng, WU Zhifeng, HU Zhengyu, SUN Bo. Effects of terrestrial heat flow on the environment and ecologic evolution of western china and its significance[J]. Advances in Earth Science, 2003, 18(1):22-27. doi: 10.3321/j.issn:1001-8166.2003.01.004 [9] 张翼飞, 曹其林, 王宇, 等. 中国矿床发现史·云南卷[M]. 北京: 地质出版社, 1996ZHANG Yifei, CAO Qilin, WANG Yu, et al. The discovery history of mineral deposits of China-Volume of Yunnan Province[M]. Beijing: Geological Publishing House, 1990. [10] 方丽萍, 丁建博. 云南地热资源的成因分析及开发利用[J]. 水文地质工程地质, 1997(4):45-48. doi: 10.16030/j.cnki.issn.1000-3665.1997.04.017FANG Liping, DING Jianbo. Genesis analysis, development and utilization of geothermal resources in Yunnan Province[J]. Hydrogeology and Engineering Geology, 1997(4):45-48. doi: 10.16030/j.cnki.issn.1000-3665.1997.04.017 [11] 王宇, 杨世瑜. 香格里拉盆地地热地质特征及勘探前景[J]. 矿物岩石地球化学通报, 2003, 22(3):265-269. doi: 10.3969/j.issn.1007-2802.2003.03.015WANG Yu, YANG Shiyu. The geothermal feature and exploring prospect of the Xianggelila basin in northwestern Yunnan, China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2003, 22(3):265-269. doi: 10.3969/j.issn.1007-2802.2003.03.015 [12] 王宇, 康晓波, 张华, 王燕. 昆明地热田的成因与外延[J]. 中国岩溶, 2016, 35(2):125-133. doi: 10.11932/karst20160201WANG Yu, KANG Xiaobo, ZHANG Hua, WANG Yan. The genesis and extension of Kunming geothermal field[J]. Carsologica Sinica, 2016, 35(2):125-133. doi: 10.11932/karst20160201 [13] 张定源, 施华生, 周汉民, 王力波. 地热绿色新能源与可持续发展[J]. 火山地质与矿产, 2001, 22(4):236-243.ZHANG Dingyuan, SHI Huasheng, ZHOU Hanming, WANG Libo. Geothermal energy and sustainable development[J]. Volcanology & Mineral resources, 2001, 22(4):236-243. [14] 张远志, 张定辉, 刘世荣, 等. 云南省岩石地层[M]. 武汉: 中国地质大学出版社, 1996ZHANG Yuanzhi, ZHANG Dinghui, LIU Shirong, et al. Rock Strata in Yunnan Province[M]. Wuhan: China University of Geosciences Press, 1996 [15] 郝天珧, 江为为, 胥颐, 丘学林, 刘建华. 红河断裂带研究区深部结构特点的地球物理研究[J]. 地球物理学进展, 2005, 20(3):584-593. doi: 10.3969/j.issn.1004-2903.2005.03.002HAO Tianyao, JIANG Weiwei, XU Yi, QIU Xuelin, LIU Jianhua. Geophysical research on deep structure feature in study region of red river fault zone[J]. Progress in Geophysics, 2005, 20(3):584-593. doi: 10.3969/j.issn.1004-2903.2005.03.002 [16] 张建国, 皇甫岗, 谢英情, Phan Trong Trinh. 中越红河断裂带考察与研究(一)[J]. 地震研究, 2008, 31(4):362-368. doi: 10.3969/j.issn.1000-0666.2008.04.011ZHANG Jianguo, HUANGFU Gang, XIE Yingqing, Phan Trong Trinh. Investigation and research of the Red River fault zone in China and Vietnam (1)[J]. Journal of seismological research, 2008, 31(4):362-368. doi: 10.3969/j.issn.1000-0666.2008.04.011 [17] 胥颐, 杨晓涛, 刘建华. 云南地区地壳速度结构的层析成像研究[J]. 地球物理学报, 2013, 56(6): 1904-1914XU Yi, YANG Xiaotao, LIU Jianhua. Tomographic study of crustal velocity structures in the Yunnan region southwest China [J]. Chinese Journal Of Geophysics. 2013. , 56(6): 1904-1914 [18] 朱俊江, 詹文欢, 丘学林, 徐辉龙, 唐诚. 红河断裂带两侧地震震源机制及构造意义[J]. 大地构造与成矿学, 2004, 28(3):239-247. doi: 10.3969/j.issn.1001-1552.2004.03.003ZHU Junjiang, ZHAN Wenhuan, QIU Xuelin, XU Huilong, TANG Cheng. Earthquake focal mechanism and its tectonic significance along the two sides of the red river fault zone[J]. Geotectonicaetmetallogenia, 2004, 28(3):239-247. doi: 10.3969/j.issn.1001-1552.2004.03.003 [19] 虢顺民, 计凤桔, 向宏发, 等. 红河活动断裂带[M]. 北京: 海洋出版社, 2001年YU Shunmin, JI Fengju, XIANG Hongfa, et al. Red River active fault zone[M]. Beijing: Ocean Press, 2001. [20] 林元武. 温泉热储温度对断裂的弱化作用及其对地震活动性的影响[J]. 地震学报, 1994, 16(2): 251-257LIN Yuanwu. The weakening effect of hot spring thermal storage temperature on fracture and its influence on seismic activity[J]. Acta Seismologica Sinica,1994, 16(2): 251-257. [21] 林元武. 红河断裂带北段温泉水循环深度与地震活动性的关系探讨[J]. 地震地质, 1993, 15(3):193-206.LIN Yuanwu. A discussion on the relation of circulation depth of hot spring water to seismic activity on the northern segment of the Honghe fault zone[J]. Seismology and geology, 1993, 15(3):193-206. [22] 任纪舜, 金小赤. 红河断裂的新观察[J]. 地质论评. 1996, 42(5): 439-442REN Jishun, JIN Xiaochi. New observations of the Red River fault[J]. Geological Review, 1996, 42(5): 439-442. [23] 胥颐, 刘建华, 刘福田, 宋海斌, 郝天珧, 江为为. 哀牢山-红河断裂带及其邻区的地壳上地幔结构[J]. 中国科学(D辑), 2003, 33(12):1201-1208. doi: 10.3321/j.issn:1006-9267.2003.12.009XU Yi, LIU Jianhua, LIU Futian, SONG Haibin, HAO Tianyao, JIANG Weiwei. The crust upper mantle structure of the Ailaoshan-red River fault zone and adjacent regions[J]. Science in China Ser D:Earth Sciences, 2003, 33(12):1201-1208. doi: 10.3321/j.issn:1006-9267.2003.12.009 [24] 孙云梅, 李金平. 红河断裂带不同构造区段的现今滑动速率与应变积累状况[J]. 海洋地质学, 2018, 37(4):86-96.SUN Yunmei, LI Jinping. Current slip rate and strain accumulation in different tectonic sections of Red River fault zone[J]. Marine Geology, 2018, 37(4):86-96.