Karst ecosystem and its plants
-
摘要: 岩溶生态系统是受岩溶环境制约的生态系统,是脆弱的生态系统,缺水、少土、富钙是岩溶生态系统无机环境的基本特征,植物与岩溶环境长期的相互作用,演化出独特的岩溶植物。岩溶植物具有喜钙性、石生性、旱生性,其多样性表现为少属科、寡种属和特有种,更有岩溶生态系统中特有的洞穴弱光带、天坑植物群落。植物是生态系统的生产者,肩负着生态系统的生产力、生态服务功能的重任,退化岩溶生态系统的修复,需要根据中国岩溶生态系统发育特色,探索发展具有仿自然特色的生态产业,走出岩溶区“绿水青山就是金山银山”的道路,完善中国岩溶生态系统理论。Abstract:
Karst ecosystem is a vulnerable ecosystem constrained by a karst environment that is characterized as being rich in calcium, short of soil resources and insufficient for water resources (less surface water and rich groundwater water). Compared with silicate rocks, carbonate rocks are soluble, rich in calcium and magnesium, but lacking silicon, iron and aluminum. Carbonate rocks averagely contain 27.30%-54.33% of CaO, 0.49%-19.66% of MgO, and 0.41%-10.53% of insoluble matter. Thus, the vulnerability of karst ecosystem is ascribed to these geological properties. With the long-term interaction between plants and karst environment, surviving plants finally evolve into unique karst plants, featuring xerophyte, calciphilia and chomophyte. CALCIPHILIA of karst plants is demonstrated by Calciphile plants only growing on substrates rich in calcium carbonate and limestone soils, and Calcicole plants growing very well in Calcareous soil, but worse in acidic soil. Tolerance, exclusion and blocking mainly contribute the adaptation of karst plants to rich calcium environment. As relatively high free carboxyl existing in the intercellular space of plants, tolerance has high cation exchange capacity. Karst plants can accommodate a high content of calcium. There are two approaches in terms of exclusion. One is to improve the calcium protease activity, such as the cytoplasm membrane Ca2+-ATPase (ATPase) activity. Exclusion can transport calcium from cytoplasm out of the cell, and then store calcuim in the cell-wall. By another approach, excess calcium is ejected out of the cell through calcium channels, calcium secretion glands and even stoma. Blocking refers to a phenomenon that karst plants immobilize excess calcium around the rhizosphere to form calcified roots and restrict the transport of excess calcium to the living bodies mentioned above. CHOMOPHYE of karst plants means there exists much more underground biomass in karst ecosystem. Results of underground biomass investigation of karst vegetation in Maolan Nature Reserve show that biomass of karst vegetation is lower than that of non-karst forest in the same latitude, and only equivalent to that of temperate forest. However, underground biomass, reaching 57.49-58.15 mg·hm-2, is not only higher than that of non-karst forests in the same latitude, but also higher than that of non-karst forests both in temperate and tropical regions, and the absolute amount is nearly twice as large as that of non-karst forests in temperate tropical regions. Limestone and dolomite are two major carbonate rocks. Limestone is more likely to dissolve to form karstic fissures and conduits which can provide greater physical space for the growth of woody plant roots. The low anti-solubility, the aptness to the well-distributed weathering, and the uniform surface soil covering of dolomite are conducive to the development of shallow root plants. Survey results of Puding county in Guizhou Province show the high woody plant coverage and strong vegetation activity, but low ecosystem productivity in the limestone-dominated area. However, herbaceous and bush vegetation coverage is high, and the vegetation activity is weak, but ecosystem productivity is high in the dolomite-dominated area. XEROSPHYTE is the property for karst plants to adapt themselves to karst drought, on account of the karst hydrogeological structure with double layers of the epikarst and underground river. Consequently, ecological water is insufficient to meet the needs of the karst plants in karst areas in the dry season. The adaptive mechanism of karst plants mainly includes ecological regulation and physiologic regulation. The regulation of ecological traits of karst plants primarily involves prolonging roots to absorb deep water from soil and rock fissure, even underground river; decreasing the diameter of ducts and enriching parenchyma in xylem to reduce moisture transpiration; decreasing stomatal index to shrink leaves, and thickening cuticles and waxy layers to lower water loss. The regulation of physiologic traits of karst plants mainly includes,(1) accumulating proline, soluble sugar and other organic osmotic regulators to regulate the osmotic potential of plasma membrane and maintain cell membrane stability. The more contents of superoxide dismutase (SOD) peroxidase (POD) and catalase (CAT) are, the more reactive oxyradicals are produced, and the lower degree of membrane lipid peroxidation is. (2) Improving the activity of carbonic anhydrase in leaves, converting intracellular bicarbonate ions into water and CO2, supplementing water shortage in leaves and reducing intercellular CO2 during the dry season. These methods of regulation can improve the adaptability of karst plants to drought and avoid harzards. The diversity of karst plants presents minor genera families and a small number of species genera and endemic species. For example, in Xishuangbanna, Yunnan Province, the karst terrain covers an area of 3,600 km2, accounting for 19% of the total land area. Results of the forest survey show that karst vegetation includes 153 families, 640 genera and 1,394 species of vascular plants, accounting for 77.7% of the total family, 56.1% of the genera and 37.9 of the species, respectively. In Guangxi, the karst terrain covers an area of 82,100 km2, accounting for 34.8% of the total land area. The forest survey reveals that karst vegetation includes 175 families, 662 genera and 1,500 species of vascular plants, accounting for 76.75% of the total family, 59.11% of the genera and 50.28% of the species, respectively. Karst plants growing in cave twilight zone give their increasingly weak luminous intensity. Preliminary results show their species composition of herbs (88%), shrubs (8%) and vines (4%). The most abundant families include Urticaria (73 species), Gesneriaceae (37 species), Begoniaceae (22 species), Pterophoraceae (20 species) and Pterophoraceae (20 species). The most abundant genera include Stairweeds (42 species), Begonias (22 species), Auricerns (19 species), Primula Nerneris (19 species) and Coldwater flowers (13 species). Karst plants growing in Tiankeng (big collapse doline) provide possible access to the understanding of a succession of regional plant communities. In Leye Tiankeng, 863 species of seed plants belonging to 445 genera and 137 families are found. Ratios of temperate to tropical components are 1:2.31 in families and 1:1.5 in genera inside Tiankeng. Ratios of temperate components inside to outside Tiankeng are 1:2.79 and 1:2.18 respectively, showing higer proportion temperate components inside Tiankeng. The results suggest that with global warming, tropical components of a vegetation community outside Tiankeng increase continuously, while those inside Tiankeng develop slowly. Plants are producers of ecosystem, and their importance lies in their productivity and ecological service function. In order to restore the degraded karst ecosystem, we should find a proper approach to develop eco-industries with a win-win strategy for both environment and economy, based on natural karst. We should practice the principle of "lucid waters and lush mountains are invaluable assets" in the karst area, and improve and solidify the theory of karst ecosystem in China. -
Key words:
- karst plant /
- calciphilia /
- chomophyte /
- xerophyte /
- diversity /
- eco-industry
-
表 1 嗜钙植物、嫌钙植物和中间植物与钙相关指标的对比[15]
Table 1. Comparison of calcium-related indexes among Calciphile, Calcifuge and intermediate plants
指标 嗜钙植物 中间型植物 嫌钙植物 含量 平均值/占比/% 含量 平均值/占比/% 含量 平均值/占比/% 叶片总钙含量/mg·kg−1 1 193.37~1 711.62 1 356.52 719.87~1 515.75 956.23 398.62~1 037.25 743.33 不同钙素
形态含量/
mg·kg−1水溶性钙 216.54~238.51 15.93~16.53 28.23~53.63 3.17~6.07 50.81~135.29 8.08~18.55 果胶酸钙 379.55~473.64 27.91~32.82 61.85~105.70 3.78~10.60 85.91~105.70 13.65~14.49 磷酸钙+
碳酸钙154.69~206.28 10.72~15.17 48.39~103.34 5.64~9.81 71.39~81.46 11.17~11.35 草酸钙 325.80~338.59 23.46~23.96 201.16~264.76 22.49~26.23 216.05~245.69 33.69~34.34 硅酸钙 202.35~210.08 14.02~15.45 403.39~663.43 47.48~60.87 141.12~191.58 19.35~30.45 其他 21.44~35.30 −− 19.58~33.30 −− 13.43~19.98 −− 亚细胞
含量/
mg·kg−1细胞壁 802.92~956.36 59.05~66.54 292.63~562.02 34.95~53.03 261.73~277.65 38.07~41.60 细胞质 339.08~350.22 23.60~25.76 340.26~473.83 32.11~43.48 284.49~335.53 45.22~46.01 细胞器 141.63~206.55 9.86~15.19 157.54~198.35 14.86~23.69 82.95~116.14 13.18~15.92 根际土钙含量/mg·kg−1 28 684~35 475 32 594 12 262~29 313 20 808 9 643~16 582 10 724 根际土pH 8.24~8.83 8.64 6.25~8.52 7.43 6.83~6.02 6.07 表 2 贵州荔波县茂兰岩溶森林区群落乔木层和灌木层主要科的重要值[39]
Table 2. Important values of main families in arbor layer and shrub layer in Maolan karst forest area, Libo county, Guizhou Province
纯灰岩区 纯白云岩区 不纯碳酸盐岩区 乔木层 灌木层 乔木层 灌木层 乔木层 灌木层 科名 重要值 科名 重要值 科名 重要值 科名 重要值 科名 重要值 科名 重要值 槭树科 29.02 禾本科 72.00 榛科 39.21 禾本科 93.93 漆树科 40.59 禾本科 145.62 樟科 28.24 蔷薇科 49.32 壳斗科 29.80 紫金牛科 55.25 壳斗科 34.06 蔷薇科 31.46 胡桃科 25.49 小蘖科 37.14 槭树科 21.68 海桐花科 15.36 樟科 28.95 小蘖科 28.15 榆科 21.45 壳斗科 10.82 山茱萸科 21.03 山龙眼科 14.21 胡桃科 24.38 菝葜科 22.56 壳斗科 21.12 紫金牛科 10.77 柿科 19.78 棕榈科 14.17 芸香科 23.26 苏木科 17.96 合计 125.32 180.05 131.50 192.92 151.24 245.75 表 3 不同地貌条件下青冈栎的抗旱性特征比较[53]
Table 3. Comparison of drought resistance characteristics of Cyclobalanopsis glauca under different geomorphic conditions
位置 叶平均宽度/cm 叶平均长度/cm 叶平均厚度/μm 角质层厚度/μm 气孔指数/% 含水量/% 水势/巴 山腰 2.74 9.42 267 4.37 29.3 45.5 −9.7 山顶 1.57 5.17 373 8.07 22.7 31.9 −17.3 表 4 广西弄岗峰丛洼地不同生境植物群落水分利用效率[54]
Table 4. Water use efficiency of plant communities in different habitats in Nonggang peak cluster depression, Guangxi
类型 物种数(种) 植物叶片平均碳同位素(δ13 C) 水分利用效率/μmol·mol−1 山顶 4 −30.79±0.77 46.52 ± 8.60 山腰 4 −30.99±0.63 44.26±7.04 洼地 4 −34.13±1.45 28.12±16.30 -
[1] 袁道先. 全球岩溶生态系统对比: 科学目标和执行计划[J]. 地球科学进展, 2001(4):461-466. doi: 10.3321/j.issn:1001-8166.2001.04.002YUAN Daoxian. World correlation of karst ecosystem: objectives and implementation plan[J]. Advance in Earth Sciences, 2001(4):461-466. doi: 10.3321/j.issn:1001-8166.2001.04.002 [2] 袁道先, 蔡桂鸿. 岩溶环境学[M]. 重庆: 重庆出版社, 1988.YUAN Daoxian, CAI Guihong. Environmental karstology[M]. Chongqing: Chongqing Press, 1988. [3] 曹建华, 袁道先, 裴建国. 受地质条件制约的中国西南岩溶生态系统[M]. 北京: 地质出版社, 2005.CAO Jianhua, YUAN Daoxian, PEI Jianguo. Karst ecosystem of southwest China constrained by geological setting[M]. Beijing: Geological Publishing House, 2005. [4] 曹建华, 袁道先, 章程. 脆弱的广西岩溶生态系统: 地质地貌对资源, 环境和社会经济的制约[J]. 中国人口, 资源与环境, 2006, 16(3):383−387.CAO Jianhua, YUAN Daoxian, ZHANG Cheng. Fragile karst ecosystems in Guangxi: Geomorphological constraints on resources, environment and socio-economy[J]. China Population, Resources and Environment, 2006, 16(3):383−387. [5] 马世骏. 中国生态学发展战略研究[M]. 北京: 中国经济出版社, 1991.MA Shijun. A study on the development strategy of ecology in China[M]. Beijing: China Economic Press, 1991. [6] 苏宗明, 李先琨. 广西岩溶植被类型及其分类系统[J]. 广西植物, 2003,23(4):289-293. doi: 10.3969/j.issn.1000-3142.2003.04.001SU Zongming, LI Xiankun. The types of natural vegetation in karst region of Guangxi and its classified system[J]. Guihaia, 2003,23(4):289-293. doi: 10.3969/j.issn.1000-3142.2003.04.001 [7] 刘长成, 王斌, 郭柯, 李先琨, 侯满福, 刘玉国. 中国喀斯特植被分类系统[J]. 广西植物, 2021, 41(10):1618-1631. doi: 10.11931/guihaia.gxzw202109040LIU Changcheng, WANG Bin, GUO Ke, LI Xiankun, HOU Manfu, LIU Yuguo. Karst vegetation classification system of China[J]. Guihaia, 2021, 41(10):1618-1631. doi: 10.11931/guihaia.gxzw202109040 [8] 聂跃平. 碳酸盐岩性因素控制下喀斯特发育特征: 以黔中南为例[J]. 中国岩溶, 1994, 13(1):31-36.NIE Yueping. Karst development characteristics under the lithologic control of carbonate rocks: A case study in South-Central Guizhou[J]. Carsologica Sinica, 1994, 13(1):31-36. [9] 曹建华, 袁道先, 潘根兴. 岩溶生态系统中的土壤[J]. 地球科学进展, 2003,18(1):37-44. doi: 10.3321/j.issn:1001-8166.2003.01.006CAO Jianhua, YUAN Daoxian, PAN Genxing. Some soil features in karst ecosystem[J]. Advance in Earth Sciences, 2003,18(1):37-44. doi: 10.3321/j.issn:1001-8166.2003.01.006 [10] Cao Jianhua, Huang Fen, Yang Hui. Advancement of karst ecosystem in southwest China, In Wenhua Li(Editor in Chief), Contemporary Ecology Research in China[M]. Higher Education Press and Springer, 2015:321-337. [11] Wenhua L, Jianhua C. Karst ecosystem: an ecosystem on carbonate rocks[J]. Journal of Resources and Ecology, 2015, 6(4):197-198. doi: 10.5814/j.issn.1674-764x.2015.04.001 [12] 付嵘, 孟小暇, 柴胜丰. 植物与钙环境关系的研究进展[J]. 北方园艺, 2019(3):161-166.FU Rong, MENG Xiaoxia, CHAI Shengfeng. Research progress on the relationship between plants and calcium environment[J]. Northern Horticulture, 2019(3):161-166. [13] 廖红, 严小龙. 高级植物营养学[M]. 北京: 科学出版社, 2003.LIAO Hong, YAN Xiaolong. Advanced plant nutritional sciences[M]. Beijing: Science Press, 2003. [14] 孙大业, 郭艳林, 马力耕. 细胞信号转导[M]. 北京: 科学出版社, 1998.SUN Daye, GUO Yanlin, MA Ligeng. Cellular signal transduction[M]. Beijing: Science Press, 1998. [15] 朱敏洁. 植物对钙依赖及耐受程度划分标准初探[D]. 桂林: 广西师范大学, 2007.ZHU Minjie. Preliminary research on the standard for plants dependence and tolerance on calcium[D]. Guilin: Guangxi Normal University, 2007. [16] Kinzel H. Calcium in the vacuoles and cell walls of plant tissue[J]. Flora, 1989, 182(1-2):99-125. doi: 10.1016/S0367-2530(17)30398-5 [17] Meyer B and Anderson D, Plant Physiology[M]. Second Edition, Soil Science, 1952. [18] 侯学煜. 中国境内酸性土、钙质土和盐碱土的指示植物[M]. 北京: 科学出版社, 1954.HOU Xueyu. Indicator plants for acidic, calcareous and saline soils in China[M]. Beijing: Science Press, 1954. [19] 侯学煜. 中国植被地理及优势植物化学成分[M]. 北京: 科学出版社, 1982.HOU Xueyu. Vegetation geography and dominant phytochemical composition of China[M]. Beijing: Science Press, 1982. [20] 兰开敏. 茂兰喀斯特森林区植物区系的初步研究: 茂兰喀斯特科学考察集[M]. 贵阳: 贵州科技出版社, 1987.LAN Kaimin. A preliminary study on the flora of the Maolan karst forest region: A collection of scientific investigations on Maolan karst[M]. Guiyang: Guizhou Science and Technology Press, 1987. [21] 何念祖, 孟赐福. 植物营养原理[M]. 上海: 上海科学技术出版社, 1987.HE Nianzu, MENG Cifu. Plant nutrition principles[M]. Shanghai: Shanghai Science and Technology Press, 1987. [22] 董彩霞, 周健民, 范晓晖, 王火焰. 不同施钙措施对番茄果实钙含量和钙形态的影响[J]. 植物营养与肥料学报, 2004(1):91-95. doi: 10.3321/j.issn:1008-505X.2004.01.018DONG Caixia, ZHOU Jianmin, FAN Xiaohui, WANG Huoyan. Effects of different ways of Ca supplements on the Ca content and forms in mature fruits of tomato[J]. Plant Nutrition and Fertilizer Science, 2004(1):91-95. doi: 10.3321/j.issn:1008-505X.2004.01.018 [23] Nakata PA. Advances in our understanding of calcium oxalate crystal formation and function in plants[J]. Plant Science, 2003, 164(6):901-909. doi: 10.1016/S0168-9452(03)00120-1 [24] 曹建华, 朱敏洁, 黄芬, 卢茜. 不同地质条件下植物叶片中钙形态对比研究: 以贵州茂兰为例[J]. 矿物岩石地球化学通报, 2011, 30(3): 251-260.CAO Jianhua, ZHU Minjie, HUANG Fen, LU Qian. Comparison study on calcium forms in plant leaves under different geological backgrounds: A case study in Maolan, Guizhou province[J]. Bulletin of Mineralogy, Petrology and Geochemistry,2011, 30(3): 251-260. [25] 李强. 忍冬属植物对岩溶环境的适应性研究[D]. 武汉: 华中科技大学, 2007.LI Qiang. Studies on the ecology adaptation of flos lonicerae in the karst environment[D]. Wuhan: Huazhong University of Science and Technology, 2007. [26] 李涛, 余龙江. 西南岩溶环境中典型植物适应机制的初步研究[J]. 地学前缘, 2006,13(3): 180-184.LI Tao, YU Longjiang. A primary study of adaptive mechanisms of representative plants in karst areas in Southwest China[J]. Earth Science Frontiers,2006,13(3): 180-184. [27] Islam M N, Kawasaki M. Evaluation of calcium regulating roles of guttation and calcium oxalate crystals in leaf blades and petioles of hydroponically grown eddo[J]. Plant Production Science, 2015, 18(1):11-21. doi: 10.1626/pps.18.11 [28] 吴耿, 付春华, 黄永伟, 李为, 余龙江, 栗茂腾. 岩溶环境下华南忍冬气孔泌钙及其生物矿化[J]. 植物学报, 2011, 46(6):658-664. doi: 10.3724/SP.J.1259.2011.00658WU Geng, FU Chunhua, HUANG Yongwei, LI Wei, YU Longjiang, LI Maoteng. Calcium salt excreted by stoma and its biomineralization in Lonicera confusa under a calcium-rich environment[J]. Chinese Bulletin of Botany, 2011, 46(6):658-664. doi: 10.3724/SP.J.1259.2011.00658 [29] Musetti R, Favali M A. Cytochemical localization of calcium and X-ray microanalysis of Catharanthus roseus L. infected with phytoplasmas[J]. Micron, 2003, 34(8):387-393. doi: 10.1016/S0968-4328(03)00082-9 [30] 黄芬. 漓江流域氮素对岩溶碳循环过程的影响机制[D]. 北京: 中国地质科学院, 2020.HUANG Fen. Impact of nitrogen on karst carbon cycle in the Lijiang River basin[D]. Beijing: Chinese Academy of Geological Sciences, 2020. [31] 谭凤森. 桂西南北热带喀斯特季雨林木本植物的水力学特征研究[D]. 南宁: 广西大学, 2019.TAN Fengsen. Hydraulic characteristics of woody plants in a tropical karst seasonal rain forest in southwest Guilin[D]. Nanning: Guangxi University, 2019. [32] 罗东辉, 夏婧, 袁婧薇, 张忠华, 祝介东, 倪健. 我国西南山地喀斯特植被的根系生物量初探[J]. 植物生态学报, 2010, 34(5):611-618. doi: 10.3773/j.issn.1005-264x.2010.05.015LUO Donghui, XIA Jing, YUAN Jingwei, ZHANG Zhonghua, ZHU Jiedong, NI Jian. Root biomass of karst vegetation in a mountainous area of Southwestern China[J]. Chinese Journal of Plant Ecology, 2010, 34(5):611-618. doi: 10.3773/j.issn.1005-264x.2010.05.015 [33] 任伟, 高慧娟, 王润娟, 吕昕培, 何傲蕾, 邵坤仲, 汪永平, 张金林. 高等植物适应干旱生境研究进展[J]. 草学, 2020,254(3):4-15. doi: 10.3969/j.issn.2096-3971.2020.03.002REN Wei, GAO Huijuan, WANG Runjuan, LV Xinpei, HE Aolei, SHAO Kunzhong, WANG Yongping, ZHANG Jinlin. Research advances in adaptation of higher plants to arid habitats[J]. Journal of Grassland and Forage Science, 2020,254(3):4-15. doi: 10.3969/j.issn.2096-3971.2020.03.002 [34] 曹建华, 王福星. 初探藻类, 地衣生物岩溶微形态与内陆环境间相关性[J]. 地质论评, 1998, 44(6):656-661. doi: 10.3321/j.issn:0371-5736.1998.06.014CAO Jianhua, WANG Fuxing. Relationships of biokarst microforms of algae and lichens and the terrestrial environment[J]. Geological Review, 1998, 44(6):656-661. doi: 10.3321/j.issn:0371-5736.1998.06.014 [35] 黄玉清, 我国南方岩溶区植物深根系分布及其生态地质作用研究[R]. 桂林: 广西植物研究所, 2016.HUANG Yuqing. Study on the distribution of deep roots of plants and their ecological and geological effects in the southern karst region of China[R]. Guilin: Guangxi Institute of Botany, 2016. [36] 黄甫昭, 李健星, 李冬兴, 陈婷, 王斌, 陆树华, 李先琨. 岩溶木本植物对干旱的生理生态适应[J]. 广西植物, 2021, 41(10):1644-1653. doi: 10.11931/guihaia.gxzw202109027HUANG Fuzhao, LI Jianxing, LI Dongxing, CHEN Ting, WANG Bin, LU Shuhua, LI Xiankun. Physiological and ecological adaptation of karst woody plants to drought[J]. Guihaia, 2021, 41(10):1644-1653. doi: 10.11931/guihaia.gxzw202109027 [37] Sun L, Yang L, Chen L, Zhao F, Li S. Hydraulic redistribution and its contribution to water retention during short-term drought in the summer rainy season in a humid area[J]. Journal of hydrology, 2018, 566:377-385. doi: 10.1016/j.jhydrol.2018.09.032 [38] 董茜,尤勇刚,罗为群,刘绍华,王根柱,刘玉国,周金星. 岩溶区不同母岩植物群落物种组成及优势种群生态位差异[J]. 中国岩溶, 2021, 40(5):849-859.DONG Qian, YOU Yonggang, LUO Weiqun, LIU Shaohua, WANG Genzhu, LIU Yuguo, ZHOU Jinxing. Species composition and niche differences of dominant populations of plant communities from different parent rocks in karst area[J]. Carsologica Sinica, 2021, 40(5):849-859. [39] 侯满福, 蒋忠诚. 茂兰喀斯特原生林不同地球化学环境的植物物种多样性[J]. 生态环境, 2006,15(3): 572-576.HOU Manfu, JIANG Zhongcheng. Species diversity of karst original forest in different geochemical environments in Maolan[J]. Ecology and Environment, 2006,15(3): 572-576. [40] 刘鸿雁, 蒋子涵, 戴景钰, 吴秀臣, 彭建, 王红亚, Jeroen MEERSMANS, Sophie M GREEN, Timothy A QUINE. 岩石裂隙决定喀斯特关键带地表木本与草本植物覆盖[J]. 中国科学:地球科学, 2019, 49(12):1974-1981.LIU Hongyan, JIANG Zihan, DAI Jingyu, WU Xiuchen, PENG Jian, WANG Hongya, Jeroen MEERSMANS, Sophie M GREEN, Timothy A QUINE. GREEN, Timothy A. QUINE. Rock crevices determine woody and herbaceous plant cover in the karst critical zone[J]. ScienSce China Earth Sciences, 2019, 49(12):1974-1981. [41] 韩行瑞. 岩溶水文地质学[M]. 北京: 科学出版社, 2015.HAN Xingrui. Karst hydrogeology[M]. Beijing: Science Press, 2015. [42] 蒋忠诚. 中国南方表层岩溶带的特征及形成机理[J]. 热带地理, 1998,18(4):322-326. doi: 10.3969/j.issn.1001-5221.1998.04.007JIANG Zhongcheng. Features of epikarst zone in south China and formation mechanism[J]. Tropical geography, 1998,18(4):322-326. doi: 10.3969/j.issn.1001-5221.1998.04.007 [43] Michel Bakalowicz. Epikarst[M]. Encyclopedia of Caves (Second Edition), 2012:284-288. [44] 姜光辉, 陈坤琨, 于奭, 彭稳. 峰丛洼地的坡地径流成分划分[J]. 水文, 2009, 29(06): 14-19.JIANG Guanghui, CHEN Kunkun, YU Shi, PENG Wen. Separating karst slope runoff in peak cluster area[J]. Journal of China Hydrology,2009, 29(6): 14-19. [45] 陈植华, 陈刚, 靖娟利, 蒋忠诚. 西南岩溶石山表层带岩溶水资源调蓄能力初步评价[M]. 中国地质调查局(主编). 中国岩溶地下水与石漠化研究, 南宁: 广西科学技术出版社, 2003.CHEN Zhihua, CHEN Gang, JING Juanli, JIANG Zhongcheng. Preliminary evaluation of karst water resources storage capacity in the surface zone of southwest karst rocky mountains[M]. China Geological Survey (chief editor).Study on karst groundwater and rocky desertification in China, Nanning: Guangxi Science and Technology Press, 2003. [46] 彭韬, 杨涛, 王世杰, 张信宝, 陈波, 汪进阳. 喀斯特坡地土壤流失监测结果简报[J]. 地球与环境, 2009, 37(2):126-130. doi: 10.14050/j.cnki.1672-9250.2009.02.016PENG Tao, YANG Tao, WANG Shijie, ZHANG Xinbao, CHEN Bo, WANG Jinyang. Monitoring results of soil loss in karst slopes[J]. Earth and Environment, 2009, 37(2):126-130. doi: 10.14050/j.cnki.1672-9250.2009.02.016 [47] Fu P L, Zhu S D, Zhang J L, Finnegan P M, Jiang Y J, Lin H, Fan Z X, Cao K F. The contrasting leaf functional traits between a karst forest and a nearby non-karst forest in south-west China[J]. Functional Plant Biology,2019 ,46(10): 907-915. [48] Plavcová L, Hoch G, Morris H, Ghiasi S, Jansen S. The amount of parenchyma and living fibers affects storage of nonstructural carbohydrates in young stems and roots of temperate trees[J]. American Journal of Botany,2016 ,103(4): 603-612. [49] Ding Y, Nie Y, Chen H, Wang K, Querejeta J I. Water uptake depth is coordinated with leaf water potential, water‐use efficiency and drought vulnerability in karst vegetation[J]. New Phytologist,2021,229(3): 1339-1353. [50] Morris H, Plavcova L, Cvecko P, Fichtler E, Gillingham M A, Martinez‐Cabrera H I, McGlinn D J, Wheeler E, Zheng J, Zieminska K, Jansen S. A global analysis of parenchyma tissue fractions in secondary xylem of seed plants[J]. New Phytologist,2016,209(4): 1553-1565. [51] Zhu S D, Chen Y J, Fu P L, Cao K F. Different hydraulic traits of woody plants from tropical forests with contrasting soil water availability[J]. Tree Physiology,2017,37(11): 1469-1477. [52] Geekiyanage N, Goodale U M, Cao K, Kitajima K. Leaf trait variations associated with habitat affinity of tropical karst tree species[J]. Ecology and evolution,2018,8(1): 286-295. [53] 邓艳, 蒋忠诚, 曹建华, 李强, 蓝芙宁. 弄拉典型峰丛岩溶区青冈栎叶片形态特征及对环境的适应[J]. 广西植物, 2004,24(4):317-322,331-386. doi: 10.3969/j.issn.1000-3142.2004.04.005DENG Yan, JIANG Zhongcheng, CAO Jianhua, LI Qiang, LAN Funing. Characteristics comparison of the leaf anatomy of cyclobalanopsis glauca and its adaption to the environment of typical karst peak cluster areas in Nongla[J]. Guihaia, 2004,24(4):317-322,331-386. doi: 10.3969/j.issn.1000-3142.2004.04.005 [54] 黄甫昭, 李冬兴, 王斌, 向悟生, 郭屹立, 文淑均, 陈婷, 李先琨. 喀斯特季节性雨林植物叶片碳同位素组成及水分利用效率[J]. 应用生态学报, 2019, 30(6):1833-1839.HUANG Fuzhao, LI Dongxing, WANG Bin, XIANG Wusheng, GUO Yili, WEN Shujun, CHEN Ting, LI Xiankun. Foliar stable carbon isotope composition and water use efficiency of plant in the karst seasonal rain forest[J]. Chinese Journal of Applied Ecology, 2019, 30(6):1833-1839. [55] 刘珊, 何茜, 李吉跃, 苏艳, 吴俊文. 石漠化树种圆叶乌桕对干旱胁迫的生理响应[J]. 华南农业大学学报, 2016, 37(2):96-100. doi: 10.7671/j.issn.1001-411X.2016.02.015LIU Shan, HE Qian, LI Jiyue, SU Yan, WU Junwen. Physiological responses of the limestone endemic plant Triadica rotundifolia seedlings to drought stress[J]. Journal of South China Agricultural University, 2016, 37(2):96-100. doi: 10.7671/j.issn.1001-411X.2016.02.015 [56] 井瑾, 王方贞, 张瑜, 舒健虹. 干旱胁迫下火棘种子萌发过程及其抗氧化酶活性变化[J]. 干旱区资源与环境, 2017, 31(9):135-139. doi: 10.13448/j.cnki.jalre.2017.293JING Jin, WANG Fangzhen, ZHANG Yu, SHU Jianhong. Seed germination of pyracantha fortuneana and the change of antioxidant enzyme activity under drought stress[J]. Journal of Arid Land Resources and Environment, 2017, 31(9):135-139. doi: 10.13448/j.cnki.jalre.2017.293 [57] 欧芷阳, 曹艳云, 谭长强, 郑威, 庞世龙, 申文辉. 干旱胁迫对喀斯特生境蚬木幼苗光合特性及抗性生理的影响[J]. 生态学杂志, 2018, 37(11):3270-3276.OU Zhiyang, CAO Yanyun, TAN Zhangqiang, ZHENG Wei, PANG Shilong, SHEN Wenhui. Effects of drought on photosynthesis and resistance physiology of excentrodendron hsienmu seedlings in karst habitat[J]. Chinese Journal of Ecology, 2018, 37(11):3270-3276. [58] 吴沿友, 邢德科, 杭洪涛, 赵宽. 植物的喀斯特适应性检测原理和技术[M].北京: 科学出版社, 2018.WU Yanyou, XING Deke, HANG Hongtao, ZHAO Kuang. Principals and techniques for detecting the adaptation of karst in plants[M]. Beijing: Science Press, 2018. [59] 温远光, 雷丽群, 朱宏光, 刘虹, 覃林, 马祖陆, 王克林, 庄嘉, 蓝嘉川, 龙涛, 陆晓明, 邓艳, 谢益君, 王家妍. 广西马山岩溶植被年龄序列的群落特征[J]. 生态学报, 2013, 33(18):5723-5730. doi: 10.5846/stxb201305070978WEN Yuanguang, LEI Liqun, ZHU Hongguang, LIU Hong, QIN Lin, MA Zulu, WANG Kelin, ZHUANG Jia, LAN Jiachuan, LONG Tao, LU Xiaoming, DEN Yan, XIE Yijun, WANG Jiayan. Community characteristics in a chrono sequence of karst vegetation in Mashan county, Guangxi[J]. Acta Ecologica Sinica, 2013, 33(18):5723-5730. doi: 10.5846/stxb201305070978 [60] 区智, 李先琨, 吕仕洪, 向悟生, 苏宗明, 陆树华. 桂西南岩溶植被演替过程中的植物多样性[J]. 广西科学, 2003(1):63-67. doi: 10.3969/j.issn.1005-9164.2003.01.016OU Zhi, LI Xiankun, LV Shihong, XIANG Wusheng, SU Zongming, LU Shuhua. Species diversity in the process of succession of karst vegetation in southwest Guangxi[J]. Guangxi Sciences, 2003(1):63-67. doi: 10.3969/j.issn.1005-9164.2003.01.016 [61] 朱华. 中国南方石灰岩(喀斯特)生态系统及生物多样性特征[J]. 热带林业, 2007, 35(S1):44-47. doi: 10.3969/j.issn.1672-0938.2007.z1.011ZHU Hua. The karst ecosystem of Southern China and its biodiversity[J]. Tropical Forestry, 2007, 35(S1):44-47. doi: 10.3969/j.issn.1672-0938.2007.z1.011 [62] 黄俞淞, 吴望辉, 蒋日红, 刘晟源, 刘演, 李先琨. 广西弄岗国家级自然保护区植物物种多样性初步研究[J]. 广西植物, 2013, 33(3):346-355. doi: 10.3969/j.issn.1000-3142.2013.03.011HUANG Yusong, WU Wanghui, JIANG Rihong, LIU Shenyuan, LIU Yan, LI Xiankun. Primary study on species diversity of plant in Longgang national nature reserve of Guangxi[J]. Guihaia, 2013, 33(3):346-355. doi: 10.3969/j.issn.1000-3142.2013.03.011 [63] 梁畴芬, 梁健英. 弄岗自然保护区植物区系考察报告[R].1988(增刊1): 83-184.LIANG Choufen, LIANG Jianying. A report on the flora of Nonggang Nature Reserve[R]. 1988(Suppl 1): 83-184. [64] 郑颖吾. 木论喀斯特林区概论[M].北京: 科学出版社, 1999.ZHENG Yingwu. Introduction to Mulun karst forest area[M]. Beijing: Science Press, 1999. [65] 欧祖兰, 苏宗明, 李先琨. 广西岩溶植被植物区系[J]. 广西植物, 2004,24(4):302-310. doi: 10.3969/j.issn.1000-3142.2004.04.003OU Zulan, SU Zongming, LI Xiankun. Flora of karst vegetation in Guangxi[J]. Guihaia, 2004,24(4):302-310. doi: 10.3969/j.issn.1000-3142.2004.04.003 [66] 容丽, 杨龙. 贵州的生物多样性与喀斯特环境[J]. 贵州师范大学学报(自然科学版), 2004, 22(4):1-6. doi: 10.16614/j.cnki.issn1004-5570.2004.04.001Rong Li, YANG Long. Biodiversity of Guizhou province and its karst environment[J]. Journal of Guizhou Normal University (Natural Sciences), 2004, 22(4):1-6. doi: 10.16614/j.cnki.issn1004-5570.2004.04.001 [67] 贵州植物志编委会. 贵州植物志[M]. 贵阳: 贵州人民出版社, 1986.Guizhou Flora Editorial Committee. Flora of Guizhou[M]. Guiyang: Guizhou People's Publishing House, 1986. [68] 许兆然. 中国南部石灰岩地区生物保护和综合治理生态村模式[J]. 广西植物, 1996,16(1):48-55.XU Zhaoran. An ecological village approach to environmental conservation in southern China limestone areas[J]. Guihaia, 1996,16(1):48-55. [69] 文丽, 宋同清, 杜虎, 王克林, 彭晚霞, 曾馥平, 曾昭霞, 何铁光. 中国西南喀斯特植物群落演替特征及驱动机制[J]. 生态学报, 2015, 35(17):5822-5833.WEN Li, SONG Tongqing, DU Hu, WANG Kelin, PENG Wanxia, ZENG Fuping, ZENG Zhaoxia, HE Tieguang. The succession characteristics and its driving mechanism of plant community in karst region, Southwest China[J]. Acta Ecologica Sinica, 2015, 35(17):5822-5833. [70] 朱华, 李延辉, 许再富, 王 洪, 李宝贵. 西双版纳植物区系的特点与亲缘[J]. 广西植物, 2001,21(2):127-136. doi: 10.3969/j.issn.1000-3142.2001.02.009ZHU Hua, LI Yanhui, XU Zaifu, WANG Hong, LI Baogui. Characteristics and affinity of the flora of Xishuangbanna, SW China[J]. Guihaia, 2001,21(2):127-136. doi: 10.3969/j.issn.1000-3142.2001.02.009 [71] 傅立国,金鉴明. 中国植物红皮书—稀有濒危植物(第一册)[M]. 北京: 科学出版社, 1992.FU Liguo, JIN Jianming. Chinese Plants-Rare and Endangered Plants (Vol. 1)[M]. Beijing: Science Press, 1992. [72] Humphreys W F. Background and glossary. In 'Ecosystems of the World, 30: Subterranean Ecosystems'[J]. (Eds H. Wilkens, DC Culver and WF Humphreys )2000: 3–14. [73] Monro A K, Bystriakova N, Fu L F, Wen F, Wei Y G. Discovery of a diverse cave flora in China[J]. PLos One, 2018, 13(2):e0190801. doi: 10.1371/journal.pone.0190801 [74] Tao J, Qi Q, Kang M, Huang H. Adaptive Molecular Evolution of PHYE in Primulina, a karst cave plant[J]. Plos One, 2015, 10(6): e0127821. [75] Bai K, Wei Y, Zhang D, Fu L, Lv S, Deng L. Contrasting effects of light, soil chemistry and phylogeny on leaf nutrient concentrations in cave-dwelling plants[J]. Plant and Soil, 2020,448(1): 105-120. [76] 沈利娜, 侯满福, 许为斌, 黄云峰, 梁士楚, 张远海, 蒋忠诚, 陈伟海. 广西乐业大石围天坑群种子植物区系研究[J]. 广西植物, 2020, 40(6):751-764. doi: 10.11931/guihaia.gxzw201902015SHEN Lina, HOU Manfu, XU Weibin, HUANG Yunfeng, LIANG Shichu, ZHANG Yuanhai, JIANG Zhongcheng, CHEN Weihai. Research on flora of seed plants in Dashiwei karst Tiankeng group of Leye, Guangxi[J]. Guihaia, 2020, 40(6):751-764. doi: 10.11931/guihaia.gxzw201902015 [77] 蒲高忠, 王柯懿, 莫凌, 曾丹娟, 陈霞霞. 中国喀斯特天坑演化及植被生态系统研究进展[J]. 广西植物, 2021, 41(10):1632-1643. doi: 10.11931/guihaia.gxzw202012032PU Gaozhong, WANG Keyi, MO Ling, ZENG Danjuan, CHEN Xiaxia. Research progress on evolution and vegetation ecosystem of karst Tiankeng in China[J]. Guihaia, 2021, 41(10):1632-1643. doi: 10.11931/guihaia.gxzw202012032 [78] 林宇. 广西大石围天坑群天坑森林物种多样性研究[D].桂林: 广西师范大学, 2005.LIN Yu. Species diversity of karst Tiankeng forest in Dashiwei Tiankengs[D]. Guilin: Guangxi Normal University, 2005. [79] 苏宇乔, 薛跃规, 范蓓蓓, 莫佛艳, 冯慧喆. 广西流星天坑植物群落结构与多样性[J]. 西北植物学报, 2016, 36(11):2300-2306. doi: 10.7606/j.issn.1000-4025.2016.11.2300SU Yuqiao, XUE Yuegui, FAN Beibei, MO Foyan, FENG Huizhe. Plant community structure and species diversity in Liuxing Tiankeng of Guangxi[J]. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(11):2300-2306. doi: 10.7606/j.issn.1000-4025.2016.11.2300
计量
- 文章访问数: 1507
- HTML浏览量: 961
- PDF下载量: 145
- 被引次数: 0