Spatial variation analysis of soil organic matter in karst area
-
摘要: 采用GIS和地统计学研究土壤有机质(SOM)的空间分布、影响因素和预测是指导农业生产、环境治理和土壤碳储计量的重要手段。基于广西马山县北部岩溶区表层土壤 (0~20 cm)的441个SOM数据,建立普通克里格(OK)、回归克里格(RK),以及结合辅助变量的地理加权回归克里格(GWRK)、残差均值(MM_OK)和中值(MC_OK)均一化克里格的5种模型,并比较其预测精度,旨在探讨岩溶区SOM制图中地统计学方法的适用性。结果表明:(1)SOM的变异系数为37.30%,属于中等空间变异;(2)岩溶区SOM空间变异受土地利用方式、土壤类型和地形因子等因素共同影响,SOM高值区分布在西北部、西部和东部等石灰土分布的岩溶区和水田,低值区位于北部红水河沿岸的冲积土地带;(3)RK、GWRK、MM_OK和 MC_OK对SOM解释能力均较优,可用于岩溶区SOM预测制图。结合辅助变量因子的GWRK预测模型能有效消除空间变异因素的影响,克服岩溶区SOM含量的空间非平稳性,从而提高SOM含量模型的稳定性和精度,同时MC_OK模型能提高预测的准确度。Abstract: As an important parameter for soil quality assessment, soil organic matter (SOM) can provide nutrients for crops, strengthen soil fertility, and improve soil physicochemical properties. Besides, SOM also plays an important role in restricting the activity of heavy metal elements and pesticide residues, and in regulating CO2 in soil. Therefore, the study on spatial distribution of SOM, its influence factors and prediction by GIS and geostatistical analysis is important in agricultural practice, environmental management and the measurement of soil carbon storage.The content of SOM is easily affected by the factors such as geological background, climate change, agricultural activities and land use change. Hence the complexity and non-stationarity of the spatial variability of SOM will make it difficult for the quantitative prediction. The high heterogeneity of SOM and insufficient sampling data in the karst area also leads to low accuracy of spatial prediction. Guangxi is one of the areas with the most widely distributed karst areas in China. Typical karst landforms are developed in the northern part of Mashan county, with a range of land use and parent materials. Different patterns of land use include paddy field, dry land, shrub land, forest land, orchard and grassland, accounting for 10.55%, 29.39%, 29.49%, 12.86%, 0.70% and 0.66% respectively. Paddy fields, consisting of paddy soil, are located in karst valleys; dry lands, consisting of red soil, brown lime soil, and alluvial soil, are distributed at the bottom of slopes and karst depressions on both sides of the valley; shrubland and forest land, mainly consisting of brown lime soil and red soil, spread over mountains. A total of 441 SOM data, with 8 high-density topsoil (0-20 cm) samples per km2 on average, were obtained in the geochemical survey of land quality in the northern karst area of Mashan county, Guangxi in 2017. The data facilitates the spatial prediction of highly heterogeneous SOM in karst areas.In this paper, qualitative variables such as land uses and soil types were converted into quantitative variables through the assignment method of dummy variables, and terrain factors were used as auxiliary variables to meet the requirement of geostatistical regression analysis. With the purpose of exploring the applicability of geostatistical SOM mapping in karst areas, this study respectively established five method models—ordinary Kriging (OK), regression Kriging (RK), Geographically Weighted Regression Kriging (GWRK), Ordinary Kriging of Median Centralization (MC_OK) and Mean Modified Ordinary Kriging (MM_OK)—to compare the prediction results, and select the most suitable prediction model for the karst area.. Results show that the SOM content in the study area ranges from 0.81% to 5.03%, with an average of 2.36%, and the coefficient of variation is 37.3%. The spatial distribution is moderate spatial variation. Results of geostatistical analysis by GS+9.0 show that the fitted theoretical variogram models are all exponential ones. Both nugget value and abutment value are less than 25%, which indicates that there is a certain spatial autocorrelation, and the SOM content is mainly affected by structural factors; hence correlation interpolation analysis can be carried out.In addition, the spatial variation of SOM in the karst area is jointly affected by land use, soil types and topographical factors. The areas with high content of SOM are located respectively in the karst areas and paddy fields where lime soil is distributed in the northwest, west and east of the study area, and the areas with low content are located in the alluvial land along the Hongshui river in the north of the study area. The SOM content shows significantly positive correlation with paddy fields because the reducing environment of paddy fields is conducive to the preservation and accumulation of SOM. But SOM content shows significantly negative correlation with dry land due to the oxidative environment of this land type where frequent disturbance and rapid degradation of SOM will occur.Finally, RK, GWRK, MM_OK and MC_OK can be used for SOM prediction and mapping in karst areas because of their good interpretability. The results of internal verification show that the root-mean-square of GWRK is the smallest, and the average standard error is close to root-mean-square, indicating the better fitness of GWRK model. The results of external verification demonstrate that the mean absolute error and root mean squares error of GWRK are the smallest, suggesting the highest precision and the best stability of GWRK model. Meanwhile, MC_OK shows its best accuracy. Combined with auxiliary variable factors such as land use, soil types, and topography, GWRK model can effectively eliminate the influence of spatial variation factors and overcome the spatial non-stationarity of SOM content in karst areas, thereby improving the stability and precision of the SOM prediction model, while MC_OK model can improve the prediction accuracy.
-
表 1 SOM描述性统计
Table 1. Descriptive statistics of SOM
指标 样本数 最大值/
%最小值/
%平均值/
%标准差
(SD)变异系数
(CV)/%峰度 偏度 K-S检验 土地利用方式 水田 83 5.03 1.66 3.56a 0.69 19.90 − − − 旱地 259 4.45 0.81 1.92c 0.58 30.20 − − − 林地 99 3.93 1.02 2.51b 0.64 25.50 − − − 土壤类型 水稻土 98 5.03 0.91 3.19a 0.93 29.10 − − − 红壤 66 4.48 0.93 2.12b 0.77 36.10 − − − 赤红壤 122 4.45 1.02 2.18b 0.66 30.20 − − − 石灰土 95 4.06 1.03 2.28b 0.65 28.30 − − − 冲积土 60 4.30 0.81 1.78c 0.72 40.40 − − − 总样本 441 5.03 0.81 2.36 0.88 37.30 2.83 0.76 0.00 对数转换 − − − − − − 5.52 0.03 0.15 注:平均值列的不同小写字母对应显著性表现。 表 2 研究区SOM含量与土地利用方式和土壤类型Pearson相关系数
Table 2. Pearson correlation coefficient of SOM and types of land use and soil
水田 旱地 林地 水稻土 冲积土 赤红壤 红壤 石灰土 相关系数 0.676** −0.622** 0.090 0.526** −0.269** −0.153** −0.131** −0.047 注:**在0.01水平(双侧)上显著相关。 表 3 OLS模型诊断结果
Table 3. Diagnostic results of OLS model
AICc R2 F-Stat F-Prob Wald-Prob K(BP) K(BP)_Prob JB-Prob 787 0.56 63.9 0.00* 0.00* 25.6 0.002* 0.00* 注:**在0.01水平(双侧)上显著相关。 表 4 OLS模型诊断系数结果
Table 4. Results of diagnostic coefficient of OLS model
变量 系数 P Robust_SE Robust_t Robust_Pr StdCoef VIF 截距 2.18 0.00 0.26 8.33 0.00 0.00 − 土地
利用水田 0.91** 0.00 0.15 6.13 0.00 0.41 3.06 旱地 −0.56** 0.00 0.08 −6.71 0.00 −0.31 2.02 土壤
类型水稻土 0.28** 0.01 0.13 2.16 0.03 0.13 2.99 赤红壤 0.01 0.95 0.09 0.06 0.95 0.00 2.02 石灰土 0.21* 0.03 0.09 2.33 0.02 0.10 1.98 冲积土 −0.24* 0.02 0.09 −2.84 0.00 −0.10 1.58 地形
因子高程 0.00 0.17 0.00 1.17 0.24 0.06 2.17 坡度 0.00 0.61 0.00 −0.52 0.60 −0.02 1.89 坡向 0.00 0.58 0.00 −0.52 0.60 −0.02 1.09 注:**和*分别在0.01和0.05水平(双侧)上显著相关;土壤类型、土地利用类型使用哑变量处理;P为Probability 概率;Robust_SE为标准差健壮度;Robust_t为T统计量健壮度;Robust_Pr为概率健壮度;StdCoef为回归系数的标准差;VIF为方差膨胀因子。 表 5 地理加权回归模型拟合参数
Table 5. Fitting parameters of geographically weighted regression model
平滑程度 残差平方和 标准化剩余平方和 AICc R2 校正R2 GWR 3343.22 123.74 0.56 774 0.64 0.59 表 6 不同插值处理的SOM半方差函数模型与参数
Table 6. Semi-variogram function model for SOM and its corresponding parameters with different methods
方法 理论模型 预测
系数R2变程(A0)
/m块金值
(C0)基台值
(C0+C)结构方差
(C)块金值/基台值
(C0/C0+C)/%OK 指数模型 0.692 1050 0.0155 0.139 0.1235 11.2 RK 指数模型 0.192 480 0.0565 0.371 0.3145 15.2 GWRK 指数模型 0.188 450 0.0525 0.320 0.2675 16.4 MC_OK 指数模型 0.186 450 0.0556 0.320 0.2644 17.4 MM_OK 指数模型 0.187 450 0.0522 0.320 0.2678 16.3 表 7 不同模型预测精度评价
Table 7. Precision assessment of SOM content prediction with different methods
方法 内部验证 外部验证 MSE RMSS RMS ASE MAE RMSE AC/% r R2 OK −0.0167 1.0028 0.8166 0.8536 0.6822 0.8724 30.8 0.23 0.14 RK 0.0087 0.9836 0.5983 0.5983 0.4626 0.5844 71.9 0.71 0.48 GWRK −0.0218 0.9797 0.5464 0.5546 0.3912 0.4960 79.4 0.79 0.63 MC_OK 0.0075 1.0764 0.5605 0.5211 0.4202 0.5215 89.3 0.77 0.58 MM_OK 0.0071 0.9890 0.5637 0.5703 0.4632 0.5775 87.0 0.72 0.49 -
[1] 钟聪, 李小洁, 何园燕, 邱微文, 李杰, 张新英, 胡宝清. 广西土壤有机质空间变异特征及其影响因素研究[J]. 地理科学, 2020, 40(3):147-154.ZHONG Cong, LI Xiaojie, HE Yuanyan, QIU Weiwen, LI Jie, ZHANG Xinying, HU Baoqing. Spatial variation of soil organic matter and its influencing factors in Guangxi, China[J]. Scientia Geographica Sinica, 2020, 40(3):147-154. [2] 朱梓弘, 杨程, 谢银财, 王群, 朱同彬. 重度石漠化区不同土地利用方式下土壤养分特征[J]. 中国岩溶, 2018, 37(6):842-849.ZHU Zihong, YANG Cheng, XIE Yincai, WANG Qun, ZHU Tongbin. Characteristics of soil nutrient in karst rocky regions with heavy desertification under different land-use patterns[J]. Carsologica Sinica, 2018, 37(6):842-849. [3] Campbell J B. Spatial Variation of Sand Content and pH Within Single Contiguous Delineations of Two Soil Mapping Units1[J]. Soil Science Society of America Journal, 1978, 42(3):460-464. doi: 10.2136/sssaj1978.03615995004200030017x [4] 张欢, 高小红. 复杂地形区土壤有机质空间变异性分析及制图[J]. 水土保持研究, 2020, 27(5):93-100.ZHANG Huan,GAO Xiaohong. Analysis of spatial variability and mapping of soil organic matter contents in complex terrain areas[J]. Research of Soil and Water Conservation, 2020, 27(5):93-100. [5] 鲍丽然, 周皎, 李瑜, 贾中民. 渝西北土壤有机质空间变异及影响因素分析[J]. 西南农业学报, 2017, 30(11):2541-2547.BAO Liran, ZHOU Jiao, LI Yu, JIA Zhongmin. Spatial variability of soil organic matter and its influence factors of hilly area in northwest Chongqing southwest China[J]. Journal of Agricultural Sciences, 2017, 30(11):2541-2547. [6] Wang Y, Fu B, Lü Y, Song C, Luan Y. Local-scale spatial variability of soil organic carbon and its stock in the hilly area of the Loess Plateau, China[J]. Quaternary Research, 2010, 73(1):70-76. doi: 10.1016/j.yqres.2008.11.006 [7] Zhao B, Li Z, Li P, Xu G, Gao H, Cheng Y, Chang E, Yuan S, Zhang Y, Feng Z. Spatial distribution of soil organic carbon and its influencing factors under the condition of ecological construction in a hilly-gully watershed of the Loess Plateau, China[J]. Geoderma, 2017, 296:10-17. doi: 10.1016/j.geoderma.2017.02.010 [8] 陆访仪, 赵永存, 黄标, 汪景宽. 海伦市耕层土壤有机质含量空间预测方法研究[J]. 土壤通报, 2012, 43(3):662-667.LU Fangyi, ZHAO Yongcun, HUANG Biao, WANG Jingkuan. Comparison of predicting methods for mapping the spatial distribution of topsoil organic matter content in cropland of Hailun[J]. Chinese Journal of Soil Science, 2012, 43(3):662-667. [9] 李启权, 王昌全, 岳天祥, 李冰, 张新, 高雪松, 张毅, 袁大刚. 基于定性和定量辅助变量的土壤有机质空间分布预测: 以四川三台县为例[J]. 地理科学进展, 2014, 33(2):259-269. doi: 10.11820/dlkxjz.2014.02.012LI Qiquan, WANG Changquan, YUE Tianxiang, LI Bing, ZHANG Xin, GAO Xuesong, ZHANG Yi, YUAN Dagang. Prediction of distribution of soil organic matter based on qualitative and quantitative auxiliary variables: A case study in Santai County in Sichuan Province[J]. Progress in Geography, 2014, 33(2):259-269. doi: 10.11820/dlkxjz.2014.02.012 [10] 吴才武, 夏建新, 段峥嵘. 土壤有机质预测性制图方法研究进展[J]. 土壤通报, 2015, 46(1):239-247.WU Caiwu, XIA Jianxin, DUAN Zhengrong. Technologies of predictive mapping for soil organic matter[J]. Chinese Journal of Soil Science, 2015, 46(1):239-247. [11] Xu Y, Smith S E, Grunwald S, Abd-Elrahman A, Wani S P. Estimating soil total nitrogen in smallholder farm settings using remote sensing spectral indices and regression kriging[J]. Catena, 2017, 163:111-122. [12] Zhao M S, Rossiter D G, Li D C, Zhao Y G, Liu F, Zhang G L. Mapping soil organic matter in low-relief areas based on land surface diurnal temperature difference and a vegetation index[J]. Ecological Indicators, 2014, 39:120-133. [13] 李颖, 刘秀明, 周德全. 中国南方喀斯特地区SOC空间异质性及其对碳储量估算的指示意义[J]. 江苏农业科学, 2019, 47(8):264-272.LI Ying, LIU Xiuming, ZHOU Dequan. SOC spatial heterogeneity and its implications for carbon storage estimation in karst area of southern China[J]. Jiangsu Agricultural Sciences, 2019, 47(8):264-272. [14] 谷佳慧, 杨奇勇, 蒋忠诚, 罗为群, 曾红春, 覃星铭, 蓝芙宁. 广南县幅岩溶区与非岩溶区土壤碳氮磷生态化学计量比空间变异分析[J]. 中国岩溶, 2018, 37(5):761-769.GU Jiahui, YANG Qiyong, JIANG Zhongcheng, LUO Weiqun, ZENG Hongchun, QIN Xingming, LAN Funing. Spatial variation analysis of soil carbon, nitrogen and phosphorus eco-stoichiometric ratios in karst and non-karst areas of Guangnan county, Yunnan, China[J]. Carsologica Sinica, 2018, 37(5):761-769. [15] 张双双, 靳振江, 贾远航, 李强. 岩溶区与非岩溶区3种土地利用方式下土壤细菌群落结构比较[J]. 中国岩溶, 2019, 38(2):164-172.ZHANG Shuangshuang, JIN Zhenjiang,JIA Yuanhang, LI Qiang. Comparison of soil bacterial community structures from three soil land-use between karst and non-karst areas under three kinds of land use[J]. Carsologica Sinica, 2019, 38(2):164-172. [16] Chen X B, Zheng H, Zhang W, He X Y, Li L, Wu J S, Huang D Y, Su Y R. Effects of land cover on soil organic carbon stock in a karst landscape with discontinuous soil distribution[J]. Journal of Mountain Science, 2014, 11:774-781. doi: 10.1007/s11629-013-2843-x [17] Liu T Z, Liu C Q, Lang Y C, Ding H. Dissolved organic carbon and its carbon isotope compositions in hill slope soils of the karst area of southwest China: Implications for carbon dynamics in limestone soil[J]. Geochemical Journal, 2014, 48(3):277-285. doi: 10.2343/geochemj.2.0304 [18] 景建生, 刘子琦, 罗鼎, 孙建. 喀斯特洼地土壤有机碳分布特征及影响因素[J]. 森林与环境学报, 2020, 40(2):23-29.JING Jiansheng, LIU Ziqi, LUO Ding, SUN Jian. Distribution characteristics and influencing factors of soil organic carbon in karst depression[J]. Journal of Forest and Environment, 2020, 40(2):23-29. [19] 吴海勇, 曾馥平, 宋同清, 彭晚霞, 黎星辉, 欧阳资文. 喀斯特峰丛洼地土壤有机碳和氮素空间变异特征[J]. 植物营养与肥料学报, 2009(5):1029-1036. doi: 10.3321/j.issn:1008-505X.2009.05.007WU Haiyong, ZENG Fuping, SONG Tongqing, PENG Wanxia, LI Xinghui, OUYANG Ziwen. Spatial variations of soil organic carbon and nitrogen in peak-cluster depression areas of Karst Region[J]. Plant Nutrition and Fertilizer Science, 2009(5):1029-1036. doi: 10.3321/j.issn:1008-505X.2009.05.007 [20] Bai Y, Zhou Y. The main factors controlling spatial variability of soil organic carbon in a small karst watershed, Guizhou Province, China[J]. Geoderma, 2020, 357:113938. doi: 10.1016/j.geoderma.2019.113938 [21] 吴敏, 刘淑娟, 叶莹莹, 张伟, 王克林, 陈洪松. 典型喀斯特高基岩出露坡地表层土壤有机碳空间异质性及其储量估算方法[J]. 中国生态农业学报, 2015, 23(6):676-685.WU Min, LIU Shujuan, YE Yingying, ZHANG Wei, WANG Kelin, CHEN Hongsong. Spatial heterogeneity and storage assessment method of surface soil organic carbon in high bulk-rock ratio slopes of Karst Regions[J]. Chinese Journal of Eco-Agriculture, 2015, 23(6):676-685. [22] Wang S, Huang M, Shao X, Mickler R A, Li K, Ji J. Vertical Distribution of Soil Organic Carbon in China[J]. Environmental Management, 2004, 33(1):S200-S209. [23] 张甘霖, 龚子同. 土壤调查实验室分析方法 [M]. 北京: 科学出版社, 2012.ZHANG Ganlin, GONG Zitong. Soil survey laboratory analytical methods [M]. Beijing, Science Press, 2012. [24] 李河, 麦劲壮, 肖敏, 杨学宁. 哑变量在Logistic回归模型中的应用[J]. 循证医学, 2008, 8(1):42-45. doi: 10.3969/j.issn.1671-5144.2008.01.011LI He, MAI Jinzhuang, XIAO Min, YANG Xuening. Application of dummy variable in logistic regression models[J]. The Journal of Evidence-Based Medicine, 2008, 8(1):42-45. doi: 10.3969/j.issn.1671-5144.2008.01.011 [25] Shen H, Luo X-Q, Bi J-F. An Alternative Method for Internal Stability Prediction of Gravelly Soil[J]. KSCE Journal of Civil Engineering, 2018, 22(4):1141-1149. doi: 10.1007/s12205-017-1570-1 [26] 陈慕松, 范晓晖, 吴寿华. 基于不同空间插值类型的耕地土壤有机质空间变异性分析[J]. 江西农业学报, 2018, 30(10):55-59.CHEN Musong, FAN Xiaohui, WU Shouhua. Analysis of spatial variation of soil organic matter content in cultivated land based on different spatial interpolation styles[J]. Acta Agriculturae Jiangxi, 2018, 30(10):55-59. [27] 文雯, 周宝同, 汪亚峰, 黄勇. 基于辅助环境变量的土壤有机碳空间插值: 以黄土丘陵区小流域为例[J]. 生态学报, 2013, 33(19):6389-6397.WEN Wen, ZHOU Baotong, WANG Yafeng, HUANG Yong. Soil organic carbon interpolation based on auxiliary environmental covariates: a case study at small watershed scale in Loess Hilly region[J]. Acta Ecologica Sinica, 2013, 33(19):6389-6397. [28] 万龙, 马芹, 张建军, 付艳玲, 张晓萍. 黄土高原降雨量空间插值精度比较: KRIGING与TPS法[J]. 中国水土保持科学, 2011, 9(3):79-87. doi: 10.3969/j.issn.1672-3007.2011.03.015WAN Long, MA Qin, ZHANG Jianjun, FU Yanling, ZHANG Xiaoping. Precise comparison of spatial interpolation for precipitation using KRIGING and TPS(Thin plate smoothing spline) methods in Loess Plateau[J]. Science of Soil and Water Conservation, 2011, 9(3):79-87. doi: 10.3969/j.issn.1672-3007.2011.03.015 [29] 蒋文惠. 地形和土地利用对山区土壤养分空间变异的影响 [D]. 济南: 山东农业大学, 2014.JIANG Wenhui. Effects of land use and topographic factors on soil nutrients variability in mountain area [D]. Shandong: Shandong Agricultural University, 2014. [30] 文冬妮, 杨程, 杨霖, 秦兴华, 孟磊, 何秋香, 朱同彬, Müller C. 岩溶区农业种植对土壤有机氮矿化的影响[J]. 中国岩溶, 2020, 39(2):189-195.WEN Dongni, YANG Cheng, YANG Lin, QIN Xinghua, MENG Lei, HE Qiuxiang, ZHU Tongbin, Müller C. Effects of agricultural cultivation on soil organic nitrogen mineralization in karst regions[J]. Carsologica Sinica, 2020, 39(2):189-195. [31] 吴子豪, 刘艳芳, 陈奕云, 郭龙, 姜庆虎, 王少辰. 综合土地利用及空间异质性的土壤有机碳空间插值模型[J]. 应用生态学报, 2018, 29(1):238-246.WU Zihao, LIU Yanfang, CHEN Yiyun, GUO Long, JIANG Qinghu, WANG Shaochen. Spatial interpolation model of soil organic carbon density considering land-use and spatial heterogeneity[J]. Chinese Journal of Applied Ecology, 2018, 29(1):238-246. [32] 刘鹏, 蒋忠诚, 蓝芙宁, 李衍青, 于洋. 土地利用对溶丘洼地土壤容重、水分和有机质空间异质性的影响: 以南洞流域驻马哨洼地为例[J]. 中国岩溶, 2019, 38(1):100-108.LIU Peng, JIANG Zhongcheng, LAN Funing, LI Yanqing, YU Yang. Effects of land use on spatial heterogeneity of soil bulk density, moisture and organic material in karst hilly depressions: An example of the Zhumashao depression of Nandong watershed[J]. Carsologica Sinica, 2019, 38(1):100-108.