Niangziguan spring group in Shanxi Province and its water source
-
摘要: 娘子关泉域群泉是中国北方最大的岩溶泉,泉域汇水面积达7 436 km2,前人认为:泉域内岩溶水由北、西、南3面向娘子关一带径流汇集,由于娘子关一带下奥陶系燧石团块或条带白云岩相对隔水层隆起,并被桃河侵蚀出露,使岩溶地下水溢出地表成泉群,其主要含水层为中奥陶系含石膏碳酸盐岩。但各泉的水化学、同位素特征有差异,娘子关泉群并不是出自统一源。文章通过水化学、同位素、水文地质剖面等方法研究得出: 娘子关泉域存在两个含水层、三个子系统:中奥陶系灰岩含水层和中上寒武系白云岩含水层;西部奥陶系岩溶水系统、东部奥陶系岩溶水系统和东部中上寒武系岩溶水系统。泉域内城西泉与程家泉出露于中奥陶系下马家沟组泥灰岩之上,含水层为中奥陶系灰岩裂隙、溶隙水,由于区域下马家沟组泥灰岩隆起隔水出露地表成泉,属于东部奥陶系岩溶水系统;坡底泉、五龙泉、河北泉、水帘洞泉、苇泽关泉其补给主要来源于中上寒武系含水岩组,为承压上升泉,属于东部中上寒武系岩溶水系统。Abstract: As a main natural discharge point of karst groundwater, Niangziguan spring group consists of 11 springs and is located in Niangziguan town, Yangquan City, Shanxi Province. It is distributed on the floodplain and terrace of the Taohe river, the Wenhe river and the Mianhe river, with an exposed elevation of 360 m to 392 m. Among these springs, Chengjia spring is the highest and Jinqu spring is the lowest. The annual average flow of spring group is 9.48 m3·s−1 and the flow differences of springs are large, among which the difference of Wulong spring is the largest. Niangziguan spring group is the largest karst spring in northern China, with a catchment area of 7,436 km2. Previous studies believe that karst water in the spring area flows from north, west and south to Niangziguan area, and the chert mass or strip dolomite of lower Ordovicianin Niangziguan area relatively rises to the aquifuge, and is eroded and exposed by the Taohe River, which makes the karst groundwater overflow to the surface and form a spring group. The main aquifer is made up of gypsum-bearing carbonate rock of middle Ordovician. However, because Niangziguan springs are not from the same source, their hydrochemistry and isotope are different. Therefore, it is necessary to study the source of Niangziguan spring group. This study is conducted with the methods of hydrochemistry, isotope and hydrogeological section, and is concluded that there are two aquifers and three subsystems in Niangziguan spring area. The aquifer consists of middle Ordovician limestone aquifer and middle upper Cambrian dolomite one. Subsystem distribution is comprised of Ordovician karst water system in the west, and Ordovician karst water system and middle upper Cambrian karst water system both in the East. Chengxi spring and Chengjia spring are exposed on the marl of lower Majiagou formation of middle Ordovician, and their aquifers consist of fissure and fissure water of Middle Ordovician limestone. Because the marl of lower Majiagou formation is uplifted in this region, the surface spring-the eastern Ordovician karst water system-is formed. Mainly supplied by the water-bearing formation of middle upper Cambrian, Podi spring, Wulong spring, Shibanmo spring, Shuiliandong spring and Weizeguan spring are pressure-bearing ascending springs and belong to the middle upper Cambrian karst water system in the east.
-
0. 引 言
水化学类型是地下水化学成分的集中反映,也是地下水水文地球化学特征研究的重要内容之一。地下水中的化学成分可示踪地下水的循环途径, 反映地下水流系统的特征[1-3],而水文地球化学结合同位素示踪的方法可更深入地研究区域地下水的循环特征和水动力场特征[4-10]。
娘子关泉域岩溶地下水一直受到各级政府学界的高度重视,为此开展过大量的勘查、调查与研究工作。在20世纪80年代,关于娘子关泉群出露成因的研究得出娘子关泉是在隔水底板O1地层翘起和断层(苇泽关断层)阻水的条件下,受河流侵蚀切割形成的河岸性溢流泉的结论[11-12]。刘再华[13]从泉水的温度、矿化度、其他水化学特征及硫同位素和水力联系等分析得出娘子关泉群(或各泉组) 并非同出一源, 而是有两个明显不同的源。李义连等[14]通过岩溶地下水水化学和同位素分析,得出除程家泉和城西泉是主要排泄局部流动系统的地下水外, 其他各泉均为不同空间尺度流动系统地下水混合、排泄的产物。娘子关泉群是阳泉市最重要的供水水源,在城市生活和工农业生产建设中发挥着不可替代的支撑性作用。然而, 由于过度开采地下水和采煤疏干, 使地下水位持续性下降, 泉水流量衰减,更为严重的是水质恶化、硬度和硫酸盐超标,生态环境不断恶化[15-17]。为改善水质,进一步实现泉域生态保护和高质量发展,开展娘子关泉群来源研究成为一项必要工作。
1. 研究区概况
1.1 娘子关泉群
娘子关泉群位于山西省阳泉市娘子关镇,是岩溶地下水主要的天然排泄点,由11个泉组成(图1)。其分布在桃河、温河和绵河的河漫滩及阶地上,出露高程为360~392 m,以程家泉最高,禁区泉最低。各泉组流量差异较大,以五龙泉最大,为1.7~2.1 m3·s−1,而出露高程较高的程家泉和水帘洞泉历史上就具有间歇性泉的特点,其泉群多年平均流量为9.48 m3·s−1 (1956−2020年)。
娘子关泉群岩溶水开发利用历史悠久。泉口开发利用主要为:(1)河北省井陉县于1958年在娘子关以东的锦河修建绵右渠引水灌溉,平均引水量5.1~7.3 m3·s−1,灌溉面积14 000 hm2,保浇面积11 400 hm2;(2)1980年阳泉建成娘子关提水工程,取水水源为五龙泉泉水,设计提水规模为3 m3·s−1,总扬程423 m。一期建成单线工程供水能力为1.5 m3·s−1;(3)平定县于1987年建成娘子关提水工程。从桥墩、滚泉、苇泽关等四个集泉站提水,总扬程700 m,设计取水量为3 m3·s−1,一期工程供水能力为1.0 m3·s−1;(4)泉口附近乡镇农村及部队的生活、灌溉和水产养殖业用水约0.3 m3·s−1。
1.2 娘子关泉域水文地质条件
娘子关泉域位于山西省东部,涉及的行政区有阳泉市的城区、郊区、平定县、盂县,晋中市的昔阳县、和顺县、左权县、寿阳县及榆次区,太原市区及阳曲县等十个市、县、区,地理位置介于北纬36°55′~38°15′,东经112°20′~113°55′之间(图2),全区总面积为7 436 km2 [18-19]。娘子关泉域范围多年平均水面蒸发量为1 202 mm,多年平均气温为10.9 ℃,1月份平均气温−4.6 ℃,极端最低气温−28 ℃,全区多年平均降水量为542.4 mm(资料来自中国气象数据网)。
泉域岩溶含水层的总体构造展布是由NE向WS倾斜,在北部和东南部裸露碳酸盐岩区接受降水入渗补给,岩溶地下水大致沿地层走向分别在北部和南部形成主径流带。整个泉域岩溶地下水渗流从平面上就是围绕北部、南部与中部三条岩溶地下水强径流带的渗流汇集,向娘子关方向运移,沿强径流带及两侧形成了岩溶地下水的富水区。泉域内岩溶地下水接受降雨、河流补给后,在重力驱动作用下,由北、西、南三面向娘子关一带径流汇集,受苇泽关断层阻隔出露成群泉。娘子关泉出露于阳泉市平定县娘子关镇,多年平均流量为9.48 m3·s−1。娘子关泉是我国北方最大的岩溶泉之一。 娘子关岩溶地下水以水量集中稳定、水质良好成为阳泉市工农业生产及城市供水的重要水源[20]。
2. 研究方法
通过开展野外地质与水文地质补充调查,查明娘子关泉域岩溶水水文地质条件。于2014-2015年在阳泉市平定县布置水文地质钻探,查明地层结构,绘制区域地质剖面。于2019年5月在娘子关泉域范围取样17组,通过多参数水质监测仪现场测试获得pH、温度、电导率等指标;常量、微量元素、氢氧同位素测试由自然资源部岩溶地质资源环境监督检测中心完成。2H/18O同位素测定精度分别为±2.0‰和±0.1‰;δ34S 值在中国地质调查局武汉地质调查中心实验室完成测试,δ34S值采用IsoPrime 质谱仪进行测定,δ34S值采用CDT标准,测试精度优于±0.1‰。所有水样的阴阳离子平衡相对误差小于5%,利用Origin软件绘制离子比例系数图。
3. 娘子关泉群泉水来源
3.1 娘子关泉群水化学同位素特征
3.1.1 水化学特征
岩溶地下水化学特征不但受到区域内的地质构造、地层岩性、水动力条件等因素的控制,同时还受人类活动直接或间接的影响。而岩溶地下水的水化学特征能很好地保存和反演这些复杂的信息[21-23],水文地球化学是研究复杂岩溶水系统的有效方法[24]。例如,表1所示岩溶地下水的pH为7.08~7.70,均值为7.38;钙离子浓度为75.8~312.5 mg·L−1,均值为148.6 mg·L−1;镁离子浓度为18.9~85.2 mg·L−1,均值为39.9 mg·L−1;K+Na离子浓度为7.8~135.4 mg·L−1,均值为48.0 mg·L−1;硫酸根离子浓度为44.9~816.5 mg·L−1,均值为307.2 mg·L−1。岩溶井水化学类型主要为HCO3·SO4-Ca·Mg 、HCO3-Ca·Mg、SO4-Ca·Mg、HCO3·SO4-Ca·Na、HCO3·SO4-Ca;岩溶泉水水化学类型为HCO3·SO4-Ca·Mg。如图3所示岩溶泉水阳离子高Ca2+、Mg2+,低Na+、K+;阴离子高
SO2−4 ,低Cl−。城西泉与其他泉水化学特征有明显区别,说明其与其他泉水来源不同。表 1 岩溶地下水水化学特征Table 1. Hydrochemical characteristics of karst groundwater编号 类型 pH Ca2+ Mg2+ K+ Na+ Cl− SO2−4 HCO−3 Sr δD δ18O 34S 水化学类型 /mg·L−1 /mg·L−1 /mg·L−1 /mg·L−1 /mg·L−1 /mg·L−1 /mg·L−1 /mg·L−1 /‰ /‰ /‰ N01 左权石港村 7.70 98.7 24.6 1.5 11.7 11.1 127.2 244.5 0.86 −68.0 −9.2 18.2 HCO3·SO4-Ca·Mg N02 昔阳大寨水源
地岩溶井7.55 75.8 18.9 1.2 6.6 9.0 44.9 262.0 0.38 −74.6 −10.2 7.2 HCO3-Ca·Mg N03 寿阳岩溶井 7.21 123.7 40.9 1.5 14.1 8.2 284.4 240.6 2.96 −73.1 −10.2 23.1 HCO3·SO4-Ca·Mg N04 小河村斜井岩溶井 7.24 235.0 45.7 4.9 124.2 111.1 596.0 320.2 1.17 −61.3 −8.2 4.7 HCO3-Ca·Mg N05 盂县岩溶井 7.36 291.6 44.4 1.6 95.0 34.9 744.7 359.0 1.26 −67.3 −9.1 18.1 HCO3·SO4-Ca N06 温池水源地岩溶井 7.60 90.6 22.6 0.9 9.6 12.2 90.4 277.5 0.63 −70.0 −9.6 8.5 HCO3·SO4-Ca·Mg N07 河底镇岩溶井 7.08 312.5 85.2 2.0 31.0 40.2 816.5 293.0 1.89 −65.5 −8.8 12.8 SO4-Ca·Mg N08 神子山岩溶井 7.56 82.3 25.0 1.3 11.7 12.3 68.8 262.9 0.54 −70.5 −9.5 3.7 HCO3-Ca·Mg N09 程家泉岩溶井 7.28 165.5 45.1 6.5 128.9 125.7 405.8 291.1 0.79 −62.2 −8.2 5.3 HCO3·SO4-Ca·Na N10 坡底泉 7.35 135.2 41.8 2.1 42.9 55.7 271.8 263.9 2.14 −71.6 −9.5 15.5 HCO3·SO4-Ca·Mg N11 城西泉 7.40 112.1 34.8 2.1 39.5 48.0 185.6 260.0 1.59 −67.1 −9.1 9.2 HCO3·SO4-Ca·Mg N12 五龙泉 7.36 131.4 39.7 2.1 42.1 55.7 251.7 263.9 1.97 −69.3 −9.4 16.7 HCO3·SO4-Ca·Mg N13 河北泉 7.32 134.1 41.2 2.1 43.1 57.7 262.0 267.8 2.10 −69.9 −9.4 17.4 HCO3·SO4-Ca·Mg N14 苇泽关泉 7.19 134.5 42.2 2.1 44.6 57.8 268.2 265.8 2.09 −70.5 −9.6 17.8 HCO3·SO4-Ca·Mg N15 水帘洞泉 7.31 135.0 42.0 2.1 44.5 57.9 267.3 265.8 2.10 −70.1 −9.5 17.4 HCO3·SO4-Ca·Mg N16 禁区泉 7.47 134.5 42.3 2.1 44.2 58.0 266.6 263.9 2.12 −70.6 −9.5 17.5 HCO3·SO4-Ca·Mg N17 滚泉 7.44 134.2 42.2 2.1 44.0 58.2 269.9 262.0 2.07 −70.4 −9.6 16.7 HCO3·SO4-Ca·Mg 3.1.2 离子比例分析
在岩溶水循环过程中,Sr2+浓度随着径流途径和水岩交互作用时间的增加而增加,相比之下Ca2+浓度却受制于溶解平衡[25-26]。因此,不同来源水的Sr2+/Ca2+值不同,径流途径和水岩交互作用的时间越长,其值越大,反之越小。如图2、图4所示,N02、N08、N06和N01位于补给区,N03位于滞留区,其他位于径流区,城西泉的径流途径较短或水岩交互时间较短,其次是五龙泉,而坡底泉、河北泉、苇泽关泉、水帘洞泉、禁区泉和滚泉的径流途径和水岩交互作用时间较长。
3.1.3 岩溶泉水补给来源
δ34S-
SO2−4 被用于追踪岩溶地下水中硫酸盐的来源[27-34]。氢氧同位素是研究地下水起源与演化的理想示踪剂,可利用地下水中的稳定氢氧同位素识别研究区地下水补给来源。研究表明:山西中奥陶系石膏的δ34S值为23.8‰~31.4‰,矿坑水中的δ34S值为−13.6‰~7.98‰,大气降水中的δ34S值为5.39‰~8.98‰,新近系黄土中的δ34S值为5.5‰~9.5‰。如图5所示,N01、 N03、 N05和N07的δ34S-
SO2−4 值较大,说明其SO2−4 补给来源主要为石膏溶解;N02、N04、N06、N08和 N09的δ34S-SO2−4 值较小,说明其SO2−4 补给来源为矿坑水或者大气降水。城西泉的δ34S值为9.19‰,SO2−4 值为185.6 mg·L−1,说明其SO2−4 补给来源主要为大气降水和石膏溶解。其余泉水的δ34S值为15.54‰~17.78‰,均值为17.02‰,SO2−4 值为262.0~267.8 mg·L−1,均值为264.7 mg·L−1,说明其SO2−4 补给来源主要为中奥陶系石膏和矿坑水。如图6所示, δD值为−74.6‰~−61.3‰,均值为−68.94‰,δ18O值为−10.2‰~−8.2‰,均值为−9.33‰。岩溶地下水点N02和N03位于娘子泉域的滞留区,其δD和δ18O值在全球降水的左下方,说明其受古降水补给影响。娘子关泉群的δD和δ18O值位于全球降水的右下方,说明泉群的补给来源接受了大量经过蒸发浓缩后的大气降水及地表水的渗漏补给。城西泉的δD值为−67.1‰,δ18O值为−9.1‰, 明显与其他泉补给来源不同。
3.2 巨城地堑水文地质意义
水文地质钻探是水文地质调查的重要组成部分,是对地下水含水层的岩性、构造、层次、厚度、埋深、水量、水温、水质等相关信息数据进行获取的一种手段,可提供更加全面详实的水文地质资料与信息,以便科学合理地开发利用地下水资源[35-36]。水文地质剖面图能主要反映含水层的埋藏与分布,地下水位及地下水的补给、径流、排泄情况,地下水化学类型及其垂向的变化等[37-38]。
通过收集水文地质钻探资料可绘制水文地质剖面A-C图(图7)。如图7所示巨城地堑是在NW-SE向压应力作用下所导生张力作用的结果, 地堑由走向NNW、南端弯向南东的两个平行正断层组成。在地貌上为一NNE展布的长条形洼地,地堑内保留有石炭系碎屑岩,两翼为奥陶系石灰岩。巨城地堑是娘子关泉域岩溶水的主要控水构造之一[39]。巨城地堑使得地堑西部奥陶系含水层与地堑东部的中上寒武系含水层对接,使得储存于西部奥陶系含水岩组的地下水通过该断裂带进入东部中上寒武系下含水岩组中。同时阻隔或者减弱其地堑两侧奥陶系含水层之间的水力联系。奥陶系下统含燧石白云岩为娘子关泉域区域隔水层[40-41],因此巨城地堑东部含水层可分为上层奥陶系灰岩含水层与下层中上寒武系白云岩含水层。由于苇泽关断层阻水,下层中上寒武系白云岩含水层通过破碎带管道出露成泉。
3.3 娘子关泉域岩溶地下水子系统
城西泉与程家泉出露于中奥陶系下马家沟组泥灰岩之上,含水层为中奥陶系灰岩裂隙、溶隙水,由于区域下马家沟组泥灰岩隆起隔水出露地表成泉。坡底泉、五龙泉、河北泉、水帘洞泉、苇泽关泉其补给主要来源于寒武系下含水岩组,为承压上升泉(图7)。可将娘子关泉岩溶地下水分为三个子系统:(1)西部奥陶系岩溶水系统(A-B-D-E-F-G),其补给来源主要为裸露岩溶区降雨入渗、河流入渗和石炭系—二叠系碎屑裂隙水的越流,串层(钻孔)补给;(2)东部奥陶系岩溶水系统(B-D-E-C),其补给来源主要为裸露岩溶区降雨入渗、河流入渗;(3)东部中上寒武系岩溶水系统(B-D-E-C),其补给来源主要为西部奥陶系岩溶水系统(A-B-D-E-F-G)的径流补给。(2)与(3)两个子系统是同一地区的上、下两组含水层系统。
东部奥陶系岩溶水系统(B-D-E-C)以桃河与温河之间的地下分水岭为界限分为东北部奥陶系岩溶水子系统(B-D-C)与东南部奥陶系岩溶水子系统(B-E-C)两个子系统。东南部奥陶系岩溶水子系统的主要天然排泄点为程家泉与城西泉。
4. 结 论
(1)巨城地堑是娘子关泉域岩溶水的主要控水构造之一。巨城地堑使得储存于地堑西部奥陶系含水岩组的岩溶水,通过该断裂带进入东部中上寒武系含水岩组中。同时阻隔或者减弱地堑西部奥陶系含水层与东部奥陶系含水层之间的水力联系;
(2)城西泉与程家泉出露于中奥陶系下马家沟组泥灰岩之上,含水层为中奥陶系灰岩裂隙、溶隙水,由于区域下马家沟组泥灰岩隆起隔水出露地表成泉。坡底泉、五龙泉、河北泉、水帘洞泉、苇泽关泉其补给主要来源于中上寒武系含水岩组,为承压上升泉;
(3) 娘子关泉域岩溶地下水含水层主要为中奥陶系灰岩含水层和中上寒武系白云岩含水层;可分为三个子系统:西部奥陶系岩溶水系统、东部奥陶系岩溶水系统和东部中上寒武系岩溶水系统。
-
表 1 岩溶地下水水化学特征
Table 1. Hydrochemical characteristics of karst groundwater
编号 类型 pH Ca2+ Mg2+ K+ Na+ Cl− SO2−4 HCO−3 Sr δD δ18O 34S 水化学类型 /mg·L−1 /mg·L−1 /mg·L−1 /mg·L−1 /mg·L−1 /mg·L−1 /mg·L−1 /mg·L−1 /‰ /‰ /‰ N01 左权石港村 7.70 98.7 24.6 1.5 11.7 11.1 127.2 244.5 0.86 −68.0 −9.2 18.2 HCO3·SO4-Ca·Mg N02 昔阳大寨水源
地岩溶井7.55 75.8 18.9 1.2 6.6 9.0 44.9 262.0 0.38 −74.6 −10.2 7.2 HCO3-Ca·Mg N03 寿阳岩溶井 7.21 123.7 40.9 1.5 14.1 8.2 284.4 240.6 2.96 −73.1 −10.2 23.1 HCO3·SO4-Ca·Mg N04 小河村斜井岩溶井 7.24 235.0 45.7 4.9 124.2 111.1 596.0 320.2 1.17 −61.3 −8.2 4.7 HCO3-Ca·Mg N05 盂县岩溶井 7.36 291.6 44.4 1.6 95.0 34.9 744.7 359.0 1.26 −67.3 −9.1 18.1 HCO3·SO4-Ca N06 温池水源地岩溶井 7.60 90.6 22.6 0.9 9.6 12.2 90.4 277.5 0.63 −70.0 −9.6 8.5 HCO3·SO4-Ca·Mg N07 河底镇岩溶井 7.08 312.5 85.2 2.0 31.0 40.2 816.5 293.0 1.89 −65.5 −8.8 12.8 SO4-Ca·Mg N08 神子山岩溶井 7.56 82.3 25.0 1.3 11.7 12.3 68.8 262.9 0.54 −70.5 −9.5 3.7 HCO3-Ca·Mg N09 程家泉岩溶井 7.28 165.5 45.1 6.5 128.9 125.7 405.8 291.1 0.79 −62.2 −8.2 5.3 HCO3·SO4-Ca·Na N10 坡底泉 7.35 135.2 41.8 2.1 42.9 55.7 271.8 263.9 2.14 −71.6 −9.5 15.5 HCO3·SO4-Ca·Mg N11 城西泉 7.40 112.1 34.8 2.1 39.5 48.0 185.6 260.0 1.59 −67.1 −9.1 9.2 HCO3·SO4-Ca·Mg N12 五龙泉 7.36 131.4 39.7 2.1 42.1 55.7 251.7 263.9 1.97 −69.3 −9.4 16.7 HCO3·SO4-Ca·Mg N13 河北泉 7.32 134.1 41.2 2.1 43.1 57.7 262.0 267.8 2.10 −69.9 −9.4 17.4 HCO3·SO4-Ca·Mg N14 苇泽关泉 7.19 134.5 42.2 2.1 44.6 57.8 268.2 265.8 2.09 −70.5 −9.6 17.8 HCO3·SO4-Ca·Mg N15 水帘洞泉 7.31 135.0 42.0 2.1 44.5 57.9 267.3 265.8 2.10 −70.1 −9.5 17.4 HCO3·SO4-Ca·Mg N16 禁区泉 7.47 134.5 42.3 2.1 44.2 58.0 266.6 263.9 2.12 −70.6 −9.5 17.5 HCO3·SO4-Ca·Mg N17 滚泉 7.44 134.2 42.2 2.1 44.0 58.2 269.9 262.0 2.07 −70.4 −9.6 16.7 HCO3·SO4-Ca·Mg -
[1] 沈照理, 王焰新. 水—岩相互作用研究的回顾与展望[J]. 地球科学, 2002, 27(2):127-133.SHEN Zhaoli, WANG Yanxin. Review and Outlook of Water Rock Interaction Studies[J]. Earth Science, 2002, 27(2):127-133. [2] 王焰新, 马腾, 郭清海, 马瑞. 地下水与环境变化研究[J]. 地学前缘, 2005(S1):14-21.WANG Yanxin, MA Teng, GUO Qinghai, MA Rui. Groundwater and environmental change[J]. Earth Science Frontiers, 2005(S1):14-21. [3] 袁道先. 中国岩溶地球化学研究的进展[J]. 水文地质工程地质, 1990(5):41-42.YUAN Daoxian. Advances in Karst geochemistry in China[J]. Hydrogeology & Engineering Geology, 1990(5):41-42. [4] 唐春雷, 梁永平, 王维泰, 赵春红,申豪勇. 龙子祠泉域岩溶水水化学—同位素特征[J]. 桂林理工大学学报, 2017, 37(1):53-58. doi: 10.3969/j.issn.1674-9057.2017.01.007TANG Chunlei, LIANG Yongping, WANG Weitai, ZHAO Chunhong,SHEN Haoyong. Hydrogeochemical and isotopic Characteristic of the karst Groundwater Systems, in Longzici spring basin[J]. Journal of Guilin University of Technology, 2017, 37(1):53-58. doi: 10.3969/j.issn.1674-9057.2017.01.007 [5] Q Xiao, Y Jiang, L Shen, D Yuan. Origin of calcium sulfate-type water in the Triassic carbonate thermal water system in Chongqing, China: A chemical and isotopic reconnaissance[J]. Applied Geochemistry, 2018, 89:49-58. doi: 10.1016/j.apgeochem.2017.11.011 [6] W Smykatz-Kloss, H Kossl, H Hotzl. The gypsum karst area of Foum Tatahouine, Southern Tunisia: Mineralogy and hydrogeochemistry[J]. Chemical Geology, 1990, 84(1):206-207. [7] M A Schiavo, S Hauser, P P Povinec. Stable isotopes of water as a tool to study groundwater-seawater interactions in coastal south-eastern Sicily[J]. Journal of Hydrology, 2009, 364(1):40-49. [8] M Musgrove, L A Stern, J L Banner. Springwater geochemistry at Honey Creek State Natural Area, central Texas: Implications for surface water and groundwater interaction in a karst aquifer[J]. Journal of Hydrology, 2010, 388(1):144-156. [9] 唐春雷, 王桃良, 王维泰, 赵春红. 极端降水条件下北京西山黑龙关泉响应研究[J]. 水文, 2016, 36(6):70-75.TANG Chunlei, WANG Taoliang, WANG Weitai, ZHAO Chunhong. Response of Heilongguan Spring to Extreme Precipitation in Xishan Mountain Area, Beijing[J]. Journal of China Hydrology, 2016, 36(6):70-75. [10] 唐春雷, 郑秀清, 梁永平, 张发旺,景泽. 山西太原晋祠—平泉水力联系及对晋祠泉复流的贡献[J]. 中国地质, 2020, 47(6):1755-1764. doi: 10.12029/gc20200612TANG Chunlei, ZHENG Xiuqing, LIANG Yongping, ZHANG Fawang,JING Ze. The hydraulic connection between Jinci and Pingquan in Taiyuan and its contribution to the reflow of Jinci spring[J]. Geology in China, 2020, 47(6):1755-1764. doi: 10.12029/gc20200612 [11] 高旭波, 王万洲, 侯保俊, 高列波,张建友,张松涛,李成城,姜春芳. 中国北方岩溶地下水污染分析[J]. 中国岩溶, 2020, 39(3):287-298.GAO Xubo, WANG Wanzhou, HOU Baojun, GAO Liebo, ZHANG Jianyou, ZHANG Songtao, LI Chengcheng, JIANG Chunfang. Analysis of karst groundwater pollution in northern China[J]. Carsologica Sinica, 2020, 39(3):287-298. [12] 梁永平, 韩行瑞. 优化技术在娘子关泉域岩溶地下水开采资源量评价与管理中的应用[J]. 水文地质工程地质, 2006(4):67-71. doi: 10.3969/j.issn.1000-3665.2006.04.017LIANG Yongping, HAN Xingrui. Application of optimal technique to evaluation of expl oitable karstwater resources and its management in Niangziguan spring basin[J]. Hydrogeology& Engineering Geology, 2006(4):67-71. doi: 10.3969/j.issn.1000-3665.2006.04.017 [13] 刘再华. 娘子关泉群水的来源再研究[J]. 中国岩溶, 1989, 8(8):22-29.LIU Zaihua. Restudy on the Source of Niangziguan springs[J]. Carsologica Sinica, 1989, 8(8):22-29. [14] 李义连, 王焰新, 周来茹, 高红波,张江华. 地下水矿物饱和度的水文地球化学模拟分析: 以娘子关泉域岩溶水为例[J]. 地质科技情报, 2002, 21(1):32-36.LI Yilian, WANG Yanxin, ZHOU Lairu, GAO Hongbo,ZHANG Jianghua. Hydrogeochemical Modeling on Saturation of minerals in Groundwater: A case study at Niangziguan, Northern China[J]. Geological Science and Technology Information, 2002, 21(1):32-36. [15] 袁道先. 我国北方岩溶研究的形势和任务[J]. 中国岩溶, 2010, 29(3):219-221. doi: 10.3969/j.issn.1001-4810.2010.03.001YUAN Daoxian. The situation and tasks for northern karst research of our country[J]. Carsologica Sinica, 2010, 29(3):219-221. doi: 10.3969/j.issn.1001-4810.2010.03.001 [16] 赵春红, 梁永平,卢海平,唐春雷,申豪勇,王志恒. 娘子关泉域岩溶水SO42−、δ34S特征及其环境意义[J]. 中国岩溶, 2019, 38(6):867-875.ZHAO Chunhong, LIANG Yongping,LU Haiping,TANG Chunlei,SHEN Haoyong,WANG Zhiheng. Chemical characteristics and environmental significance of SO42− and sulfur isotope in the karst watershed of the Niangziguan spring, Shanxi Province[J]. Carsologica Sinica, 2019, 38(6):867-875. [17] 梁永平, 高洪波, 张江华, 等. 娘子关泉流量衰减原因的初步定量化分析[J]. 中国岩溶, 2005, 34(3): 227-231. doi: 10.3969/j.issn.1001-4810.2005.03.011LIANG Yongping, GAO Hongbo, ZHANG Jianghua, et al. Preliminary quantitative analysis on the causes of discharge attenuation in Niangziguan spring. [J]. Carsologica Sinica, 2005, 34 (3): 227-231. doi: 10.3969/j.issn.1001-4810.2005.03.011 [18] 梁永平, 赵春红, 唐春雷, 申豪勇,王志恒,郭芳芳. 山西娘子关泉水及污染成因再分析[J]. 中国岩溶, 2017, 36(5):633-640.LIANG Yongping, ZHAO Chunhong, TANG Chunlei, SHEN Haoyong,WANG Zhiheng,GUO Fangfang. Reanalysis of spring water and its pollution causes of the Niangziguan spring in Shanxi[J]. Carsologica Sinica, 2017, 36(5):633-640. [19] 唐春雷, 晋华, 梁永平, 赵春红,申豪勇,潘尧云,景泽. 娘子关泉域岩溶地下水位变化特征及成因[J]. 中国岩溶, 2020, 39(6):810-816.TANG Chunlei, JIN Hua, LIANG Yongping,ZHAO Chunhong, SHEN Haoyong,PAN Yaoyun,JING Ze. Characteristics and Formation causes of Karst Groundwater Level variation in Niangziguan Spring Area[J]. Carsologica Sinica, 2020, 39(6):810-816. [20] C Tang, H Jin, Y Liang. Using Isotopic and Hydrochemical Indicators to Identify Sources of Sulfate in Karst Groundwater of the Niangziguan Spring Field, China[J]. Water, 2021, 13(3):390. doi: 10.3390/w13030390 [21] B Capaccioni, O Vaselli, F Tassi, A P Santo,A D Huertas. Hydrogeochemistry of the thermal waters from the Sciacca Geothermal Field (Sicily, southern Italy)[J]. Journal of Hydrology, 2011, 396(3):292-301. [22] R Ma, Y Wang, Z Sun, C Zheng,T Ma,H Prommer. Geochemical evolution of groundwater in carbonate aquifers in Taiyuan, northern China[J]. Applied Geochemistry, 2011, 26(5):884-897. doi: 10.1016/j.apgeochem.2011.02.008 [23] C Kohfahl, C Sprenger, J B Herrera, H Meyer,F F Chacón,A Pekdeger. Recharge sources and hydrogeochemical evolution of groundwater in semiarid and karstic environments: A field study in the Granada Basin (Southern Spain)[J]. Applied Geochemistry, 2008, 23(4):846-862. doi: 10.1016/j.apgeochem.2007.09.009 [24] S Pasvanoğlu. Hydrogeochemistry of thermal and mineralized waters in the Diyadin (Ağri) area, Eastern Turkey[J]. Applied Geochemistry, 2013, 38:70-81. doi: 10.1016/j.apgeochem.2013.08.010 [25] N Keul, G Langer, S Thoms, L J de Nooijer,G J Reichart,J Bijma. Exploring foraminiferal Sr/Ca as a new carbonate system proxy[J]. Geochimica et Cosmochimica Acta, 2017, 202:374-386. doi: 10.1016/j.gca.2016.11.022 [26] 唐春雷, 郑秀清, 梁永平. 龙子祠泉域岩溶地下水水化学特征及成因[J]. 环境科学, 2020, 41(5):2087-2095.TANG Chunlei, ZHENG Xiuqing, LIANG Yongping. Hydrochemical Characteristics and Formation Causes of Ground Karst Water Systems in the Longzici Spring Catchment[J]. Environmental Science, 2020, 41(5):2087-2095. [27] J Zhou, Q Zhang, F Kang, Y Zhang,L Yuan,D Wei,S Lin. Using multi-isotopes (34S, 18O, 2H) to track local contamination of the groundwater from Hongshan-Zhaili abandoned coal mine, Zibo city, Shandong province[J]. International Biodeterioration & Biodegradation, 2018, 128:48-55. [28] H Mohammadzadeh, R Aravena. Investigating the Origin and Interaction between Karstic and Alluvial Aquifers in NW of Zagros Mountain Range, Iran, Using Isotopic and Geochemical Tools[J]. Procedia Earth and Planetary Science, 2015, 13:256-260. doi: 10.1016/j.proeps.2015.07.060 [29] F Xu, H Yuan, G Xu, X Luo. Fluid charging and hydrocarbon accumulation in the Cambrian Long wangmiao Formation of Moxi Structure, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2018, 45(3):442-451. doi: 10.1016/S1876-3804(18)30049-1 [30] I Herms, J Jódar, A Soler, I Vadillo,L J Lambán,S Martos-Rosillo,J A Núñez,G Arnó,J Jorge. Contribution of isotopic research techniques to characterize high-mountain-Mediterranean karst aquifers: The Port del Comte (Eastern Pyrenees) aquifer[J]. Science of The Total Environment, 2019, 656:209-230. doi: 10.1016/j.scitotenv.2018.11.188 [31] E S B Santiago, R P Xavier, S G Hagemann, L V S Monteiro,J Cliff. Multiple sulfur isotopes constraints on origin and evolution of the Neoarchean and Paleoproterozoic Cu-Au systems from the Carajás Domain, Amazonian Craton, Brazil[J]. Ore Geology Reviews, 2020, 1038:72. [32] C Erarslan, Y Örgün, N Balcı. Source and distribution of pyrite and inorganic sulfur isotopes in the Saray and Pınarhisar Coalfields, North Thrace Basin, Turkey[J]. International Journal of Coal Geology, 2020:227. [33] B Yang, J Liu, X Shi, H Zhang,X Wang,Y Wu,X Fang. Mineralogy and sulfur isotope characteristics of metalliferous sediments from the Tangyin hydrothermal field in the southern Okinawa Trough[J]. Ore Geology Reviews, 2020:120. [34] 唐春雷, 赵春红, 申豪勇, 梁永平,王志恒. 娘子关泉群水化学特征及成因[J]. 环境科学, 2021, 42(3):1416-1423.TANG Chunlei, ZHAO Chunhong, SHEN Haoyong,LIANG Yongping,WANG Zhiheng. Chemical Characteristics and Causes of Groups Water in Niangziguan Spring[J]. Environmental Science, 2021, 42(3):1416-1423. [35] 杨振华. 浅议矿区水文地质钻探工作[J]. 冶金管理, 2020(3):160,162.YANG Zhenhua. Discussion on hydrogeological drilling in mining area[J]. China Steel Focus, 2020(3):160,162. [36] 王磊. 水文地质钻探在土壤调查采样中的应用[J]. 黑龙江科学, 2020, 11(8):48-49. doi: 10.3969/j.issn.1674-8646.2020.08.023WANG Lei. The Application of Hydrogeologic Drilling in the Sampling Survey of Soil Pollution[J]. Heilongjiang science, 2020, 11(8):48-49. doi: 10.3969/j.issn.1674-8646.2020.08.023 [37] 朱静静, 周宏. 水文地质剖面分析在岩溶水系统研究中的应用: 以鄂西响水洞岩溶水系统为例[J]. 安全与环境工程, 2017, 24(3):1-7,19.ZHU Jingjing, ZHOU Hong. Application of Hydro geological Profile Analysis to Karst Water System A Case Study on Xiangshuidong Karst Water System in Western Hubei Province[J]. Safety and Environmental Engineering, 2017, 24(3):1-7,19. [38] 蔡强, 王一楠. 基于组件式GIS的水文地质剖面图自动生成方法研究[J]. 中小企业管理与科技, 2017(5):141-142. doi: 10.3969/j.issn.1673-1069.2017.05.088CAI Qiang, WANG Yinan. Research on Automatic Generation of Hydro geological Profile Based on Component GIS[J]. Management & Technology of SME, 2017(5):141-142. doi: 10.3969/j.issn.1673-1069.2017.05.088 [39] 刘广英. 巨城地堑对石太客运专线线路方案的影响[J]. 铁道勘察, 2004(6):27-29. doi: 10.3969/j.issn.1672-7479.2004.06.009LIU Guangying. Impact of Jucheng Graben on Railroad Engineering[J]. Railway Investigation and Surveying, 2004(6):27-29. doi: 10.3969/j.issn.1672-7479.2004.06.009 [40] 郝永红, 黄登宇, 刘洁,王学萌. 娘子关泉域降水补给的时滞研究[J]. 中国岩溶, 2003, 22(2):11-14.HAO Yonghong, HUANG Dengyu, LIU Jie, WANG Xuemeng. Study on time lag of precipitation recharge in Niangziguan Spring Area[J]. Carsologica Sinica, 2003, 22(2):11-14. [41] 孙志鸿. 娘子关泉域泉口区岩溶水文地质特征分析[J]. 山西水利科技, 2017(3):51-53,61. doi: 10.3969/j.issn.1006-8139.2017.03.019SUN Zhihong. Analysis on the Karst Hydrogeology Character of the Niangziguan Spring Exit Region[J]. Shanxi Hydrotechnics, 2017(3):51-53,61. doi: 10.3969/j.issn.1006-8139.2017.03.019 期刊类型引用(5)
1. 曹杰,邢立亭,陈洪年,张飞,邢学韬,刘锁柱,赵洋洋,邓兴,高帅. 陶枣盆地岩溶水水化学特征及劣变机制. 安全与环境工程. 2025(02): 282-294 . 百度学术
2. 唐春雷,阳文秀,梁永平,赵春红,申豪勇,王志恒,谢浩,赵一. 山底河流域煤矿酸性矿井水微生物群落结构特征. 煤炭科学技术. 2025(05): 437-450 . 百度学术
3. 韩昱,丁冠涛,于大潞,吴迪,刘玉想. 线状排泄带对地下岩溶发育的控制及富水区形成的作用——以费县岩溶含水系统为例. 山东国土资源. 2024(04): 44-53 . 百度学术
4. 唐春雷,申豪勇,赵春红,王志恒,谢浩,赵一,梁永平. 古堆泉域岩溶地下水水化学特征及成因. 环境科学. 2023(09): 4874-4883 . 百度学术
5. 廖红为,蒋忠诚,周宏,覃小群,黄奇波,吴华英. 铅锌矿周边岩溶流域重金属污染及健康风险评价. 环境科学. 2023(11): 6085-6094 . 百度学术
其他类型引用(3)
-