Research progress on the effect of moss crust on the weathering of carbonate rocks
-
摘要: 岩溶地区碳酸盐岩裸露率高、土壤形成速率缓慢,是世界上石漠化最严重的地区之一。在岩溶石漠化地区,苔藓植物与裸露钙质岩石上的藻类、细菌和真菌共存,形成苔藓结皮。苔藓结皮依赖其独特的形态结构、生理生态和遗传机制在干旱贫瘠的岩石上生长,参与碳酸盐岩的风化、土壤的形成和发育,对岩溶地区退化生态系统的恢复具有不可替代的作用,被誉为“荒漠生态系统工程师”。文章尝试阐明苔藓结皮各组分(微生物、苔藓植物)参与的岩石风化成土过程以及在石漠化治理中的应用,为岩溶区石漠化治理提供理论依据。Abstract: The exposed area of carbonate rocks in the karst region of Southwest China reaches 550,000 km2, which is the largest area with the most developed karst in the world and also the most severely desertified area in the world. Therefore, the origin of soil in karst ecosystems and the process of carbonate rock weathering have always been scientific issues of great concern. Mosses coexist with algae, bacteria, and fungi on the exposed calcareous rocks, forming a moss crust. The moss crust can not only survive and reproduce on the surface and crevices of rocks under severe conditions of water shortage and nutrient deficiency, but also accelerate the weathering of carbonate rocks through organic acid secretion, CO2 release, and mechanical action. The accumulated organic matter can develop the soil parent material on the surface of carbonate rocks into shallow primitive soil, playing an irreplaceable role in the restoration of degraded ecosystems in karst regions, and is known as "the engineer of desert ecosystem". Among the components of moss crust, the volume of microorganisms is at the micrometer scale, and people's understanding of the microbial population growing with moss on rocks is mainly obtained through morphological observations. Many microorganisms are too small to be cultivated, so it is impossible to obtain information on the entire microbial population in this habitat, and thus their functional knowledge has been ignored. Therefore, in order to provide a theoretical basis and technical support for ecological management in desertification areas, this article summarizes the previous studies on moss crust in recent years in desertification areas, clarifies the rock weathering and soil formation process in which various components of moss crust (microorganisms and moss plants) participate, and their application in desertification control.
-
Key words:
- moss crust /
- carbonate rock /
- weathered soil /
- microorganism /
- bryophytes
-
[1] 李林立, 况明生, 蒋勇军. 我国西南岩溶地区土地石漠化研究[J]. 地域研究与开发, 2003(3):71-74.LI Linli, KUANG Mingsheng, JIANG Yongjun. Formation and control of land rocky desertification in southwest karst region of China[J]. Areal Research and Development, 2003(3):71-74. [2] 张殿发, 王世杰, 周德全, 李瑞玲. 贵州省喀斯特地区土地石漠化的内动力作用机制[J]. 水土保持通报, 2001(4):1-5.ZHANG Dianfa, WANG Shijie, ZHOU Dequan, LI Ruiling. Intrinsic driving mechanism of land rocky desertification in karst regions of Guizhou Province[J]. Bulletin of Soil and Water Conservation, 2001(4):1-5. [3] 梁亮, 刘志霄, 张代贵, 邓凯东, 张佑祥. 喀斯特地区石漠化治理的理论模式探讨[J]. 应用生态学报, 2007, 18(3):595-600.LIANG Liang, LIU Zhixiao, ZHANG Daigui, DENG Kaidong, ZHANG Youxiang. Theoretical model for rocky desertification control in karst area[J]. Chinese Journal of Applied Ecology, 2007, 18(3):595-600. [4] 王小利, 郭胜利, 马玉红, 黄道友, 吴金水. 黄土丘陵区小流域土地利用对土壤有机碳和全氮的影响[J]. 应用生态学报, 2007, 18(6):1281-1285.WANG Xiaoli, GUO Shengli, MA Yuhong, HUANG Daoyou, WU Jinshui. Effects of land use type on soil organic C and total N in a small watershed in loess hilly-gully region[J]. Chinese Journal of Applied Ecology, 2007, 18(6):1281-1285. [5] Zhou Hong, Gao Ying, Jia Xiaohong, Wang Mengmeng, Ding Junjun, Cheng Long, Bao Fang, Wu Bo. Network analysis reveals the strengthening of microbial interaction in biological soil crust development in the Mu Us Sandy Land, northwestern China[J]. Soil Biology and Biochemistry, 2020, 144:107782. doi: 10.1016/j.soilbio.2020.107782 [6] 张楷燕. 贵州喀斯特几种石生苔藓和土壤微生物对石灰岩的溶蚀作用[D]. 重庆: 西南大学, 2017.ZHANG Kaiyan. The dissolution of limestone by some of the mosses and the microorganism in karst area in Guizhou Province[D]. Chongqing: Southest University, 2017. [7] Cao Wei, Xiong Yuanxin, Zhao Degang, Tan Hongying, Qu Jiaojiao. Bryophytes and the symbiotic microorganisms, the pioneers of vegetation restoration in karst rocky desertification areas in Southwestern China[J]. Applied Microbiology and Biotechnology, 2020, 104(2): 873-891. [8] Ma J, Tang J Y, Wang S, Chen Z L, Li X D, Li Y H. Illumina sequencing of bacterial 16S rDNA and 16S rRNA reveals seasonal and species-specific variation in bacterial communities in four moss species[J]. Applied Microbiology and Biotechnology, 2017, 101(17):6739-6753. [9] Tang J Y, Ma J, Li X D, Li Y H. Illumina sequencing-based community analysis of bacteria associated with different bryophytes collected from Tibet, China[J]. BMC Microbiology, 2016, 16(1):276. doi: 10.1186/s12866-016-0892-3 [10] 高旭梅, 刘娟, 张前兵, 罗宏海, 谷天佐, 张旺锋. 耕作措施对新疆绿洲长期连作棉田土壤微生物、酶活性的影响[J]. 石河子大学学报(自然科学版), 2011(2):19-26.GAO Xumei, LIU Juan, ZHANG Qianbing, LUO Honghai, GU Tianzuo, ZHANG Wangfeng. Effects of tillage practices on soil microbial and enzyme activity in long-term continuous cotton of Xinjiang Oasis[J]. Journal of Shihezi University (Natural Science), 2011(2):19-26. [11] Stefanie Maier, Alexandra Tamm, Dianming Wu, Jennifer Caesar, Martin Grube, Bettina Weber. Photoautotrophic organisms control microbial abundance, diversity, and physiology in different types of biological soil crusts[J]. The ISME Journal, 2018, 12(4):1032-1046. doi: 10.1038/s41396-018-0062-8 [12] Cheng Cai, Gao Min, Zhang Yuandong, Long Mingzhong, Wu Yunjie, Li Xiaona. Effects of disturbance to moss biocrusts on soil nutrients, enzyme activities, and microbial communities in degraded karst landscapes in Southwest China[J]. Soil Biology and Biochemistry, 2021, 152:108065. doi: 10.1016/j.soilbio.2020.108065 [13] Brazelton W J, Morrill P L, Szponar N, Schrenk M O. Bacterial communities associated with subsurface geochemical processes in continental serpentinite springs[J]. Applied & Environmental Microbiology, 2013, 79(13):3906-3916. [14] Barker W W, Welch S A, Chu S, Banfield J F. Experimental observations of the effects of bacteria on aluminosilicate weathering[J]. American Mineralogist, 1998, 83(11-12 Part 2):1551-1563. doi: 10.2138/am-1998-11-1243 [15] 丁丽君, 连宾. 碳酸钙微生物风化试验研究[J]. 中国岩溶, 2008, 27(3):3-6.DING Lijun, LIAN Bin. Experimentation of microbial weathering to CaCO3[J]. Carsologica Sinica, 2008, 27(3):3-6. [16] Wu Yanwen, Zhang Jinchi, Wang Lingjian, Wang Yingxiang. A rock-weathering bacteria isolated from rock surface and its role in ecological restoration on exposed carbonate rocks[J]. Ecological Engineering, 2017, 101(1):162-169. doi: 10.1016/j.ecoleng.2017.01.023 [17] 王建萍, 李琼芳, 董发勤, 张文静, 郭玉婷, 黄婷, 刘媛媛. 3种常见细菌胞外特征有机酸对方解石的溶蚀研究[J]. 岩石矿物学杂志, 2015, 34(3):387-392.WANG Jianping, LI Qiongfang, DONG Faqin, ZHANG Wenjing, GUO Yuting, HUANG Ting, LIU Yuanyuan. A study of the dissolution of calcite by three common bacterial typical extracellular organic acids[J]. Acta Petrologica et Mineralogica, 2015, 34(3):387-392. [18] 余龙江, 吴云, 李为, 曾宪东. 西南岩溶区土壤细菌胞外碳酸酐酶的稳定性研究 [J]. 生命科学研究, 2004(4): 365-370.YU Longjiang, WU Yun, LI Wei, ZENG Xiandong. Study on stability of extracellular carbonic anhydrase from soil bacteria in karst areas of Southwest China[J]. Life Science Research, 2004(4): 365-370. [19] 肖雷雷. 碳酸酐酶参与矿物—微生物相互作用的分子证据及矿物风化的碳汇效应[D]. 南京: 南京师范大学, 2015.XIAO Leilei. Molecular evidence of carbonic anhydrase involved in mineral-microbial interaction and carbon sink effect of mineral weathering[D]. Nanjing: Nanjing Normal University, 2015. [20] 李永双, 范周周, 国辉, 周金星, 彭霞薇. 菌剂添加对不同树种根际土壤微生物及碳酸钙溶蚀的影响[J]. 中国岩溶, 2020, 39(6):854-862.LI Yongshuang, FAN Zhouzhou, GUO Hui, ZHOU Jinxing, PENG Xiawei. Effects of microorganisms agent addition on soil microbes in different rhizosphere soils and calcium carbonate dissolution[J]. Carsologica Sinica, 2020, 39(6):854-862. [21] 贾丽萍. 不同类群典型微生物的溶蚀作用实验研究 [D]. 武汉: 华中科技大学, 2006.JIA Liping. Experimental study on roles of different kinds of typical microbes in the corrosion of limestone[D]. Wuhan: Huazhong University of Science and Technology, 2006. [22] 王涛, 李强, 王增银. 碳酸盐岩微生物溶蚀作用特征及意义[J]. 水文地质工程地质, 2007, 34(3):6-9.WANG Tao, LI Qiang, WANG Zengyin. Characteristics and significance of microorganism erosion on carbonate rocks[J]. Hydrogeology & Engineering Geology, 2007, 34(3):6-9. [23] Lian B, Wang B, Pan M, Liu C Q, Teng H H. Microbial release of potassium from K-bearing minerals by thermophilic fungus Aspergillus fumigatus[J]. Geochimica Et Cosmochimica Acta, 2008, 72(1):87-98. doi: 10.1016/j.gca.2007.10.005 [24] Howard R J, Ferrari M A, Roach D H, Money N P. Penetration of hard substrates by a fungus employing enormous turgor pressures[J]. Proceedings of the National Academy of Sciences, 1992, 88(24):11281-11284. [25] 连宾. 碳酸盐岩风化成土过程中的微生物作用[J]. 矿物岩石地球化学通报, 2010, 29(1):52-56.LIAN Bin. Microbial roles in the genesis of soil from carbonate rock weathering[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2010, 29(1):52-56. [26] 朱明秋, 曹建华, 郭芳. 基于碳酸盐岩风化的碳源分析及土壤的影响作用机制[J]. 中国岩溶, 2007, 26(3):202-206.ZHU Mingqiu, CAO Jianhua, GUO Fang. Analysis on the corbon amounts originated by the weatheringof carbonate rocks and the influence of soils on the carbon turnover process in karst areas[J]. Carsologica Sinica, 2007, 26(3):202-206. [27] Schwartzman D W, Volk T. Biotic enhancement of weathering and the habitability of Earth[J]. Nature, 1989, 340(6233):457-460. doi: 10.1038/340457a0 [28] 张显强, 谌金吾, 孙敏. 贵州强度石漠化石生藓类区系分布及生态特征[J]. 湖北农业科学, 2015, 54(1):31-38.ZHANG Xianqiang, CHEN Jinwu, SUN Min. Flora and eco-feature of saxicolous mosses in drought environment of the karst rock desertification areas in Guizhou Province[J]. Hubei Agricultural Sciences, 2015, 54(1):31-38. [29] 张朝晖, 王智慧, 王登富. 中国南方喀斯特石漠生态系统苔藓植物区系特征及其水土保持作用研究进展[A]// 生态文明建设中的植物学: 现在与未来: 中国植物学会第十五届会员代表大会暨八十周年学术年会论文集[C]. 第1分会场: 系统与进化植物学, 2013. [30] 李冰, 张朝晖. 喀斯特石漠结皮层藓类物种多样性及在石漠化治理中的作用研究[J]. 中国岩溶, 2009, 28(1):55-60.LI Bing, ZHANG Zhaohui. Species diversity of mosses crust and the effect in karst rocky desertification control[J]. Carsologica Sinica, 2009, 28(1):55-60. [31] 涂国章, 唐书, 张显强. 贵州普定喀斯特石生藓类生态分布与环境因子的相关分析[J]. 基因组学与应用生物学, 2020, 39(3):1248-1256.TU Guozhang, TANG Shu, ZHANG Xianqiang. Correlation analysis between ecological distribution and environmental factors of stone moss of karst area in Puding of Guizhou[J]. Genomics and Applied Biology, 2020, 39(3):1248-1256. [32] 程才, 李玉杰, 龙明忠, 李晓娜. 苔藓结皮在我国喀斯特石漠化治理中的应用潜力[J]. 应用生态学报, 2019, 30(7):2501-2510.CHENG Cai, LI Yujie, LONG Mingzhong, LI Xiaona. Application potential of bryophyte soil crust on the control of karst rocky desertification[J]. Chinese Journal of Applied Ecology, 2019, 30(7):2501-2510. [33] 张显强, 刘天雷, 从春蕾. 贵州5种喀斯特石生藓类成土及保土生态功能研究[J]. 中国岩溶, 2018, 37(5):708-713.ZHANG Xianqiang, LIU Tianlei, CONG Chunlei. Study on soil conservation and pedogenic function of five bryophytes in the karst areas of Guizhou Province[J]. Carsologica Sinica, 2018, 37(5):708-713. [34] 刘润, 申家琛, 张朝晖. 4种苔藓植物在喀斯特石漠化地区的生态修复意义[J]. 水土保持学报, 2018, 32(6):141-148.LIU Run, SHEN Jiachen, ZHANG Zhaohui. Study on the significance of ecological restoration of four bryophytes in karst rocky desertification area[J]. Journal of Soil and Water Conservation, 2018, 32(6):141-148. [35] 徐杰, 白学良, 杨持, 张萍. 固定沙丘结皮层藓类植物多样性及固沙作用研究[J]. 植物生态学报, 2003, 27(4):545-551.XU Jie, BAI Xueliang, YANG Chi, ZHANG Ping. Study on diversity and binding-sand effect of moss on biotic crusts of fixed dunes[J]. Chinese Journal of Plant Ecology, 2003, 27(4):545-551. [36] SHEN Jiachen, ZHANG Zhaohui, WANG Huihui, HUANG Huan, WANG Zhihui. Water retention capacity of autumn mosses in south stone forest of Guiyang karst Park[J]. Journal of Ecology & Rural Environment, 2017, 33(10):907-912. [37] Chen Ye, Lian Bin, Yin Zuoying, Tang Yuan. Weathering of carbonate rocks by biological soil crusts in karst areas[J]. Journal of Earth Science, 2014, 25(4), 662–667. [38] Li X R, Wang X P, Li T, Zhang J G. Microbiotic soil crust and its effect on vegetation and habitat on artificially stabilized desert dunes in Tengger Desert, North China[J]. Biology and Fertility of Soils, 2002, 35(3):147-154. doi: 10.1007/s00374-002-0453-9 [39] LI Xinrong. Influence of variation of soil spatial heterogeneity on vegetation restoration[J]. Science in China (Earth Sciences), 2005, 48(11):2020-2031. doi: 10.1360/04yd0139 [40] 曹建华, 袁道先. 石生藻类、地衣、苔藓与碳酸盐岩持水性及生态意义[J]. 地球化学杂志, 1999, 28(3): 248-256.CAO Jianhua, YUAN Daoxian. Relationship between water-holding of carbonate rock and saxicolous algae, lichen and moss and its ecological significance[J]. Geochimica, 1999, 28(3): 248-256. [41] 刘再华. 碳酸酐酶对碳酸盐岩溶解的催化作用及其在大气CO2沉降中的意义[J]. 地球学报, 2001, 22(5):447-480.LIU Zaihua. The role of carbonic anhydrase as an activator in carbonate rock dissolution and its significance in atmospheric CO2 precipitation[J]. Acta Geoscientica Sinica, 2001, 22(5):447-480. [42] 张楷燕, 李同建, 张显强, 孙敏. 3种石生苔藓植物碳酸酐酶对石灰岩的溶蚀作用[J]. 中国岩溶, 2017, 36(4):441-466.ZHANG Kaiyan, LI Tongjian, ZHANG Xianqiang, SUN Min. Corrosion driving effects of three epilithic mosses in the Pudding karst area, Guizhou Province[J]. Carsologica Sinica, 2017, 36(4):441-466. [43] 刘丽燕, 吾尔妮莎·沙衣丁, 阿不都拉·阿巴斯. 荒漠化地区生物结皮的研究进展[J]. 菌物研究, 2005, 3(4):26-29.LIU Liyan, Humisa XAYIDIN, Abdulla ABBAS. Advances of bio-crust research in desertification-prone areas[J]. Journal of Fungal Research, 2005, 3(4):26-29. [44] Togwell A Jackson. Weathering, secondary mineral genesis, and soil formation caused by lichens and mosses growing on granitic gneiss in a boreal forest environment[J]. Geoderma, 2015, 251:78-91. doi: 10.1016/j.geoderma.2015.03.012 [45] Büdel B, Darienko T, Deutschewitz K, Dojani S, Friedl T, Mohr K I, Salisch M, Reisser W, Weber B . Southern African biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency[J]. Microbial Ecology, 2009, 57(2):229-247. doi: 10.1007/s00248-008-9449-9 [46] Lan Shubin, Wu Li, Zhang Delu, Hu Chunxiang. Successional stages of biological soil crusts and their microstructure variability in Shapotou region (China)[J]. Environental Earth Sciences, 2012, 65(1):77-88. doi: 10.1007/s12665-011-1066-0 [47] Lan Shubin, Wu Li, Zhang Delu, Hu Chunxiang. Assessing level of development and successional stages in biological soil crusts with biological indicators[J]. Microbial Ecology, 2013, 66(2):394-403. doi: 10.1007/s00248-013-0191-6 [48] 程才, 李玉杰, 张远东, 高敏,李晓娜. 石漠化地区苔藓结皮对土壤养分及生态化学计量特征的影响[J]. 生态学报, 2020, 40(24):9234-9244.CHENG Cai, LI Yujie, ZHANG Yuandong, GAO Min, LI Xiaona. Effects of moss crusts on soil nutrients and ecological stoichiometry characteristics in karst rocky desertification region[J]. Acta Ecologica Sinica, 2020, 40(24):9234-9244. [49] Qi X K, Wang K L, Zhang C H. Effectiveness of ecological restoration projects in a karst region of Southwest China assessed using vegetation succession mapping[J]. Ecological Engineering, 2013, 54: 245-253. [50] 王圳, 张金池, 于水强, 王潇, 王如岩, 崔晓晓. 退化喀斯特地区植被恢复过程中苔藓的先锋作用[J]. 南京林业大学学报(自然科学版), 2011, 35(3):137-140.WANG Zhen, ZHANG Jinchi, YU Shuiqiang, WANG Xiao, WANG Ruyan, CUI Xiaoxiao. The vanguard role of bryophytes in the course of vegetation restoration of karst degradation area[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2011, 35(3):137-140. [51] 胡学伟, 党雅馨, 田森林, 黄建洪, 李英杰. 一种利用苔藓加速废石成土的方法[P]. 昆明理工大学, 2019. [52] 曹建华, 袁道先, 潘根兴, 林玉石. 岩溶动力系统中的生物作用机理初探[J]. 地学前缘, 2001, 8(1):203-209.CAO Jianhua, YUAN Daoxian, PAN Genxing, LIN Yushi. Preliminary study on biological action in karst dynamic system[J]. Earth Science Frontiers, 2001, 8(1):203-209. [53] 连宾, 傅平秋, 莫德明, 刘丛强. 硅酸盐细菌解钾作用机理的综合效应[J]. 矿物学报, 2002(2):179-183.LIAN Bin, FU Pingqiu, MO Deming, LIU Congqiang. A comprehensive review of the mechanism of potassium releasing by silicate bacteria[J]. Acta Mineralogica Sinica, 2002(2):179-183. [54] Bennett P C, Rogers J R, Choi W J, Hiebert F K. Silicates, silicate weathering, and microbial ecology[J]. Geomicrobiology Journal, 2001, 18(1):3-19. doi: 10.1080/01490450151079734 [55] 贾仲君. 稳定性同位素核酸探针技术DNA-SIP原理与应用[J]. 微生物学报, 2011, 51(12):1585-1594.JIA Zhongjun. Principle and application of DNA-based stable isotope probing: A review[J]. Acta Microbiologica Sinica, 2011, 51(12):1585-1594. [56] 蒋忠诚, 覃小群, 曹建华, 何师意, 章程, 张强. 论岩溶作用对全球碳循环的意义与碳汇效应:兼对《对〈中国岩溶作用产生的大气CO2碳汇分区估算〉一文的商榷》的答复[J]. 中国岩溶, 2013, 32(1):1-6.JIANG Zhongcheng, QIN Xiaoqun, CAO Jianhua, HE Shiyi, ZHANG Cheng, ZHANG Qiang. Significance and carbon sink effects of karst processes in global carbon cycle: Also reply to "Discussion on article 'Calculation of atmospheric CO2 sink formed in karst processes of karst divided regions in China' "[J]. Carsologica Sinica, 2013, 32(1):1-6. [57] Gao Decai, Jobin Joseph, Roland A Werner, Ivano Brunner, Alois Zürcher, Christian Hug, Wang Ao, Zhao Chunhong, Edith Bai, Katrin Meusburger, Arthur Gessler, Frank Hagedorn. Drought alters the carbon footprint of trees in soils-tracking the spatio-temporal fate of C-13-labelled assimilates in the soil of an old-growth pine forest[J]. Global Change Biology, 2021, 27(11):2491-2506. doi: 10.1111/gcb.15557
点击查看大图
计量
- 文章访问数: 1733
- HTML浏览量: 1245
- PDF下载量: 91
- 被引次数: 0