Study on karst leakage caused by the combination of fault structure and interlayer corrosion zone of a hydropower station in southwest China
-
摘要: 西南某水电站坝址基岩为碳酸盐岩,坝区断层构造和岩溶较发育。水库蓄水后,坝址右岸抗力体1 315 m排水洞出现持续渗漏。随库区水位升高,涌水量逐渐加大至约1.9 m3·s−1,水库无法正常蓄水。为查明库水渗漏途径,有针对性地采取措施减少渗漏量,开展了岩溶渗漏研究。通过工程地质测绘、岩溶水文地质调查、钻探、压水试验、孔内电视、孔内电磁波CT等勘察手段,结合前期平硐、基坑开挖和物探等勘查成果,并利用灌浆孔灌浆过程试验数据,最终查明库水渗漏通道:在水压力作用下,库水沿断裂构造F12下渗,在深部沿层间溶蚀带绕过防渗帷幕,呈30°倾角向下游逐步抬升,最终通过竖向岩溶发育带,从1 315 m排水洞地质薄弱点涌出。通过对灌浆帷幕采取补强措施,封堵了主要渗漏通道,库水渗漏得到有效控制,达到了设计要求。Abstract: A hydropower station in southwest China is located in the middle part of the fold belt between the eastern Yunnan platform and the western Guizhou platform on the Yangzi platform. The largest fault in the near field area is F38, which is 61 km long and generally protrudes to the northwest in an arc shape. The dam site is located in the east-west structural belt on the south side of F38 fault, which is the core area of the northeast end of Dashuitang oblique anticline with an axial direction of NNE. At the dam site, the river flow direction is 25°-30°, and the valley is basically in symmetrical V shape. The dam area is dominated by carbonate rocks, and faults and karst are relatively developed. There are karst funnels, depressions, sinkholes and other surface karst forms in the upper level of planation surface on both sides of the dam site. Early investigation results of adits, drilling, foundation pit excavation and geophysical prospecting show that there are some karst caves, trough-like caves and interlayer corrosion in the riverbed and both sides, which are interconnected according to their extension trend. Since the reservoir starts to store water, continuous leakage has occurred in the 1,315 m drainage tunnel of the resistance body on the right bank of the dam site. With a rapid rise of the reservoir water level, a large number of muddy fillings gush out from each water inflow point. Then the water gradually becomes clear, the leakage gradually increases to about 1.9 m3·s−1, and the reservoir cannot store water normally. In order to find out the leakage path of reservoir water and take measures to reduce leakage, karst leakage research is carried out. 15 boreholes are arranged on the right bank of the dam site, with the borehole bottom elevation from 1,133.3 m to 1,249.9 m, and the borehole water pressure tests of 121 section are carried out below the bottom elevation of the dam foundation curtain. Results show that the permeability area of Lugeon value q≥3 Lu below the curtain bottom elevation is distributed in a band, mainly between 1,200 m and 1,260 m, where Lugeon value gradually decreases from q=3-75 Lu to 2-8.82 Lu toward the right bank. Inspection holes are arranged along the grouting curtain line of the grouting drainage tunnel at the elevations of 1,293 m and 1,340 m on the right bank, and the bottom elevation of the holes is about 1,200 m. The water pressure test, borehole television, the data of simple water pressure test and abnormal records during the grouting process are analyzed comprehensively. 8 inspection holes of the 1,293 m grouted drainage tunnel can be grouted normally, and no hydraulic connection with the water gushing channel of the 1,315 m downstream drainage tunnel is found. 6 inspection holes are arranged in the 1,340 m grouting drainage tunnel, and hundreds of grouting holes are arranged at intervals of 10 m to the left and 2 m to the right of borehole inspection-4. There are 2-3 rows of grouting holes in local sections, and the abnormal tunnel sections are densely grouted. The exploration results of 1,340 m grouting drainage tunnel show, (1) There is no large structural fracture zone developed in the left of inspection-4. Grouting is successfully completed in each hole, and no channel connected with water inrush at 1,315 m is found. (2) For the multiple boreholes between inspection-4 and inspection-3, porous water loss occurs when the drilling is at the elevation of 1,245-1,270 m, and the water pressure cannot be added to the predetermined pressure in the test. After the valves are closed at each water outlet of 1,315 m drainage tunnel, the water gushing phenomenon appears in many holes, especially holes near the right side of the inspection-4, which indicates that there is a leakage channel for reservoir water to bypass the curtain line at the inspection-4 position, and there is a strong hydraulic connection with the downstream 1,315 m drainage tunnel. (3) Most boreholes between inspection-3 and inspection-1 are drilled after the valves of water inlets of the 1,315 m drainage tunnel are closed. In the tunnel section of about 20 m from the left of fault F12 to inspection-2, the probability of borehole water inflow is relatively high when the drilling reaches 1,220-1,260 m, where there is a corrosion zone. Especially in the area 8 m from the left of fault F12, the water inflow phenomenon occurs in almost every borehole between the elevation about 1,240-1,260 m, which shows that the section from the left of fault F12 to inspection-2 is the main channel for the reservoir water to leak around the curtain to the 1,315 m drainage tunnel downstream. According to the water inflow conditions of each inspection hole and grouting hole of the 1,340 m grouting drainage tunnel, combined with the geological characteristics of the right bank resistance body, exploration results and rock permeability test results, the karst leakage path of 1,315 m water inflow is judged as follows: reservoir water infiltrates through the fault fracture zone F12, reaches the dissolution zone of the deep rock bedding plane, and then gradually lifts along the dissolution zone at a dip angle of 30° downstream, and bypasses the curtain line at the elevation of 1,220-1,260 m near inspection-4 and from the fault F12 to inspection-2. After encountering the geological weak zones such as vertical solution grooves, solution ditches and solution caves, reservoir water of the local area seeps upward and finally gushes out from the geological weak point of 1,315 m drainage tunnel. The treatment of karst leakage in this project is a dynamic interactive process of investigation and grouting. With the measures of grouting curtain reinforcement, the main leakage channel is blocked, and the reservoir water leakage is effectively controlled. The leakage of the right bank 1,315 m corridor gradually reduces to about 38 L·s−1. There is basically no water dripping on the tunnel wall, and the treatment meets the design requirements.the treatment meets the design requirements.e design requirements.
-
Key words:
- karst /
- leakage /
- fracture /
- corrosion zone /
- reinforcement grouting /
- carbonate rock
-
0. 引 言
碳酸盐岩在我国尤其是西南地区广泛分布[1-2],岩溶对工程建设产生了很多困扰[3-6]。在水利水电建设领域,岩溶渗漏是岩溶区最常见的库水渗漏形式,很多学者开展了相关研究 [7-13],在实际工程施工中,对岩溶渗漏采取必要的治理措施,取得了一些成功的经验[14-16]。
我国西南某水电站位于云贵高原斜坡地带,最大坝高167.5 m,正常蓄水位1 450 m。电站蓄水后,右岸抗力体1 315 m排水洞出现了多处涌水,且随库区水位升高,渗漏量逐渐加大至约1.9 m3·s−1,水库无法正常蓄水。如无法有效地减小渗漏量,将造成重大经济损失,因此,查明库水渗漏途径,及时采取措施对渗漏进行治理是非常必要的。
1. 区域地质构造
水库工程区位于杨子地台之滇东-黔西台褶带中部(图1),近场区规模最大的断层是F38,长61 km,总体走向NW,略向SW凸成弧形。断层倾角40°~50°,倾向弧形内侧,断面光滑平直,断层破碎带一般宽数米。
2. 坝区工程地质条件
2.1 地形地貌
坝址处河流流向25°~30°,河面宽20~33 m,坝址区最高海拔大于1 900 m,相对高差600~750 m。河谷呈基本对称的“V”字型,两岸地形陡峭,坡度30°~53°,部分库区陡崖连续分布。
2.2 地层岩性
坝址区主要出露石炭系和泥盆系沉积岩,其中,可溶岩为石炭系岩关组(C1y)灰岩、泥盆系宰格群(D2-3zg2-2)灰质白云岩夹灰岩和(D2-3zg2-1)白云岩,非可溶岩为石炭系下统大塘组(C1d)页岩、泥灰岩、砂岩互层,属相对隔水层。坝址区上游分布石炭系下统摆佐组(C1b)灰岩、白云质灰岩和石炭系中统黄龙群(C2hn)白云岩、灰质白云岩、灰岩。坝址区下游分布石炭系上统马平群(C3mp)灰岩。
2.3 地质构造
坝址位于F38断层南侧东西向构造带内,为轴向NNE的大水塘斜歪背斜北东端核部区域,平面上岩层呈“S”型平缓扭曲,岩层整体横切河流倾向上游。
3. 水文地质特征
3.1 地表水
根据现场地质调查,除两岸近坝冲沟上段(高程1 500 m以上)见较明显水流痕迹外,其他地段未见地表水出露。
3.2 地下水
近坝区地下水类型主要为岩溶水,赋存于岩溶裂隙和管道中,受岩性、矿物成分、岩溶发育程度、构造等影响,地下水多以泉水、暗河形式出露。
根据坝区右岸ZK502钻孔地下水位长期观测结果,坝址右岸地下水位较低,枯水期地下水位略高于河水面,水力坡降0.077,说明坝区右岸深部岩溶裂隙、管道连通性相对较好。
4. 岩溶发育特征
4.1 地表岩溶
坝址区岩溶发育呈现峡谷区岩溶特征,坝址两岸上部Ⅰ级夷平面分布有岩溶漏斗、洼地、落水洞等地表岩溶地貌,洼地直径一般为50~200 m,深度一般在10~50 m。坝址周边地表可见溶蚀裂隙、沟槽和溶穴等。
4.2 地下岩溶
前期平硐、钻探、基坑开挖和物探等勘查成果显示,河床及两岸分布较多溶穴、槽状溶洞和层间溶蚀,按其延伸趋势推测它们是相互连通的。右岸地下岩溶大致从清水河边沿小断层向下游山体延伸,近岸附近呈近水平管道状。为查明库水渗漏通道,在坝址区开展了大量的钻探及物探工作,揭露了大量的溶蚀裂隙和涌水点(图2,图3)。
5. 坝区右岸渗漏情况
当库水位上升至1 325 m时,坝区右岸抗力体1 315 m排水洞HPR1(第一道横向排水洞)与ZPR2(第二道纵向排水洞)交叉口以右约22.0 m位置,底板部位的地质薄弱点Y2-1开始冒浑水,之后Y2-2、Y2-3和Y1依次出水,一周后Y3开始涌水(图4)。
随着库区水位迅速升高,大量泥质充填物从各涌水点涌出,之后水质逐步变清,渗漏量逐步增大。在库水抬升至1 357 m前后,对Y1和Y2设置反滤。后随库水位升高,依次出现Y4-Y9涌水点。库水位达到1 357 m时,Y3涌水量大于700 L·s−1。库水位基本稳定在1 366.5 m时,测得总渗流量约1.9 m3·s−1。
6. 坝区库水渗漏途径
6.1 岩体渗透性
为了进一步查明坝区库水渗漏途径,在坝址右岸布置了15个钻孔,孔底高程在1 133.3~1 249.9 m之间。对坝基帷幕底高程以下进行了121段钻孔压水试验,统计结果见表1,坝轴线处右岸岩体透水性分布示意见图5。
表 1 右岸坝基帷幕以下压水试验结果统计表Table 1. Statistical result of water pressure tests under the right dam grouting curtain序号 吕荣值q/Lu 试验段数 占比/% 1 ≥3 28 23.1 2 1~3 79 65.3 3 ≤1 14 11.6 试验结果表明,右岸坝基帷幕底高程以下,在1 140~1 250 m高程(孔深150~180 m)范围内未发现连续3段以上q≤1 Lu的区域。坝基帷幕底高程以下q≥3 Lu渗透区域呈带状分布,主要分布于1 200 ~1260 m,q值为3~75 Lu,往右岸逐渐减小至2~8.82 Lu。
6.2 勘查数据分析
为查明右岸库水渗漏通道,在右岸1 293 m和1 340 m高程灌浆排水洞的灌浆帷幕线一带布置检查孔,孔底高程1 200 m左右。采用压水试验和孔内电视等勘探手段,记录灌浆孔的简易压水试验数据和灌浆过程中异常情况。
6.2.1 1 293 m灌浆排水洞勘查结果
压水试验实验中,布置的8个深部检查孔中有7个钻孔在1 200~1 260 m高程出现孔口涌水现象,表明在此高程范围存在与库水相连的溶蚀带。8个检查孔均能正常灌浆,最大灌浆压力3 MPa。未发现与下游1 315 m排水洞涌水通道存在水力联系。
6.2.2 1 340 m灌浆排水洞勘查结果
在1 340 m高程布置了6个检查孔。在检4孔以左以10 m间距、以右以2 m间距布置了数百个灌浆孔,局部地段2~3排灌浆孔,并在灌浆过程中出现失水、掉钻、吕荣值明显变大等异常部位加密灌浆,并及时记录异常情况。勘查结束后通过对各钻孔数据进行整理分析,得出以下主要结论:
(1)检4孔以左无大的构造断裂破碎带发育,灌浆孔在灌浆过程中,大部分孔无失水、掉钻等异常情况,部分孔揭示1 240~1 270 m高程存在溶蚀发育带。各孔均能顺利完成灌浆,未发现与1 315 m排水洞相连的涌水通道。
(2)检4孔-检3孔之间的多个钻孔钻至1 300~1 310 m高程时,返水呈黄色,且多含有泥沙,但未出现失水,吕荣值q基本小于3.0 Lu,推测此处为岩层不整合带(D2-3zg2-2),与库水之间无明显水力联系。不整合带位于原灌浆帷幕底高程之上,前期施工已封堵其渗漏通道,灌浆效果较好。钻至高程1 245~1 270 m时,多个钻孔出现失水,压水试验无法加到预定压力。当1 315 m排水洞各出水口阀门关闭后,多个钻孔,特别是检4孔右侧附近的钻孔,出现涌水现象,说明检4孔部位存在库水绕过帷幕线的渗漏通道,且与下游1 315 m排水洞有较强的水力联系。
(3)检3孔-检1孔之间的钻孔,大部分是在1 315 m排水洞各涌水口关闭阀门以后施工的。当钻至1 290~1 310 m高程时,揭示岩层不整合带(D2-3zg2-2),检 3 孔-检 1 孔之间的钻孔未出现失水、掉钻等异常情况,吕荣值较小,表明与库水之间无明显水力联系。
断层F12以左至检2孔间约20 m洞段,在高程1 220~1 260 m,钻孔涌水概率较大,存在一溶蚀带。特别是断层F12以左8 m范围,几乎每个钻孔均出现涌水现象。出现涌水的高程在1 240~1 260 m之间。说明断层F12以左至检2孔间存在库水绕过帷幕线的渗漏通道。对该部位的钻孔YGKT-23孔和RWM-Ⅲ-8进行灌浆后,1 315 m排水洞各地质薄弱点涌水量明显减小,渗透压力从0.49 MPa下降到了0.1 MPa,说明断层F12至检2一带为库水绕帷幕向下游1 315 m排水洞渗漏的主要通道。
6.3 渗漏途径研究
右岸1 315 m涌水区域以层面溶蚀为主,局部发育溶槽、溶沟和溶洞。在大坝灌浆帷幕线上游右岸岩体中,只有断层F12位于水库水面线以下。根据1 340 m灌浆排水洞各检查孔和灌浆孔的涌水情况,结合右岸抗力体地质特性、地下水位观测数据及岩体透水性试验结果,判断1 315 m涌水的岩溶渗漏路径如下:
库水经断层破碎带F12下渗,至深部岩石层面溶蚀带后,往下游以30°倾角沿溶蚀带逐步抬升,并在1 220~1 260 m高程、检4孔附近和断层F12至检2孔一带绕过帷幕线。局部遇竖向溶槽、溶沟、溶洞等地质薄弱地带,向上渗流,最终从1 315 m排水洞地质薄弱点涌出(图4,图6)。
7. 渗漏处理措施及效果
7.1 渗漏处理措施
本项目的岩溶渗漏处理是勘察与治理交叉的动态调整过程,勘察与灌浆封堵动态交互进行。
对在勘察和灌浆过程中发现的主要渗漏通道的区域进行了封堵灌浆。在1 340 m灌浆排水洞检4~检3及检2~检1之间,布置3排灌浆孔,排距1.6 m,孔距2 m(局部加密至1 m),孔深130~140 m;检3~检2之间,布置2排灌浆孔,排距1.6 m,孔距2 m,孔深130 m。
根据右岸1 452.5 m廊道及1 390 m廊道勘探孔勘察成果,在1 390 m廊道和1 340 m廊道之间发育F12断层及f39断层,该区域岩溶发育,压水试验渗漏量大,局部出现掉钻、漏水到下层廊道的现象。前期坝基施工帷幕灌浆时,该区域耗灰量较大。该地段地质条件较差,岩溶较发育,为确保帷幕截水可靠性,封堵岩溶渗漏隐患,在该区域增加一排补强灌浆帷幕,孔距2.0 m,孔深55 m,孔斜5°。
除上述部位外,在右岸其他部位也实施了一定数量的灌浆封堵措施,此处不再赘述。
7.2 治理成效
经过大量的灌浆封堵处理后,右岸1 315 m廊道渗漏量逐渐减少至约38 L·s−1,较封堵前大为减小,压力由0.49 MPa下降到0.1 MPa,洞壁基本无滴水现象。治理达到了设计要求。
8. 结论和建议
(1)西南某水电站区断层和岩溶较发育,水库蓄水后,右岸抗力体1 315 m排水洞出现了总渗漏量约1.9 m3·s−1的岩溶渗漏。岩溶渗漏处理是一个勘察与治理交叉、动态调整的过程。采用钻探、水文试验、钻孔电视、孔内电磁波CT等手段,对坝区右岸进行了勘察,通过对勘察成果和灌浆过程试验数据进行分析,最终查明了岩溶绕帷幕渗漏通道。库水在水压力作用下,沿断裂构造F12下渗,在深部沿层间溶蚀带绕过防渗帷幕,呈30°倾角向下游逐步抬升,最终通过竖向岩溶发育带,从1 315 m排水洞地质薄弱点涌出;
(2)采取补强灌浆措施处理后,达到了预期效果,为碳酸盐岩区水利水电工程岩溶渗漏治理提供了一个成功的范例;
(3)在水利水电勘察设计工作中,一般按照孔内连续3段压水试验q≤3 Lu(或q≤1 Lu)确定防渗底限,进行坝基防渗设计。
从本次勘察成果可知,在坝基帷幕底高程以下仍存在透水性较大的区段,在存在导水断裂情况下,库水绕过防渗帷幕产生渗漏。因此,对于岩溶区水利水电工程,不仅要查明防渗底限,还需综合相关勘察成果,对局部断裂构造进行分析,判定库水通过断裂沿深部溶蚀带产生渗漏的可能性,进而采取有效措施进行处理。
-
表 1 右岸坝基帷幕以下压水试验结果统计表
Table 1. Statistical result of water pressure tests under the right dam grouting curtain
序号 吕荣值q/Lu 试验段数 占比/% 1 ≥3 28 23.1 2 1~3 79 65.3 3 ≤1 14 11.6 -
[1] 李大通, 罗雁. 中国碳酸盐岩分布面积测量[J]. 中国岩溶, 1983, 2(2):147-150.LI Datong, LUO Yan. Measurement of carbonate rocks distribution area in China[J]. Carsologica Sinica, 1983, 2(2):147-150. [2] 曾中磊. 滇中地区岩溶水文地质特征[J]. 人民珠江, 2016, 37(8):39-43. doi: 10.3969/j.issn.1001-9235.2016.08.009ZENG Zhonglei. Karst hydrogeological characteristics in central Yunnan[J]. Pearl River, 2016, 37(8):39-43. doi: 10.3969/j.issn.1001-9235.2016.08.009 [3] 刘鹏瑞, 刘长宪, 姜超, 王芳, 陈钰, 贾龙. 武汉市工程施工引发岩溶塌陷机理分析[J]. 中国岩溶, 2017, 36(6):830-835. doi: 10.11932/karst20170605LIU Pengrui, LIU Changxian, JIANG Chao, WANG Fang,CHEN Yu,JIA Long. Mechanism of karst collapse caused by engineering construction in Wuhan City[J]. Carsologica Sinica, 2017, 36(6):830-835. doi: 10.11932/karst20170605 [4] 肖明贵. 桂林市岩溶塌陷形成机制与危险性预测[D]. 长春: 吉林大学, 2005XIAO Minggui. The forming mechanism and forecast of fatalness about karst subsidence in Guilin City[D]. Changchun: Jinlin University, 2005. [5] Fares M Howari, Raed Aldouri, Abdulali Sadiq. Gravity investigations of recent sinkholes and karst pits of Dahal Al-Hamam, State of Qatar[J]. Environmental Earth Sciences, 2016, 75(5):440. doi: 10.1007/s12665-016-5298-x [6] Zhanfei Gu, Qi Liu, Yaoru Lu, Zhengning Shi,Gaoyu Su,Dexiang Luan. Analysis and prevention of sinkhole collapses during the reconstruction and extension of Guang-Qiing freeway, China[J]. Environmental Earth Sciences, 2016, 75(5):788. [7] 冯志刚, 刘谢伶. 构造条件对水库岩溶渗漏的影响研究[J]. 红水河, 2018, 37(5):69-71,75. doi: 10.3969/j.issn.1001-408X.2018.05.021FENG Zhigang, LIU Xieling. Study on influence of tectonic conditions on karst leakage of reservoirs[J]. Hongshui River, 2018, 37(5):69-71,75. doi: 10.3969/j.issn.1001-408X.2018.05.021 [8] 吕耀成, 李钰强, 张富荣, 巨广宏. 莲花台水电站岩溶发育特征及工程意义[J]. 中国岩溶, 2019, 38(4):502-507.LYV Yaocheng, LI Yuqiang, ZHANG Furong, JU Guanghong. Karst features of the Lianhuatai hydropower station and engineering significance[J]. Carsologica Sinica, 2019, 38(4):502-507. [9] 赵博超, 朱蓓, 王弘元, 赖柄霖. 浅谈岩溶塌陷的影响因素与模型研究[J]. 中国岩溶, 2015, 34(5):515-521. doi: 10.11932/karst201505y04ZHAO Bochao, ZHU Bei, WANG Hongyuan, LAI Binglin. Influence factors and mathematical models of karst collapses[J]. Carsologica Sinica, 2015, 34(5):515-521. doi: 10.11932/karst201505y04 [10] 万伟锋, 王泉伟, 邹剑锋, 苗旺. 东庄水库岩溶渗漏几个关键问题的探讨[J]. 人民黄河, 2015, 37(2):99-103. doi: 10.3969/j.issn.1000-1379.2015.02.026WAN Weifeng, WANG Quanwei, ZOU Jianfeng, MIAO Wanf. Discussion on several key problems about karst leakage of Dongzhuang reservoir[J]. Yellow River, 2015, 37(2):99-103. doi: 10.3969/j.issn.1000-1379.2015.02.026 [11] 余波, 徐光祥, 郭维祥, 等. 岩溶水库防渗处理关键技术[M]. 北京: 中国水利水电出版社, 2020YU Bo, XU Guangxiang, GUO Weixiang, et al. Key technology of anti-seepage treatment of karst reservoirs[M]. Beijing: China Water & Power Press, 2020. [12] 沈春勇. 水利水电工程岩溶勘察与处理[M]. 北京: 中国水利水电出版社, 2015SHEN Chunyong. Investigation and treatment of karst in water conservancy and hydropower project[M]. Beijing: China Water & Power Press, 2015. [13] 刘浩, 田茂中. 贵州冗赖水库岩溶成库条件分析[J]. 中国岩溶, 2019, 38(4):515-523.LIU Hao, TIAN Maozhong. Karst geological conditions of the planned Ronglai reservoir in Guizhou Province[J]. Carsologica Sinica, 2019, 38(4):515-523. [14] 龚大庆, 向能武, 曾剑华. 构皮滩坝址5、6号岩溶系统的发育特征及处理[J]. 人民长江, 2007, 38(9):103-105. doi: 10.3969/j.issn.1001-4179.2007.09.038GONG Daqing, XIANG Nengwu, ZENG Jianhua. Development characteristics and treatment of No. 5 and No. 6 karst systems at Goupitan dam site[J]. Yangtze River, 2007, 38(9):103-105. doi: 10.3969/j.issn.1001-4179.2007.09.038 [15] 卢晓鹏, 谭光明. 清华洞暗河堵洞成库与防渗技术[J]. 中国岩溶, 2012, 31(2):179-184. doi: 10.3969/j.issn.1001-4810.2012.02.011LU Xiaopeng, TAN Guangming. Reservoir building by cave-plugging and the seepage-proofing technique in the Qinghuadong underground river[J]. Carsologica Sinica, 2012, 31(2):179-184. doi: 10.3969/j.issn.1001-4810.2012.02.011 [16] 李元奇. 马洞水库岩溶渗漏处理方案[J]. 水利科技与经济, 2014, 20(2):97-98. doi: 10.3969/j.issn.1006-7175.2014.02.038LI Yuanqi. Treatment scheme of karst leakage in Madong reservoir[J]. Water Conservancy Science and Technology and Economy, 2014, 20(2):97-98. doi: 10.3969/j.issn.1006-7175.2014.02.038 期刊类型引用(4)
1. 符明俊,何阳,董秀军,邓博. 茂密植被山区岩溶漏斗遥感识别方法. 中国岩溶. 2025(01): 89-99 . 本站查看
2. 单玉孟,魏海民,严绍明,袁刚,史永杰,王世宏. 地空时频域电磁法在云南某隧道勘察中的应用研究. 科技和产业. 2023(01): 249-254 . 百度学术
3. 单玉孟,史永杰,严绍明,魏海民,袁刚. 地空时频域电磁法对隧道岩溶的探测分析. 工程勘察. 2023(03): 73-78 . 百度学术
4. 冯磊,郭宏洋,李晓,李桦柳,杨艳娜. 陕西某抽水蓄能电站下水库右岸岩溶渗漏问题探讨. 地质灾害与环境保护. 2023(02): 49-55 . 百度学术
其他类型引用(1)
-