Dynamic characteristics and equilibrium of water level of the karst groundwater system beneath the Huixian wetland
-
摘要: 会仙湿地为中国最大的岩溶湿地,近半个世纪,由于人类不合理的开发利用,会仙湿地水域已严重萎缩,开展会仙湿地地下水动态和水均衡的研究,对维持湿地生态功能、湿地水资源管理和湿地保护等方面有极其重要的意义。根据会仙湿地的水文地质条件,将会仙湿地划分为两个地下水系统,即马面狮子岩地下河系统和睦洞河(湖)分散排泄系统,并分别分析了两个地下水系统的补给、径流、排泄特征和地下水动态特征,最后对两个地下水系统进行了地下水均衡计算。结果表明:会仙湿地水位波动受降雨影响明显,各监测点水位变幅不均且水位对降雨响应时间不一致。会仙湿地地下水系统的蓄存量为-6.19万m3,为负均衡,这与均衡期后期干旱有关;会仙湿地岩溶地下水主要补给来源为大气降水入渗,主要排泄方式为潜水径流和蒸发,其系统具有一定的储水调蓄功能,但调蓄能力有限。要长期维护会仙湿地的生态功能,应加强其调蓄能力,可从减少湿地蒸散发量和开采利用量入手,配合湿地生态环境恢复重建,提高水源涵养能力,使湿地水位维持在一个稳定的变化区间内。Abstract: The Huixian wetland is the largest karst wetland in China. In the past half century, due to the unreasonable development and utilization of human beings, the water area of this wetland has shrunk severely. Research on groundwater dynamics and water balance in the Huixian wetland is of great significance for maintaining ecological functions, water resources management, and protection of the wetland. This paper first divides the Huixian wetland into two groundwater systems based on the hydrogeological conditions,namely the Mamianshiziyan system and Mudong river (lake) dispersed excretion system. Then, the recharge, runoff, drainage characteristics and groundwater dynamic characteristics of the two groundwater systems are analyzed separately. Finally, the equilibrium analysis of two groundwater systems is carried out. The results show that the water level fluctuation of the Huixian wetland is obviously affected by rainfall, the water level of each monitoring point varies unevenly and the response times of the water level to rainfall are inconsistent. The storage capacity of the groundwater system in the Huixian wetland is -61,900 m3, which is related to the drought in the later period of the equilibrium period. The main recharge source of karst groundwater in the wetland is atmospheric precipitation infiltration, the main excretion manner is submarine runoff and evaporation. The Huixian wetland karst groundwater system has certain water storage and storage functions, but its storage capacity is limited. To maintain the ecological function of the wetland for a long time, the wetland storage capacity should be strengthened. It can start from reducing the evapotranspiration and exploitation of the wetland, coupling with the restoration and reconstruction of the wetland ecological environment, improving the water conservation capacity, and keeping the wetland water level within a stable change interval.
-
[1] 章程,汪进良,谢运球,等. 桂林会仙岩溶湿地水化学昼夜动态变化及其影响因素[J]. 地质评论, 2013, 59(6):1235-1241. [2] 蔡德所,马祖陆,蒋忠诚,等. 会仙岩溶湿地生态系统研究[M]. 北京:地质出版社, 2012:1-233. [3] 吴应科,莫源富,邹胜章. 桂林会仙岩溶湿地的生态问题及其保护对策[J]. 中国岩溶, 2006, 25(1):85-88. [4] Todd A K, Buttle J M, Taylor C H. Hydrologic dynamics and linkages in a wetland-dominated basin[J]. Journal of Hydrology, 2006, 319(4):15-35. [5] 于秀丽. 吉林省西部湿地水文功能退化分析与恢复策略[J]. 安徽农业科学, 2009, 37(34):17011-17013. [6] 毛旭锋,崔丽娟,王昌海. 基于网络分析的湿地水文关系研究:以美国奥克弗诺基流域为例[J]. 湿地科学, 2012, 10(3):263-270. [7] 邓伟,胡金明. 湿地水文学研究进展及科学前沿问题[J]. 湿地科学, 2003,1(1):12-20. [8] Harmel R D, Riehardson C W, King K W. Hydrologic response of a small watershed model to Generated precipitation[J]. Transactions of the ASAE, 2000, 43(6):1483-1488. [9] 刘徽,邓少平,孙康. 江汉平原地下水位监测网优化设计[J]. 资源环境与工程, 2014, 28(5):692-696. [10] 徐华山, 赵同谦, 孟红旗,等. 滨河湿地地下水水位变化及其与河水响应关系研究[J]. 环境科学, 2011, 32(2): 362-367. [11] 谢潇, 朱文渤, 郭海强,等. 潮汐与降雨对滨海湿地地下水位的影响[J]. 复旦学报(自然科学版), 2013, 52(6): 801-806. [12] 滕良慧. 全球气候变化背景下金川泥炭沼泽湿地水文动态及影响因素研究[D]. 长春:东北师范大学, 2016. [13] 安乐生,赵全升,许颖. 黄河三角洲浅层地下水位动态特征及其成因[J]. 环境科学与技术, 2013,36(9):51-56. [14] 陶虹,陶福平,刘文波. 关中城市群50年地下水动态变化及影响因素研究[J]. 水文地质工程地质, 2013,40(6):37-42, 61. [15] 金速,张静,王咏林. 辽宁省地下水动态成因类型分析[J]. 城市地质, 2016,11(2):64-68. [16] 王政友. 降水入渗补给地下水滞后时间分析探讨[J]. 水文, 2011,31(2):42-45. [17] 陈伟海,张之淦. 峰林平原区岩溶含水层特征与调蓄功能[J]. 中国岩溶,1999,18(1):19-27. [18] 王宇. 岩溶区地表水与地下水资源及环境统一评价的流域边界划分研究[J].中国岩溶,2019,38(6):823-830. [19] 栗圆圆. 桂林会仙岩溶湿地水文过程初步研究[D]. 桂林:桂林理工大学, 2008:334-343. [20] 秦紫东. 扎龙湿地地下水资源评价[J]. 黑龙江水利科技, 2007, 4(35):85-87. [21] 李霄燕,华斌,王威. 东刘家金矿矿区地下水动态与均衡分析[J]. 城市地质, 2015,10(4):53-57. [22] 孟伟超,孟翀,刘磊. 不同地下水埋深、气象因子及作物影响的潜水蒸发模型研究[J]. 太原理工大学学报,2008,39(4):422-425. [23] 左海凤,武淑林,邵景力,等. 山丘区河川基流BFI程序分割方法的运用与分析:以汾河流域河岔水文站为例[J]. 水文, 2007, 27(1):69-71. [24] Huyck A A O, Pauwels V R N, Verhoest N E C. A base flow separation algorithm based on the linearized Boussinesq equation for complex hillslopes[J]. Water Resources Research,2005,41,W08415,doi:10.1029/2004WR003789. [25] Smakhtin V U, Batchelor A L. Evaluating wetland flow regulating functions using discharge time-series[J]. Hydrol Process,2005,19(6):1293-1305.
点击查看大图
计量
- 文章访问数: 1689
- HTML浏览量: 672
- PDF下载量: 167
- 被引次数: 0