Hydrogeochemical characteristics of geothermal water in Hunan Province
-
摘要: 为了查明湖南省地热水的赋存状况、估算研究区热储的温度、冷热水的混合比值及热水循环深度等信息,文章利用离子比值法、phreeqc计算矿物饱和指数法以及硅—焓模型等方法,对研究区69处地热水进行水文地球化学分析。结果表明:研究区地热水主要的水化学类型为HCO3-Ca和HCO3-Ca·Mg,其次为SO4·HCO3-Ca·Mg和SO4-Ca;77%地热水中钙镁离子的比值大于3,表明地热水的封存时间久;利用phreeqc计算出多矿物饱和指数,表明二氧化硅矿物最接近饱和状态;使用硅—焓混合模型估算研究区热储温度和冷水混入比例,表明热储温度范围为32~226 ℃,均值为140 ℃,冷水混入比例平均为85%,占比较大;利用地温梯度计算地热水循环深度范围为5~6 km,平均深度5.34 km。总之,湖南省地热水演化时间长,径流时间比较久,区域循环深度大,热液经热储增温后,经过长时间的径流、水岩作用等,地热水在高压以及热动力驱动下向地表循环,在地表附近与冷水混合后形成以低温为主的“未成熟”中低温热水。Abstract: Hunan Province hosts abundant geothermal water resources,while little research of hydrochemistry on them has been made. research is not thorough. The purpose of this work is to analyze the occurrence of geothermal water in Hunan Province,estimate the temperature of the heat storage in the study area,the mixing ratio of cold and hot water,and the depth of hot water circulation. Using the ion ratio method,phreeqc calculation of mineral saturation and the silicon enthalpy model, we analyze hydro-geochemestry of geothermal water at 69 sites in the study area. The results indicate that the main hydrochemical types of geothermal water are HCO3-Ca and HCO3-Ca.Mg, followed by SO4.HCO3-Ca.Mg and SO4-Ca; The ratio of calcium to magnesium ions in 77% of all geothermal water in the study area is greater than 3,reflecting the long storage time of geothermal water in Hunan Province. Using phreeqc to calculate the multi-mineral saturation index finds that the silica mineral is closest to the saturated state. Using the silicon-enthal pymixing model to estimate the heat storage temperature and the mixing ratio of cold water in the study area,the results show that the thermal storage temperature ranges 32 ℃~226 ℃,140 ℃ on average,and the average cold water mixing ratio is 85%,which is relatively large. The geothermal gradient is used to calculate the geothermal water circulation depth, yielding of 5-6 km, 5.34 km on average. In general,the geothermal water in Hunan Province has a long evolution time,a relatively long runoff time,and a large regional circulation depth. After the hydrothermal fluid is warmed by the thermal storage a long period of runoff and water-rock interaction,the geothermal water is driven by high pressure and thermodynamics. The geothermal water circulates to the surface of the ground,where it is mixed with cold water near the surface to form "immature" medium-low temperature hot water, dominated by low temperature.
-
Key words:
- geothermal water /
- hydrochemistry /
- saturation index /
- Si-enthalpy model /
- Hunan province
-
[1] 徐刚,伍坤宇,王鹏,等.藏北温泉盆地地热田水文地球化学特征研究[J].中国岩溶,2020,39(3):299-310. [2] 赵佳怡,张薇,张汉雄,等.四川巴塘地热田水文地球化学特征及成因[J].水文地质工程地质,2019,46(4):81-89. [3] 刘颖超,刘凯,孙颖,刘久荣,刘宗明.北京市地热水地球化学特征[J].南水北调与水利科技,2015,13(2):324-329. [4] 吴红梅,周立岱,郭宇.阳离子温标在中低温地热中的应用研究[J].黑龙江科技学院学报,2006(1):27-30. [5] 王皓,柴蕊.地热温标在地热系统中的应用研究[J].河北工程大学学报(自然科学版),2009,26(3):54-58. [6] Frengstad B , Skrede A K M , Banks D , et al. The chemistry of Norwegian groundwaters: III. The distribution of trace elements in 476 crystalline bedrock groundwaters, as analysed by ICP-MS techniques[J]. Science of the Total Environment, 2000, 246(1):21-40. [7] Edmunds W M , Carrillo-Rivera J J , Cardona A . Geochemical evolution of groundwater beneath Mexico City[J]. Journal of Hydrology, 2002, 258(1-4):1-24. [8] 李超文,彭头平.湖南地热资源分布及远景区划[J].湖南地质,2001,20(4):272-276. [9] 王贵玲,张薇,梁继运,等.中国地热资源潜力评价[J].地球学报,2017,38(4):449-459. [10] 周华,李芳,皮景.湖南省地下热水分布特征[J].区域治理,2019(5):269-270. [11] 李佐海.湖南省地下热水特征及其成因类型和开发利用[J].湖南地质,1985,4(3):38-52. [12] 龙绍都,何斌,赵强,等.湖南省地下水资源评价概要[J].地质科技情报,1982(S1):131-132. [13] 梅金华,邓丹.湖南地下热水资源的开发利用[J].国土资源导刊,2009,6(3):60-63. [14] 段平国,王兴光.湖南省地热水资源勘查开发利用现状及规划建议[J].地下水,2016,38(2):64-66. [15] 焦春春.资兴汤市中低温对流型地热系统形成机制及评价研究[D].湘潭:湖南科技大学,2017. [16] 焦春春,肖江,皮建高,等. PHREEQC在汤市地热水化学形成作用模拟中的应用[J]. 矿业工程研究,2018,33(1):49-53. [17] 沈川,颜越.汝城热水温泉水文地球化学特征研究[J].中国锰业,2018,36(6):112-115,119. [18] 龙西亭.湖南省地下热水资源[M].武汉:中国地质大学出版社.2019:47-48,61-62. [19] 皮景,巫政卿,皮建高.湖南省地下热水资源及开发利用现状[J].国土资源导刊,2019,16(2):43-47. [20] 张人权,梁杏,靳孟贵,等.水文地质学基础[M].北京:地质出版社,2011:53-54,66-67. [21] 文武飞,肖江,皮建高,等.汤市地热流体化学成因分析[J].矿业工程研究,2016,31(1):64-67. [22] 潘晟,皮建高.湖南省地下热水资源及可持续利用[A]//2005年全国地下水资源与环境学术研讨会[C].中国地质学会,2005. [23] 张未,程东会,齐丽军.吉林省长岭县浅层地下水水文地球化学演化规律分析[J].水资源与水工程学报,2016,27(5):59-63. [24] 李廷伟.柴达木盆地西部油田卤水形成演化的水化学和锶同位素研究[D].青海:中国科学院研究生院(青海盐湖研究所),2007. [25] 徐国芳.深层地下热水成因类型的同位素水文地球化学证据[D].西安:长安大学,2014. [26] B. Shomar ,G. Müller ,A. Yahya ,S. Askar ,R. Sansur . Fluorides in groundwater, soil and infused black tea and the occurrence of dental fluorosis among school children of the Gaza Strip[J]. Journal of Water and Health,2004,2(1). [27] WHOrganization . Guidelines for Drinking-water Quality 4th Ed.[J].2011:371-373. [28] 杨东义.氟与地热田的分布[J].工程勘察,1986(6):58. [29] 孙红丽,马峰,刘昭,等.西藏高温地热显示区氟分布及富集特征[J].中国环境科学,2015,35(1):251-259. [30] 王存龙,庞绪贵,王红晋,等.高密市高氟地下水成因研究[J].地球与环境,2011,39(3):355-362. [31] 刘军强.应用地热温标估算热储温度:以嵊州崇仁热水为例[J].西部探矿工程,2014,26(5):129-132. [32] 杨雷.重庆市温塘峡背斜地下热水水文地球化学特征研究[D].重庆:西南大学,2012. [33] Fournier R O . Chemical geothermometers and mixing models for geothermal systems[J]. Geothermics, 1977, 5(1-4):41-50. [34] Fournier R O , Truesdell A H . An empirical Na-K-Ca geothermometer for natural waters[J]. Geochimica Et Cosmochimica Acta, 1973, 37(5):1255-1275. [35] Giggenbach W F . Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators[J]. Geochimica Et Cosmochimica Acta, 1988, 52(12):2749-2765. [36] Fournier R O . Chemical geothermometers and mixing models for geothermal systems[J]. Geothermics, 1977, 5(1-4):41-50. [37] Fournier R O,Truesdell A H. Geochemical indicators of subsurface temperature PartⅡ,Estimate of temperature and fractions of hot water mixed with cold water.Journal of Research of the U.S. Geological Survey,1974,2(3):263-270.
点击查看大图
计量
- 文章访问数: 1795
- HTML浏览量: 674
- PDF下载量: 136
- 被引次数: 0