Effects of land-use patterns on soil aggregate stability and organic carbon in rocky desertification areas
-
摘要: 以典型高原山地喀斯特石漠化6种土地利用方式土壤为研究对象,探讨不同生态恢复条件下,坡耕地转变为林地、草地及林草套种地后对表层土壤结构稳定性及其有机碳含量的影响。结果表明:在坡耕地实施石漠化治理措施,造林种草后,>0.25 mm团聚体含量显著增加,以人工林、次生林居多,坡耕地较少。在干湿筛处理下,采用平均质量直径(MWD)、几何平均直径(GMD)、分形维数(D)、>0.25 mm团聚体含量等指标来表征的团聚体稳定性显示,人工林和次生林土壤团聚体稳定性较强,坡耕地和林草套种地土壤团聚体稳定性较弱。总体上不同土地利用方式均以小粒级团聚体有机碳含量最高,>5 mm和2~5 mm水稳性团聚体有机碳对土壤有机碳的贡献率最大(除农耕地);土壤大团聚体对土壤有机碳的固定起主要作用。石漠化坡耕地退耕还林种草有利于促进土壤表层土壤结构的稳定及有机碳的积累。Abstract: The Salaxi town of Bijie City, Guizhou Province is a representative karst mountainous demonstration district, where the karst accounts for 74.25% of the entire area. The exposed rocks are dominated by limestone, limestone and sand shale, with widespread potential and mild rocky desertification. This region hosts zonal yellow soil, dominated by arable and forest land, with a small amount of grassland. These lands are used in six types, secondary forest, artificial forest, natural shrub grassland, artificial grassland, forest and grass interplanting land and sloping farmland, which have largely same slope angle, slop facing direction and elevation. By monitoring the number of soil aggregate, soil aggregate stability, soil aggregate organic carbon and other indices, this work analyzes the influence of the conversion of slope farmland into forest land, grassland and forest-grass interplanting land on the stability of surface soil structure and the content of organic carbon under different land use patterns, and reveals the stability of soil structure and carbon sequestration capacity after implementing rocky desertification control measures in this area, providing a scientific basis for the prevention and control of soil erosion and the improvement of soil erosion resistance in rocky desertification areas. The results show that, (1) the aggregate content of >0.25 mm increased significantly after the implementation of forestation and planting, with more plantation and secondary forests and less sloping farmland.(2) After the dry and wet sieve treatment, the stability of aggregates and erosion resistance characterized by GMD, MWD and D indexes and >0.25 mm aggregate content show that the soil aggregate stability of plantation and secondary forests was strong, whereas the soil aggregate stability of sloping farmland and forest-grass interplanting land was weak . (3) In general, the content of soil organic carbon of small-grained aggregate is the highest for different land use patterns, and the contribution rate of water stable aggregate organic carbon of >5 mm and 2-5 mm to soil organic carbon is the largest (except for sloping farmland). Large soil aggregates play a major role in the sequestration of soil organic carbon. After the transformation of sloping farmland into forest and grass land in rocky desertification areas, the number of large soil aggregates (>0.25 mm) increases, the stability of soil aggregates is enhanced, and the organic carbon content of soil aggregates does not exhibit significant increase. On the whole, returning farmland to forest and planting grass in rocky desertification sloping land is beneficial to the promotion of the stability of soil surface soil structure and the accumulation of organic carbon.
-
Key words:
- land-use patterns /
- soil aggregate /
- stability /
- karst rocky desertification area
-
[1] 熊康宁, 李晋, 龙明忠. 典型喀斯特石漠化治理区水土流失特征与关键问题[J]. 地理学报, 2012, 67(7) :878-888. [2] JIANG Z C, LIAN Y Q, QIN X Q. Rocky desertification in Southwest China: Impacts, causes, and restoration[J]. Earth-Science Reviews, 2014, 132(3) :1-12. [3] 袁道先. 岩溶石漠化问题的全球视野和我国的治理对策与经验[J]. 草业科学,2008,25(9) :19-25. [4] 肖华, 熊康宁, 张浩. 喀斯特石漠化治理模式研究进展[J]. 中国人口·资源与环境, 2014, 24(S1) :330-334. [5] Rasmussen C, Southard R J, Horwath W R. Mineral control of organic carbon mineralization in a range of temperate conifer forest soils[J]. Global Change Biology, 2010,12(5):834-847. [6] 王勇,张建辉,李富程.耕作侵蚀对坡耕地土壤水稳定性团聚体和水分特征的影响[J].水土保持学报,2015, 29(1):180-185. [7] Six J , Elliott K E , Paustian K , et al. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture[J]. Soil Biology & Biochemistry, 2000, 32(14):2099-2103. [8] Almajmaie A , Hardie M , Acuna T , et al. Evaluation of methods for determining soil aggregate stability[J]. Soil & Tillage Research, 2016, 167:39-45. [9] 王甜,徐姗,赵梦颖,等.内蒙古不同类型草原土壤团聚体含量的分配及其稳定性[J].植物生态学报,2017,41(11):1168-1176. [10] 李鉴霖, 江长胜, 郝庆菊. 土地利用方式对缙云山土壤团聚体稳定性及其有机碳的影响[J]. 环境科学, 2014(12):4695-4704. [11] 张祎, 时鹏, 李鹏, 等. 小流域生态建设对土壤团聚体及其有机碳影响研究[J]. 应用基础与工程科学学报, 2019, 27(1):50-61. [12] Blankinship J C, Fonte S J, Six J, et al. Plant versus microbial controls on soil aggregate stability in a seasonally dry ecosystem[J]. Geoderma, 2016, 272:39-50. [13] 罗友进, 魏朝富, 李渝, 等. 土地利用对石漠化地区土壤团聚体有机碳分布及保护的影响[J]. 生态学报, 2010, 31(1):257-266. [14] 谭秋锦, 宋同清, 彭晚霞,等. 峡谷型喀斯特不同生态系统土壤团聚体稳定性及有机碳特征[J]. 应用生态学报, 2014, 25(3):671-678. [15] 马雪华.森林生态系统定位研究方法[M].北京:中国科学技术出版社,1994: 25-135. [16] 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000:18-96. [17] 杨培岭.用粒径的重量分布表征的土壤分形特征[J]. 科学通报, 1993, 38(20):1896-1899. [18] 陈佳, 陈洪松, 冯腾, 等. 桂西北喀斯特地区不同土地利用类型土壤抗蚀性研究[J]. 中国生态农业学报, 2012, 20(1):105-110. [19] 肖复明, 范少辉, 汪思龙,等. 毛竹林地土壤团聚体稳定性及其对碳贮量影响研究[J]. 水土保持学报, 2008, 22(2):131-135. [20] Jastrow J D . Soil aggregate formation and the accrual of particulate and mineral-associated organic matter[J].Soil Biology and Biochemistry, 1996, 28(4-5):665-676. [21] 卢凌霄, 宋同清, 彭晚霞, 等 .喀斯特峰丛洼地原生林土壤团聚体有机碳的剖面分布[J].应用生态学报, 2012, 23(5):1167-1174. [22] Gelaw A M , Singh B R , Lal R . Organic carbon and nitrogen associated with soil aggregates and particle sizes under different land uses in tegray, northern ethiopia [J]. Land Degradation & Development, 2015,16:690-700. [23] 胡尧,李懿,侯雨乐.不同土地利用方式对岷江流域土壤团聚体稳定性及有机碳的影响[J].水土保持研究,2018,25(4):22-29. [24] 黎宏祥, 王彬, 王玉杰, 等. 不同林分类型对土壤团聚体稳定性及有机碳特征的影响[J]. 北京林业大学学报, 2016, 38(5):84-91. [25] 刘晶, 田耀武, 张巧明. 豫西黄土丘陵区不同土地利用方式土壤团聚体有机碳含量及其矿化特征[J]. 水土保持学报, 2016, 30(3):255-261.
点击查看大图
计量
- 文章访问数: 1524
- HTML浏览量: 657
- PDF下载量: 122
- 被引次数: 0