Hydrochemical characteristics and composite genesis of a geothermal spring in Ganlanhe, Changning, Yunnan Province
-
摘要: 通过对橄榄河温泉盖层和热储层地质体的岩性和构造特征分析,依据水化学数据,利用Piper三角图解法、同位素水文学方法和地球化学温标等方法,对橄榄河温泉地下热水的水化学类型、补给机制、热储特征和冷热水混合机制等关键问题进行了分析。结果表明地下热水源于大气降水补给,且地下热水在上升至地表的过程中与浅层冷水发生着混合,冷水混入比例约为62%~64%;温泉水化学类型为HCO3 -Na型,表明热水化学组分与围岩化学成分之间具有耦合关系;地下热水循环深度约2 070 m,橄榄河温泉的成因受控于柯街深大断裂,其控制着地下热水的储存、运移和混合程度。研究成果填补了橄榄河热泉的相关研究空白,为该温泉的开发利用提供了科学支撑。Abstract: This paper presents an analysis of lithology and structural characteristics of cap rock and the thermal reservoir of the Ganlanhe hot spring. It covers hydrochemical types, recharge mechanism, thermal reservoir characteristics and mixing mechanism of hot and cold water. The analysis is based on hydrochemical data, using the piper triangle diagram, isotope hydrology method and the geochemical temperature scale. The results show that the underground hot water is supplied by atmospheric precipitation, mixed with the cold water from the shallow subsurface during the process of hot-water rising to the surface, and the proportion of cold water mixing is about 62%-64%. The chemical type of hot spring water is HCO3-Na, which indicates that there is a coupling relationship between the chemical composition of hot water and the surrounding rocks. The circulation depth of underground hot water is about 2,070 m. The formation of the Ganlanhe hot spring is closely related to the Kejie fault, which controls the storage, migration and mixing degree of underground hot water. The research results fill the gap of the research on the Ganlanhe hot spring and provide scientific support for its development and utilization.
-
Key words:
- Yunnan /
- hot spring /
- hydrochemistry /
- isotope /
- Kejie fault
-
[1] 姚永仲,唐小莉.弥渡温泉地质构造背景探析[J].有色金属设计,2010,37(1): 1-5. [2] Wang Mengmeng , Zhou Xun , Wang Jieqing, et al. Occurrence, genesis and travertine deposition of the Adong hot springs in northwestern Yunnan of China[J]. Geothermics, 2020, 87:101851. [3] Zhang Yuqi, Zhou Xun, Liu Haisheng, et al. Geochemistry of rare earth elements in the hot springs in the Simao Basin in southwestern China[J]. Environmental Earth ences, 2020, 79(6).1-10. [4] 郝彦珍,潘明,吕勇,等.云南昌宁柯街断裂带温泉水化学特征[J].地质科技情报, 2014, 33(4):191-196. [5] Ba Junjie, Su Chuntian, Li Yanqing. Characteristics of heat flow and geothermal fields in Ruidian, Western Yunnan Province, China[J]. International Journal of Heat and Technology, 2018, 36(4):1203-1211. [6] 赵慈平,冉华,陈坤华.由相对地热梯度推断的腾冲火山区现存岩浆囊[J].岩石学报, 2006,22(6):1517-1528. [7] 赵慈平,陈有丽,王云,等.云南宁洱—通关火山区最上地壳地热场:构造和岩浆活动意义[J].岩石学报, 2014,30(12):3645-3656. [8] 苗慧帅.云南省下关温泉和安宁温泉的特征及成因研究[D].北京:中国地质大学,2009:21-32. [9] 余琴,杨平恒,王长江,等.重庆市统景温泉水化学特征及混合作用[J].中国岩溶,2017,36(1):59-66. [10] 徐刚,伍坤宇,王鹏,等.藏北温泉盆地地热田水文地球化学特征研究[J].中国岩溶,2020,39(3):299-310. [11] 李明礼,多 吉,王 祝,等.西藏日多温泉水化学特征及其物质来源[J].中国岩溶,2015,34(3):209-216. [12] 刘亚平,云南省昌宁县鸡飞温泉成因及钙化形成浅析[D].北京:中国地质大学,2009:27-32. [13] Urbieta, María Sofía , González-Toril, Elena, Bazán, ángeles Aguilera , et al. Comparison of the microbial communities of hot springs waters and the microbial biofilms in the acidic geothermal area of Copahue (Neuquén, Argentina)[J]. Extremophiles, 2015, 19(2):437-450. [14] 马瑞,陈成,李海峰.中国温泉微生物物种多样性及其酶活性研究进展[J].微生物学通报, 2020,47(9):2959-2973. [15] Wang Y, Liu Y, Zhao C, et al. Helium and carbon isotopic signatures of thermal spring gases in southeast Yunnan, China[J]. Journal of Volcanology and Geothermal Research, 2020, 402:106995. [16] Lei Zhang, Lishuang Guo, Yun Wang, Dongying Liu, Yaowei Liu, Jing Li. Continuous monitoring of hydrogen and oxygen stable isotopes in a hot spring: Significance for distant earthquakes. Applied Geochemistry, 2020:104488. [17] 王云,李其林,冉华.青藏高原东南缘地热与地震活动:来自氦同位素的约束[J].矿物岩石地球化学通报, 2018,37(4):652-662. [18] 中国人民解放军零零九三九部队,中华人民共和国区域水文地质普查报告:保山幅[R].1980,148-170. [19] Ba Junjie. Geochemical features, Isotope Compositions and environmental impacts of hots prings in Kejie fault and Changning-Menglian structural belt [J]. Applied Ecology and Environmental Research, 2019, 17(4):9007-9024. [20] 李向全,侯新伟,周志超,等.高黎贡山南段主要热泉水化学同位素特征研究[J].中国地质,2011,38(5): 1347-1354. [21] 刘永涛.云南省龙陵县邦腊掌温泉水文地球化学与间歇喷泉研究[D].北京:中国地质大学,2009:21-40. [22] 韩凯,甘伏平,陈玉玲,等.柯街断裂北段的结构特征及地质意义研究[J].地球物理学进展,2015,30(1):70-76. [23] 谭梦如.云南西双版纳地区部分温泉水化学和同位素特征及成因研究[D].北京:中国地质大学(北京),2018:l-68. [24] 孙红丽,马峰,刘昭,等.西藏高温地热显示区氟分布及富集特征[J].中国环境科学,2015,35(1):251-259. [25] 刘明亮,曹耀武,王敏黛.腾冲热海热泉水化学组分来源及其形成机制探讨[J].安全与环境工程,2014,21(6):1-7. [26] Chen Zhengshan, Yang Jingyuan, Zhu Lijun, et al. Classification of typical hot springs and their relationship with health in Guizhou, China[J]. Environmental geochemistry and health, 2020:1573-2983. [27] 徐立荣.地层—地下水系统中的氟[M].郑州:黄河水利出版社,2012.1-10. [28] 陈中笑,程军,郭品文,等.中国降水稳定同位素的分布特点及其影响因素[J].大气科学学报,2010,33(6):667-679. [29] 罗维均,王世杰,刘秀明.中国大气降水δ18O区域特征及其对古气候研究的意义[J].地球与环境,2008,36(1):47-55. [30] 谭梦如.云南西双版纳地区部分温泉水化学和同位素特征及成因研究[D].北京:中国地质大学(北京),2018:l-68. [31] 刘进达,赵迎昌.中国大气降水稳定同位素时-空分布规律探讨[J].勘察科学技术,1997,(3):34-39. [32] 潘明,吕勇,郝彦珍,等.云南昌宁玉地里温泉水文地球化学特征及形成模式[J].地球与环境,2015,43(1):98-103. [33] 文蓉,田立德,翁永标,等.喜马拉雅山南坡降水与河水中δ18O高程效应[J].科学通报,2012,57(12):1053-1059. [34] 于津生,张鸿斌,虞福基,等.西藏东部大气降水氧同位素组成特征[J].地球化学,1980,(2):113-121. [35] 李向全,侯新伟,周志超,等.高黎贡山南段主要热泉水化学同位素特征研究[J].中国地质,2011,38(5):1347-1354. [36] 王莹,周训,于湲,等.应用地热温标估算地下热储温度[J].现代地质,2007,21(4):605-612. [37] 方斌,周训,梁四海.青海贵德县扎仓温泉特征及其开发利用[J].现代地质,2009,23(1):57-63. [38] Giggenbach W F. Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators [J].Geochimical et Cosmochimica Acta, 1988(52): 2749-2765. [39] 周训,金晓媚,梁四海,等.地下水科学专论(第二版.彩色版)[M].北京:地质出版社,2017:75-76. [40] Truesdell A H, Fournier R O. Procedure for estimating the temperature of a hot-water component in a mixed water by using a plot of dissolved silica versus enthalpy[J]. Journal of Research United States Geological Survey,1997,5(1):49-52. [41] Fournier R O, Truesdll A H. Geochemical indicators of subsurface temperature-Part 2, Estimation of temperature and fraction of hot water mixed with cold Water[J]. US Geol. Survey, 1974,3(2): 263-270.
点击查看大图
计量
- 文章访问数: 1776
- HTML浏览量: 629
- PDF下载量: 135
- 被引次数: 0