Genetic mechanism of geothermal resources in the Gaoyang geothermal field and adjacent areas
-
摘要: 临近雄安新区的高阳地热田处于渤海湾盆地冀中坳陷,区内发育以中元古界长城系、蓟县系及下伏的太古界为主的潜山地层,其中蓟县系雾迷山组为地热田主要热储层,地热资源丰富。以岩溶热储顶面埋深3600 m线作为高阳地热田的边界,地热田主体位于高阳低凸起、蠡县斜坡内,并涵盖保定凹陷、饶阳凹陷的少量地区。高阳地热田位于区域岩溶顶板温度较高地区,其中高阳低凸起中北部及其西侧边界、蠡县斜坡与饶阳凹陷交界处为温度最高区域,可达120 ℃左右,地热田南部、中东部属蠡县斜坡区域温度低于100 ℃。潜山热储温度等值线整体呈椭圆形态,长轴为NNE向。蓟县系雾迷山组地热水在博野地区水化学类型为Cl-Na型,溶解性总固体约5 000 mg.L-1,Cl-(约2 300 mg.L-1)含量明显高于雄县、容城等其它地区,SO42-含量(123~133 mg.L-1)高于同属冀中坳陷的雄县、容城、霸州地区,但低于天津地热田和良乡地热田,表明冀中坳陷与天津、良乡地区分属不同的地热系统。高阳地热田形成的概念模式为来自西部太行山地区的大气降水作为地下水的补给水源,太行山前断裂沟通了地表水与深部基岩地层,大气降水在基岩内经衡水断裂、安国断裂、百尺断裂、出岸断裂及不整合面向东侧渤海湾盆内运移,经断层与基岩发生热对流被加热,随着水动力条件减弱,在高阳低凸起、蠡县斜坡、深泽低凸起等区域聚集形成具有勘探开发价值的高阳地热田。Abstract: As a green and renewable energy,geothermal energy plays an important role in solving the haze prob?lem northern China. Gaoyang geothermal field,near the Xiong’an New Area,is rich in geothermal resources. It is located in the Jizhong depression of the Bohai Bay basin,hosts strata of Jixian System andChangcheng System of Mesoproterozoic and Paleoproterozoic,in which the Wumishan Group of Jixian System is the main strata with reservoirs. The buried depth 3,600 m of the top of karst reservoir is considered as the boundary of the thermal field. The main body of the geothermal field is located in Gaoyang sub-uplift and Lixian slope, and covers a small area of the Baoding depression and Shaoyang depression. The Gaoyang geothermal field lies in an area of the karst reservoirs top surface with high temperature,where the temperatures of the middle and northern part of Gaoyang sub-uplift,the western boundary,and the junction area of Lixian slope and Shaoyang depression reach 120 ℃, while that of southern part of the geothermal field and the middle and eastern part of the Lixian slope is lower than 100 ℃. Overall the temperature contours of buried hill geothermal reservoirs exhibit an elliptic shape with a long axis in NNE direction. In hydrochemistry, geothermal water of Wumishan Group of Jixian System in the Boye area is of Cl-Na type,with solubility about 5,000 mg?L-1 and content of Cl-(2,300 mg?L-1) that is obviously higher than Xiongxian,Rong Cheng and other areas,while the solubility of SO42-(123-133 mg?L-1)is higher than Xiongxian,Rongcheng and Bazhou,and lower than the Tianjin and Liangxiang geothermal fields. This shows that the Jizhong depression belongs to a different geothermal system with the Tianjin and Liangxiang areas. The conceptual model of the Gaoyang geothermal field suggests that the atmospheric precipitation of the Taihang Mountains to the west is the supply of groundwater and the piedmont faults of the Taihang Mountains connect the surface water with reservoirs. Atmospheric precipitation flows through piedmont faults,the Hengshui fault,Anguo fault,Baichi fault,Chu’an fault and unconformities,and migrates to the Gaoyang sub-uplift,Lixian slope and Shenze sub-uplift where traps form. The fluid is heated by heat convection during the process of flowing through faults and bedrocks,forming the Gaoyang geothermal field which has a great potential of exploration and exploitation.
-
Key words:
- Gaoyang geothermal field /
- geothermal field boundary /
- karst reservoirs /
- hydrochemistry
-
[1] 李德威, 王焰新. 干热岩地热能研究与开发的若干重大问题[J]. 地球科学(中国地质大学学报), 2015, 40(11): 1858- 1869. [2] 关锌. 我国地热资源开发利用现状及对策与建议[J]. 中国矿业, 2010, 19(5): 7-9. [3] 闫强, 于汶加, 王安建, 等. 全球地热资源述评[J]. 可再生能源, 2009, 27(6): 69-73. [4] 陈墨香, 黄歌山, 张文仁, 等. 冀中牛驼镇凸起地温场的特点及地下热水的开发利用[J]. 地质科学, 1982, 3: 239-252. [5] 郭世炎, 李小军. 河北保定容城凸起地热田储层属性与资源潜力[J]. 地质科学, 2013, 48(3): 922-931. [6] 王树芳, 刘久荣, 林沛, 等. 岩溶热储回灌实验与示踪试验研究[J]. 水文地质工程地质, 2013, 40(6): 129-133. [7] Kong Y, Pang Z, Pang J, et al. Stable Isotopes of Deep Groundwater in the Xiongxian Geothermal Field [J]. Procedia Earth & Planetary Science, 2017, 17: 512-515. [8] Kong Y, Pang Z, Shao H, et al. Recent studies on hydrothermal systems in China: a review [J]. Geothermal Energy, 2014, 2(1): 19. [9] 李卫卫, 饶松, 唐晓音, 等. 河北雄县地热田钻井地温测量及地温场特征[J]. 地质科学, 2014, 49(3): 850-863. [10] 庞菊梅, 庞忠和, 孔彦龙, 等. 岩溶热储井间连通性的示踪研究[J]. 地质科学, 2014, 49(3): 915-923.1 [11] 王永波, 丁文萍, 田月, 等. 河北牛驼镇地热田高温地热水成因分析[J]. 城市地质, 2016, 11(3): 59-64. [12] 李弘, 俞建宝, 吕慧, 等. 雄县地热田重磁响应及控热构造特征研究[J]. 物探与化探, 2017, 41(2): 242-248. [13] Pang J, Pang Z, Lv M, et al. Geochemical and isotopic characteristics of fluids in the Niutuozhen geothermal field, North China [J]. Environmental Earth Sciences, 2018, 77(1): 12. [14] 杨吉龙, 柳富田, 贾志, 等. 河北牛驼镇与天津地热田水化学和氢氧同位素特征及其环境指示意义[J]. 地球学报, 2018, 39(1): 71-78. [15] 张国斌. 河北省地下热水资源赋存特征与开发利用展望[J]. 中国煤炭地质, 1998, 10(s): 29-31, 34. [16] 梁宏斌, 钱铮, 辛守良, 等. 冀中坳陷地热资源评价及开发利用[J]. 中国石油勘探, 2010, 15(5), 63-68. [17] 刘伟坡, 安永会, 吴玺, 等. 保定市高阳县地热资源开发利用现状[J]. 科技创新导报, 2013, (2): 104. [18] 刘现川, 刘仕娟, 杨风良. 高阳县地热资源评价[J]. 煤炭技术, 2018, 37(4): 44-46. [19] Yang Y T, Xu T G. Hydrocarbon habitat of the offshore Bohai Basin, China [J]. Marine & Petroleum Geology, 2004, 21(6): 691-708. [20] 韩春元, 师玉雷, 刘静, 等. 冀中坳陷保定凹陷油气勘探前景与突破口选择 [J]. 中国石油勘探, 2017, 22(4): 61-72. [21] 于长春, 乔日新, 张迪硕. 雄安新区航磁推断的三维基底构造特征 [J]. 物探与化探, 2017, 41(3): 385-391. [22] 常健, 邱楠生, 赵贤正, 等. 渤海湾盆地冀中坳陷现今地热特征[J].地球物理学报, 2016, 59(3): 1003-1016. [23] 孙冬胜, 刘池阳, 杨明慧, 等. 冀中坳陷中区中生代中晚期大型拆离滑覆构造的确定[J]. 大地构造与成矿学, 2004, 28(2): 126-133. [24] 杨明慧, 刘池阳, 杨斌谊. 冀中坳陷中生代构造变形的转换及油气[J]. 大地构造与成矿学, 2001, 25(2): 113-119. [25] 单帅强, 何登发, 张煜颖. 渤海湾盆地西部保定凹陷构造—地层层序与盆地演化[J]. 地质科学, 2016, 51(2): 402-414. [26] 何登发, 崔永谦, 张煜颖, 等. 渤海湾盆地冀中坳陷古潜山的构造成因类型[J]. 岩石学报, 2017, 33(4): 1338-1356. [27] 刘颖超, 刘凯, 孙颖, 等. 良乡地热田地热水化学特征及同位素分析[J]. 南水北调与水利科技, 2015, 13(5): 963-967, 994. [28] 陈墨香, 汪集旸. 中国地热资源形成特点和潜力评估[M]. 北京:科学出版社, 1994: 1-39.
点击查看大图
计量
- 文章访问数: 1406
- HTML浏览量: 592
- PDF下载量: 170
- 被引次数: 0