[1] |
刘再华, 袁道先, 何师意, 等. 四川黄龙沟景区钙华的起源和形成机理研究[J]. 地球化学, 2003,32(1):1-10.
|
[2] |
冯晨旭, 董发勤, 代群威, 等. 黄龙钙华纹层石特征与成因分析[J]. 矿物学报, 2019, 39(1):55-63.
|
[3] |
Asangba A E. Microbial phylogenetic diversity preserved in facies-specific modern, recent, Holocene and Pleistocene hot-spring travertine deposits of Yellowstone and Turkey[D]. 2015.
|
[4] |
Fournier R O. Geochemistry and dynamics of the Yellowstone National Park hydrothermal system[J]. Annual Review of Earth and Planetary Sciences, 1989, 17(1):13-53.
|
[5] |
Smith R B, Siegel L J. Windows into the Earth: the geologic story of Yellowstone and Grand Teton National Parks[M]. Oxford University Press, 2000.
|
[6] |
李永新, 田友萍, 李银. 四川黄龙钙华藻类及其生物岩溶作用[J]. 中国岩溶, 2011, 30(1):86-92.
|
[7] |
张金流. 黄龙钙华景观退化的人为和自然影响机理研究[D]. 北京:中国科学院研究生院, 2012.
|
[8] |
李华. 平板菌落计数的改进方法[J]. 生物学通报, 2006, 41(1):51-51.
|
[9] |
孙仕勇, 王富东, 赵学钦. 四川黄龙钙华沉积剖面的矿物学特征及其指示意义[J]. 地球科学前沿(汉斯), 2016, 06(04):283-290.
|
[10] |
董发勤, 李琼芳, 代群威, 等. 黄龙风景区和黄石公园钙华形成环境对比研究[C]//中国矿物岩石地球化学学会.中国矿物岩石地球化学学会第14届学术年会论文摘要专辑.北京: 中国矿物岩石地球化学学会, 2013.
|
[11] |
张金流, 唐淑. 黄龙自然风景区地表水流量减少原因初探[J]. 世界科技研究与发展, 2015, 37(6):688-691.
|
[12] |
Guidry H S C S A . Deposition and diagenesis of Mammoth Hot Springs travertine, Yellowstone National Park, Wyoming, U.S.A.[J]. Canadian Journal of Earth ences, 2003, 40(11):1515-1529.
|
[13] |
Ball, J.W., McCleskey, et al. Water-chemistry data for selected springs, geysers, and streams in Yellowstone National Park, Wyoming, 2003-2005, U.S.[R]. Geological Survey Open-File Report, 2006.
|
[14] |
肖玉军. 黄龙风景区水体细菌多样性研究[D]. 四川农业大学, 2013.
|
[15] |
刘明学, 董发勤, 孙仕勇, 等. 黄龙钙华水体藻多样性及分布规律研究[J]. 环境科学与技术, 2013, 36(1):182-186.
|
[16] |
Fouke B W. Hot‐spring Systems Geobiology: abiotic and biotic influences on travertine formation at Mammoth Hot Springs, Yellowstone National Park, USA[J]. Sedimentology, 2011, 58(1):170-219.
|
[17] |
William P. Inskeep, Zackary J. Jay, Susannah Green Tringe, et al. The YNP Metagenome Project: Environmental Parameters Responsible for Microbial Distribution in the Yellowstone Geothermal Ecosystem[J]. Frontiers in Microbiology, 2013, 4:67-67.
|
[18] |
Konhauser, K. Introduction to Geobiology[M]. London: Blackwell Publishing, 2007.
|
[19] |
Ehrlich, H.L. and Newman, D.K. Geomicrobiology[M]. Boca Raton: CRC Press, 2009.
|
[20] |
张存凯.黄龙藻类群落结构分析及优势类群对碳酸钙沉积的影响[D].西南科技大学,2017.
|
[21] |
刘再华, 袁道先, W.Dreybrodt, 等.四川黄龙钙华的形成[J].中国岩溶, 1993(3):4-10.
|
[22] |
陈超. 生物有机质对黄龙钙华沉积和退化的影响研究[D].西南科技大学, 2018.
|
[23] |
Fouke B W, Farmer J D, Marais D J D, et al. Depositional Facies and Aqueous-Solid Geochemistry of Travertine-Depositing Hot Springs (Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, U.S.A.)[J]. Journal of sedimentary research, 2000, 70(3):565-585.
|
[24] |
Martín H G, Veysey J, Bonheyo G T, et al. Statistical evaluation of bacterial 16S rRNA gene sequences in relation to travertine mineral precipitation and water chemistry at Mammoth Hot Springs, Yellowstone National Park, USA[M]//Geomicrobiology: Molecular and Environmental Perspective. Dordrecht: Springer, 2010.
|
[25] |
Madigan, M.T., Martinko, J.M. and Parker, J. Brock. Biology of Microorganisms[M]. Upper Saddle River, NJ: Pearson Prentice Hall, 2006.
|
[26] |
汪智军, 殷建军, 蒲俊兵, 等.钙华生物沉积作用研究进展与展望[J].地球科学进展, 2019, 34(6):606-617.
|
[27] |
Raven J A, Giordano M. Biomineralization by photosynthetic organisms: Evidence of coevolution of the organisms and their environment?[J]. Geobiology, 2009, 07(2): 140-154.
|
[28] |
Martina Merz-Prei?, Riding R. Cyanobacterial tufa calcification in two freshwater streams: ambient environment, chemical thresholds and biological processes[J]. Sedimentary Geology, 1999, 126(1):103-124.
|
[29] |
陈超, 李琼芳, 张清明, 等. 低温环境下两种氨基酸对碳酸钙矿化影响的研究[J]. 高校地质学报, 2017, 23(4): 606-614.
|
[30] |
于璐嘉, 李琼芳, 陈超, 等. 黄龙嗜冷细菌两种胞外单糖对碳酸钙矿化影响[J]. 岩石矿物学杂志, 2018, 37(3): 497-504.
|
[31] |
李琼芳, 董发勤, 李骐言, 等. 柠檬酸对黄龙碳酸钙矿化影响的模拟实验研究[J].矿物岩石地球化学通报, 2015, 34(02):294-300.
|
[32] |
Li Q, Dong F, Dai Q, et al. Surface properties of PM2. 5 calcite fine particulate matter in the presence of same size bacterial cells and exocellular polymeric substances (EPS) of Bacillus mucitaginosus[J]. Environmental Science and Pollution Research, 2018, 25(23):22429-22436.
|
[33] |
Okumura T , Takashima C , Shiraishi F , et al. Processes Forming Daily Lamination in a Microbe-Rich Travertine Under Low Flow Condition at the Nagano-yu Hot Spring, Southwestern Japan[J]. Geomicrobiology Journal, 2013, 30(10):910-927.
|
[34] |
钟怡江, 文华国, 陈洪德, 等. 胞外聚合物在蓝细菌钙化过程中的作用及其地质意义[J/OL].沉积学报:1-30[2021-01-22].https://doi.org/10.14027/j.issn.1000-0550.20 20.102.
|
[35] |
钱江, 吴文涛, 周跃飞, 等.硫酸盐还原菌对碳酸钙结晶过程的影响[J].硅酸盐学报, 2019, 47(01):109-116.
|
[36] |
Mann S. Biomineralization: principles and concepts in bioinorganic materials chemistry[M]. Oxford University Press on Demand, 2001.
|
[37] |
Weiner S, Dove P M. An overview of biomineralization processes and the problem of the vital effect[J]. Reviews in mineralogy and geochemistry, 2003, 54(1):1-29.
|
[38] |
Fouke B W, Bonheyo G T, Sanzenbacher B, et al. Partitioning of bacterial communities between travertine depositional facies at Mammoth Hot Springs, Yellowstone National Park, USA[J]. Canadian Journal of Earth Sciences, 2003, 40(11):1531-1548.
|
[39] |
彭晓彤, 周怀阳, 吴自军, 等.热泉微生物的矿化作用和机制:来自华南富硅热泉光合自养微生物席中的证据[J].科学通报, 2007, 52(1):89-99.
|