Influence of the Datengxia reservoir on water inrusch amount of the Panlong lead-zinc mine in Guangxi
-
摘要: 矿井突水是矿山开采过程中最具威胁的自然灾害之一,其中以岩溶水突水最为常见。大藤峡水利枢纽蓄水后,抬高了盘龙铅锌矿附近黔江的地表水位。矿山继续向深部开采,矿坑涌水危险进一步增加。文章基于Visual Mod Flow地下水流数值模拟软件,建立盘龙铅锌矿大岭矿段的数值模型,采用矿坑涌水量实测值以及多种矿坑涌水量计算方法对数值模型进行校验。通过模拟计算,预测大藤峡水利枢纽蓄水后对不同开采中段矿坑涌水量将会明显增加。为了降低矿坑涌水量,建议在黔江河近岸的3个倒灌口各建1个挡水坝,在大岭矿段东侧和西侧各施工1道灌浆帷幕。当帷幕体透水率为3 Lu时,止水效果可达44.21%~53.14%。Abstract: Water inrush is one of the most threatening natural hazard in mining, of which karst water is the most common. The Datengxia Dam has raised the surface water level of the Qianjiang River near the Panlong lead-zinc mine. In addition, with mining further toward the deep subsurface, the value of mine water inrush will be significantly increased. Based on the hydrogeological conditions of the Panlong Lead-zinc mine in Guangxi, a numerical model of the Daling section of this mine was established using the software of Visual ModFlow. The measured values and various calculation methods of mine water inrush were used to verify the numerical model. Through simulation calculation, the influence of water impoundment of the Datengxia Dam on the water inrush of different mining elevations is predicted. The results show that the water inrush of the mine pit will increase obviously after the water impoundment of the Datengxia reservoir. In order to reduce the amount of mine water inrush, it is suggested to build a retaining dam at each of the three backfill ports near the shore of the Qianjiang River, and construct a grouting curtain on the east and west sides of the Daling section of the mine. When the water permeability of the curtain body is 3 Lu, the water stop effect can reach 44.21~53.14%.
-
Key words:
- mine water inrush /
- numerical simulation /
- Panlong lead-zinc mine /
- Datengxia reservoir /
- Guangxi
-
[1] 崔中良, 黄保胜, 龙向前. 矿井突水水源判别研究现状及发展趋势[J]. 中国钨业, 2018, 33(4): 42-50. [2] 国家地质总局水文地质工程地质局. 岩溶类型矿床水文地质选辑[M]. 北京: 地质出版社, 1978. [3] 庞伟东. 大藤峡水利枢纽的水运命运[J]. 珠江水运, 2011, 7(4):45-45. [4] 马雪梅, 李英士. 大藤峡水利枢纽工程水文分析计算[J].东北水利水电2013, 31(5):38-40 [5] 曹兴旺, 王恒, 杨明明. 广西某铅锌矿水文地质条件分析与涌水量预测[J]. 地下水, 2012, 34(4):187-190. [6] 吴剑锋,朱学愚.由MODFLOW浅谈地下水流数值模拟软件的发展趋势[J].工程勘察, 2000(2):12-15. [7] 远程. 关于用稳定流抽水降落曲线q-s关系建立求解水文地质参数(Rs、K、R)新模型的探讨[J]. 吉林地质, 1990(1):80-88. [8] 郑永胜,鲍新华.对“求解水文地质参数(Rs,K,R)新模型”几个问题的讨论[J].吉林地质,1991(3):57-60. [9] 朱崇辉, 刘俊民, 王增红. 完整井稳定流Q-S曲线变化机理分析[J]. 人民黄河, 2010, 32(2):57-59. [10] 陆治斌. 矿井涌水量的预测方法[J]. 贵州地质, 1988(4):71-74. [11] 史永良. 山西平鲁后安煤矿涌水量预测分析[J]. 山西煤炭, 2020,40(3):56-60. [12] 吕斌泉, 冯晓腊, 熊宗海. 武汉古河道承压水井流理论及在基坑降水中应用[J]. 岩土工程学报, 2020, 42(3):135-143. [13] 王君连. 用势函数法计算渗流干扰区的地下水流态[J]. 水利水电技术, 1999, 30(2):19-25.
点击查看大图
计量
- 文章访问数: 1464
- HTML浏览量: 607
- PDF下载量: 123
- 被引次数: 0