Radioactivity of Nuorilang waterfall travertine dam in Jiuzhaigou valley, Sichuan Province and its implication for the sedimentary environment
-
摘要: 以九寨沟诺日朗瀑布钙华大坝为研究对象,采用便携式手持伽马仪对大坝坝体进行放射性强度测量,同时对钙华大坝取样,进行主量、微量元素分析,以研究大坝形成的沉积环境。结果表明:大坝表层伽马辐射量平均值为27.57 Ur(当量铀),变异系数为18.73%;钙华主微量元素分析显示钙华颜色与本身所含的色素元素和矿物有关;大坝钙华(La/Yb)N介于8.57~14.93,均值为11.78,具有轻稀土元素富集特征。综合分析认为诺日朗瀑布大坝钙华颜色的形成是多因素共同作用的结果,钙华放射性元素含量与钙华颜色以及伽马值之间存在正相关性,伽马值在钙华沉积环境方面具有指示作用,伽马值越高代表其形成环境相对更湿润。Abstract: Travertine is a good carrier for the study of paleo-climate and paleo-environment. A portable hand-held gamma meter was used to measure the radioactivity in the Nuorilang waterfall travertine dam in Jiuzhaigou valley. Combined with the analysis of the major and trace elements in the travertine samples,the environment of the dam was studied. Results show that the gamma radiation on the surface of the dam averages 27.57 Ur and the variation coefficient is 18.73%. The travertine color is associated with color elements contained and minerals. (La/Yb) N of dam travertine is between 8.57-14.93, 11.78 on average, with a feature of light rare element enrichment. Analysis suggests that the color of dam travertine resulted from multiple factors, including the content of trace elements,climate change,precipitation,and the types and growth of aquatic plants. There is a positive correlation between the content of radioactive elements, travertine color and gamma values. Thus the gamma value can be used to infer the deposition environment of travertine, i.e. the higher the gamma value, the moister the environment is.
-
Key words:
- Jiuzhaigou valley /
- Nuorilang waterfall /
- natural gamma /
- microelement /
- sedimentary environment
-
[1] Pentecost A. Travertine[M]. Berlin: Springer Netherlands, 2005. [2] 牛新生,郑绵平,刘喜方,等. 青藏高原钙华沉积属性特征及其地质意义[J]. 科技导报, 2017, 35(6): 59-64. [3] Livnat A, Kronfeld J. Reply to comment on “Travertines of the arid regions, oxygen isotope stages, and late Quaternary climate of Israel” by A. Horowitz[J]. Quaternary Research,1987, 27(1): 106-107. [4] Auler A S, Smart P L. Late Quaternary Paleoclimate in Semiarid Northeastern Brazil from U-Series Dating of Travertine and Water-Table Speleothems[J]. Quaternary Research,2001, 55(2): 159-167. [5] Matsuoka J, Kano A, Oba T,et al.Seasonal variation of stable isotopic compositions recorded in a laminated tufa,SW Japan[J].Earth and Planetary Science Letters,2001,192(1): 31-44. [6] 王华,杨更,覃嘉铭,等. 四川黄龙大湾-张家沟钙华沉积剖面的古气候记录研究[J]. 地球学报,2007, 28(5): 469-474. [7] 刘再华. 表生和内生钙华的气候环境指代意义研究进展[J]. 科学通报,2014, 59(23): 2229-2239. [8] 安培浚,张志强,王立伟. 地球关键带的研究进展[J]. 地球科学进展,2016, 31(12): 1228-1234. [9] Lin H. Earth’s Critical Zone and hydropedology: concepts, characteristics, and advances[J]. Hydrology and Earth System Sciences,2010, 6(1): 3417-3481. [10] Lugli S, Tang Y, Reghizzi M, et al. Seasonal pattern in the high-elevation fluvial travertine from the Jiuzhaigou National Nature Reserve, Sichuan, southwestern China[J]. Journal of Sedimentary Research,2017, 87(3):253-271. [11] 刘再华,李红春,游镇烽,等. 云南白水台现代内生钙华微层的特征及其古气候重建意义[J]. 地球学报,2006, 27(5): 479-486. [12] 刘再华,张美良,游省易,等. 碳酸钙沉积溪流中地球化学指标的空间分布和日变化特征:以云南白水台为例[J]. 地球化学,2004, 33(3): 269-278. [13] 王华,覃嘉铭,安德军,等. 黄龙钙华210Pb计年与现代沉积的环境变化研究[J]. 地球学报,2010,31(2): 216-222. [14] 覃建勋,韩鹏,车晓超,等. 利用荣玛地区温泉钙华δ18O及微量元素重建西藏全新世以来古气候[J]. 地学前缘,2014,21(2): 312-322. [15] 牛新生,刘喜方,陈文西. 西藏多格错仁南岸钙华地球化学特征与钾盐地质意义[J]. 沉积学报,2013, 31(6): 1031-1040. [16] 晏浩,刘再华,邓责平,等. 四川九寨沟景区钙华起源初探[J]. 中国岩溶,2013, 32(1): 15-22. [17] 晏浩,刘再华. 层状钙华及其地球化学指标的古气候/环境意义[J]. 第四纪研究,2011, 31(1): 88-95. [18] 张瑞英,何政伟. 四川九寨沟景观形成演化趋势分析及评价[J]. 中国地质灾害与防治学报, 2007, 18(1): 54-58. [19] Schwartz M W, Dolanc C R, Hui G, et al. Forest structure, stand composition, and climate-growth response in Montane Forests of Jiuzhaigou National Nature Reserve, China[J]. Plos One,2013, 8(8): e71559. [20] Urgenson L, Schmidt A H, Combs J, et al. Traditional Livelihoods, Conservation and Meadow Ecology in Jiuzhaigou National Park, Sichuan, China[J]. Human Ecology,2014, 42(3): 481-491. [21] Zhang J, Zhao L P. On Internationally Marketing Jiuzhaigou National Park After Wenchuan Earthquake[J]. Journal of China Tourism Research,2010, 6(3): 310-324. [22] 郭建强,彭东,曹俊,等. 四川九寨沟地貌与第四纪地质[J]. 四川地质学报,2000(3): 183-192. [23] 郭卫星. 川西北自然风景中钙华景观的形成与发育[J]. 山地研究,1988,6(1): 54-60. [24] 郑国栋,宋建锋,杨维耿. 环境γ辐射连续监测系统数据分析及探讨[J]. 中国辐射卫生,2013, 22(1): 85-87. [25] 林致远,尹平. 九寨沟土壤发生及地理分布规律研究[J]. 西南师范大学学报:自然科学版, 1994, 19(1): 90-99. [26] 刘再华,田友萍,安德军,等. 世界自然遗产-四川黄龙钙华景观的形成与演化[J]. 地球学报,2009, 30(6): 841-847.
点击查看大图
计量
- 文章访问数: 1419
- HTML浏览量: 557
- PDF下载量: 226
- 被引次数: 0