Discovery and feature of oolitic coated grains of travertine in the Huanglong area, Sichuan
-
摘要: 在雪宝顶北麓的黄龙地区新发现的鲕状钙华包壳粒,是高寒区钙华形成环境中产出的一类典型陆相包覆颗粒构造。通过系统采样鲕状包壳粒沉积剖面,并借助常规显微镜、扫描电镜与能谱分析等,揭示出鲕状钙华包壳粒的矿物组分、微观结构等特征。结果表明:研究区的鲕状钙华包壳粒分为同心圆状、同心圆—放射状、薄壁同心圆状3种基本类型,包壳粒核部是由异地的钙华碎屑构成,外壳层是由泥晶与微亮晶方解石纹层围绕核部逐层形成的圈层构造;微观特征显示泥晶层无明显微生物成因发育特征。鲕状钙华包壳粒的微观形态与组构特征反映出壳体中的泥晶圈层可能形成于相对深的静水环境,亮晶圈层可能形成于浅水高能环境,鲕状钙华包壳粒的成因偏于鲕类而非核形石类。Abstract: In the Huanglong area of the Xuebaoding watershed,oolitic coated grains of alpine travertine were newly discovered. It is a continental cladding grain type with coating sedimentary structure, which formed in a cold environment with high elevation. Through systematic sampling and classification of the sedimentary profiles of travertine coated grains,with the help of conventional microscopes,scanning electron microscopes,energy spectrum testing and other technical means,this work reveals the mineral composition of these oolitic travertine coated grains. These particles can be divided into three basic types,concentric circle layer,concentric circle-radial circle layer,and thin-walled concentric circle layer. The core of the encapsulation particle is composed of ex-situ travertine clastics. The outer shell of the coated grains developed a ring structure composed of different mineral combinations such as mud crystals and micro-shiny crystals. Composition,micro-microbial structure and calcification characteristics are not obvious. According to the morphology and microstructure characteristics of the coated grains,it is speculated that the micrite ring layer in the shell might be formed in a relatively deep static water environment,and the sprite ring layer was formed in a shallow water high-energy environment. Research suggests that the genesis of the oolitic travertine coated grains in the study area tends to be oolitic rather than oncolite.
-
Key words:
- Huanglong area /
- travertine /
- coated grain /
- radial-concentric structure
-
[1] Tucker M E, Wright V P.Carbonate Sedimentology[M].Oxford:Blackwell Sciences,1990 . [2] 梅冥相,马永生,周丕康,等.碳酸盐沉积学导论[M].北京:地震出版社,1997. [3] Li F,Yan J,Algeo T,et al. Paleoceanographic conditions following the end-permian mass extinction recorded by giant ooids (Moyang, South China)[J].Global and Planetary Change, 2013,105(S1):102-120. [4] 梅冥相.鲕粒成因研究的新进展[J].沉积学报,2012,30(1):20-32. [5] Brehm U,Krumbein W ,Palinska K A .Biomicrospheres generate ooids in the laboratory [J].Geomicrobiology Journal,2006,23 (7) : 545-550. [6] 韦龙明. 菌藻对碳酸盐颗粒的泥晶化作用研究:以滇西保山地区下石炭统研究为例[J]. 沉积学报,1995,13(3) :89-97. [7] 周瑶琪,张晗,张振凯.海相碳酸盐鲕粒形成过程的模拟实验研究[J].中国石油大学学报(自然科学版),2017,41(3):23-30. [8] 梅冥相.显生宙罕见的巨鲕及其鲕粒形态多样性的意义:以湖北利川下三叠统大冶组为例[J].现代地质,2008,22(5):683-698. [9] Braithwaite C J R. Crystal textures of recent fluvial pisolites and laminated crystalline crusts in Dyfed , South Wales [J].Journal of Sedimentary Research,1979,49(1):181-193. [10] Donahue J . Laboratory growth of pisolite grains[J]. Sediment Petrol,1965,35(1):251-256. [11] Braithwaite C. Crystal textures of recent fluvial pisolites and laminated crystalline crusts in dyfed South-Wales[J]. Sedimentary Petrology,1979,49(1):181-193. [12] 吴驰华,伊海生,惠博,等.一种包覆颗粒沉积新类型:鲕状泉华[J].中国科学:地球科学,2014,44(11): 2406-2418. [13] 翁金桃,茹景文.穴珠[J].中国岩溶,1982,1(1):58-65. [14] Charlotte S,Denys B S,Edward S. Spring peas from New York State: Nucleation and growth of fresh water hollow ooliths and pisoliths[J]. Sedimentary Petrology, 1981,5(1):1341-1346. [15] 赵东旭.鲡粒、豆粒磷块岩的显微结构和生成特点[J].岩石学报,1989(4):66-75. [16] 杜圣贤,李越,宋香锁,等.山东平邑盆地卞桥组(晚白垩世马斯特里赫特晚期)泉华成因的核形石[J].微体古生物学报,2016,33(3):325-333. [17] 王洁,宋玉萍.从巨鲕的概念窥视碳酸盐岩包覆颗粒的研究[J].大庆石油地质与开发,2010,29(2):40-43. [18] 梅冥相.微生物碳酸盐岩分类体系的修订:对灰岩成因结构分类体系的补充[J].地学前缘,2007,14(5):222-234. [19] 刘再华,袁道先,W.Dreybrodt,等.四川黄龙钙华的形成[J].中国岩溶,1993,12(3):185-191. [20] 朱学稳,张任,周续伦.川西岷山岩溶的基本特征[J].中国岩溶,1998,17(4):49-55. [21] 陈先,朱学稳,周续纶.黄龙风景区岩溶水及泉华沉积的同位素研究[J].中国岩溶,1988,7(3): 209-212. [22] 曹俊,刘旗. 雪山断裂带[J].四川地质学报,2001,21(4):199-204. [23] 王华, 杨更, 覃嘉铭, 等. 四川黄龙大湾—张家沟钙华沉积剖面的古气候记录研究[J]. 地球学报, 2007, 28(5):469-474. [24] 田友萍,何复胜.石灰华的生物成因研究[J].中国岩溶,1998,17(1):49-55. [25] Ford T D,Pedley H M.A review of tufa and travertine deposits of the world[J].Earth Science Reviews,1996,41(3-4):117-175. [26] 汪智军,殷建军,蒲俊兵,等. 钙华生物沉积作用研究进展与展望[J].地球科学进展,2019,34(6):606-617. [27] 郭云,支崇远,赵宇中,等.硅藻对地表石灰华沉积的生物作用及其意义[J].上海地质,2007(1):21-24. [28] 孙仕勇, 王富东, 赵学钦. 四川黄龙钙华沉积剖面的矿物学特征及其指示意义[J]. 地球科学前缘, 2016,6(4):283-290. [29] 张英骏,莫仲达.黄果树瀑布成因初探[J].地理学报,1982,37(3) :305-316. [30] 程星.薄水效应初论[J].中国岩溶,1994,13(3) :207-212. [31] 刘再华,袁道先,何师意,等.四川黄龙沟景区钙华的起源和形成机理研究[J].地球化学,2003,32(1):1-10. [32] 刘再华,何师意,曹建华.方解石溶解、沉积速率控制的物理、化学机制[J].中国岩溶,2001,20(1):75.
点击查看大图
计量
- 文章访问数: 1327
- HTML浏览量: 514
- PDF下载量: 168
- 被引次数: 0