Classification of Alpine-type travertine in Jiuzhaigou valley on the eastern margin of the Qinghai-Tibet Plateau
-
摘要: 九寨沟钙华景观不仅有着独特的旅游与美学价值,在古气候、古灾害、古地震/活动构造、高原隆升以及人类世等研究中也能提供重要的地质档案。无论从旅游与科普的角度,还是从科学研究出发,开展钙华分类研究必然是前提、也是基础。基于地球系统科学理论,从物质来源到沉积环境,分析了无机和有机对钙华沉积的控制因素,按照相(分为亚相、微相)、类(分为大类、亚类)的沉积特征对钙华进行了分类,划分依据是:沉积环境决定了水动力条件与生物参与度,进而形成了千变万化的钙华沉积形态,最终架构了丰富多彩的钙华景观。所划分的结构—成因类型对“九寨沟式钙华”的科学研究有重要指导意义;从旅游与科普角度开展的钙华地貌—形态分类,可为大众旅游、科普以及管理部门提供更高的辨识度及生态保育参考。Abstract: The travertine in Jiuzhaigou valley not only has unique tourism and aesthetic values,but also plays an important role in geological archives for the study of paleo-climate,paleo-hazards,paleo-earthquake/active structures,plateau uplift and the Anthropocene. Whether from the perspective of tourism,science popularization,or scientific research,classification research on tufa is the premise and foundation. In this article,based on the theory of earth system science,we analyze the controlling factors of inorganic and organic from the source of travertine material to the depositional environment,and classify it according to facies,classes and subclasses of sedimentary morphology. The criterion for the classification is that the depositional environment determines the hydrodynamic conditions and the degree of biological participation,which in turn forms the ever-changing tufa deposition geomorphology, and finally constitutes a colorful travertine landscape. The structure-genesis types of tufa divided herein have important guiding significance for the genetic research of "Jiuzhaigou-type travertine". Meanwhile,this article also makes a landscape-morphological classification of tufa from the perspective of tourism and science popularization,which provides a higher degree of identification and ecological conservation data for mass tourism,science popularization and management departments.
-
[1] Ford T D, Pedley H M. A review of tufa and travertine deposits of the world[J]. Earth-Science Reviews,1996, 41(3-4): 117-175. [2] Pentecost A. Travertine[M]. Berlin: Springer Science & Business Media, 2005:1-445. [3] Pedley H M. Classification and environmental models of cool freshwater tufas[J].Sedimentary Geology, 1990, 68(1): 143-154. [4] Capezzuoli E, Gandin A, Pedley M. Decoding tufa and travertine (fresh water carbonates) in the sedimentary record: The state of the art[J]. Sedimentology, 2014, 61(1): 1-21. [5] Sembroni A, Molin P, Soligo M, et al. The uplift of the Adriatic flank of the Apennines since the Middle Pleistocene: New insights from the Tronto River basin and the AcquasantaTerme Travertine (central Italy)[J]. Geomorphology (Amsterdam, Netherlands), 2020, 352. [6] De Filippis L, Faccenna C, Billi A, et al. Plateau versus fissure ridge travertines from Quaternary geothermal springs of Italy and Turkey: Interactions and feedbacks between fluid discharge, paleoclimate, and tectonics[J]. Earth-Science Reviews, 2013, 123: 35-52. [7] Gradzinski M, Wroblewski W, Dulinski M, et al. Earthquake-affected development of a travertine ridge[J]. Sedimentology, 2014, 61(1): 238-263. [8] Kokh S N, Sokol E V, Deev E V, et al. Post-Late Glacial calcareous tufas from the Kurai fault zone (Southeastern Gorny Altai, Russia)[J]. Sedimentary Geology, 2017, 355: 1-19. [9] Priestley S C, Karlstrom K E, Love A J, et al. Uranium series dating of Great Artesian Basin travertine deposits: Implications for palaeohydrogeology and palaeoclimate[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 490: 163-177. [10] Meyer M C, Aldenderfer M S, Wang Z, et al. Permanent human occupation of the central Tibetan Plateau in the early Holocene[J]. Science, 2017, 355(6320): 64-67. [11] Liu Z H, Li H C, You C F, et al. Thickness and stable isotopic characteristics of modern seasonal climate-controlled sub-annual travertine laminas in a travertine-depositing stream at Baishuitai, SW China: implications for paleoclimate reconstruction[J]. Environmental Geology, 2006, 51(2): 257-265. [12] Rainey D K, Jones B. Abiotic versus biotic controls on the development of the Fairmont Hot Springs carbonate deposit, British Columbia, Canada[J]. Sedimentology, 2009, 56(6): 1832-1857. [13] Fouke B W. Hot-spring Systems Geobiology: abiotic and biotic influences on travertine formation at Mammoth Hot Springs, Yellowstone National Park, USA[J]. Sedimentology, 2011, 58(1): 170-219. [14] Akihiro K, Tomoyo O, Chizuru T, et al. Geomicrobiological properties and processes of travertine[M]. Springer, Singapore, 2019: 1-176. [15] 刘再华. 表生和内生钙华的气候环境指代意义研究进展[J]. 科学通报, 2014, 59(23): 2229-2239. [16] Liu Z, Tian Y, An D, et al. Formation and evolution of the travertine landscape at Huanglong, Sichuan, one of the World Natural Heritages[J]. Acta GeoscienticaSinica, 2009, 1(3): 176-191. [17] Lugli S, Tang Y, Reghizzi M, et al. Seasonal pattern in the high-elevation fluvial travertine from the Jiuzhaigou National Nature Reserve, Sichuan, Southwestern China[J]. Journal of Sedimentary Research, 2017, 87(3): 253-271. [18] Pentecost A. Algal and bryophyte flora of a Yorkshire (U. K.) hill stream: A comparative study approach using biovolumeestimations[J]. Archiv Fur Hydrobiologie, 1991, 121: 181-201. [19] Pentecost A. The quaternary travertine deposits of Europe and Asia Minor[J]. Quaternary Science Reviews, 1995, 14(10): 1005-1028. [20] 汪品先,田军,黄恩清,等. 地球系统与演变[M]. 北京: 科学出版社, 2018: 1-565. [21] Florsheim J L, Ustin S L, Tang Y, et al. Basin-scale and travertine dam-scale controls on fluvial travertine, Jiuzhaigou, southwestern China[J]. Geomorphology, 2013, 180-181: 267-280. [22] Wang H J, Yan H, Liu Z H. Contrasts in variations of the carbon and oxygen isotopic composition of travertines formed in pools and a ramp stream at Huanglong Ravine, China: Implications for paleoclimaticinterpretations[J]. Geochimicaet Cosmochimica Acta, 2014, 125: 34-48. [23] 党政,任锦海,安超,等. 7.0级地震对九寨沟核心景观和水化学影响[J]. 中国岩溶, 2019, 38(2): 186-192. [24] 周绪纶,刘民生. 九寨沟早期钙华体的岩溶作用与湖瀑景观的形成[J]. 四川地质学报, 2012,32(3): 333-338. [25] Pentecost A, Zhang Z. A review of Chinese travertines[J]. Cave and Karst Science, 2001, 28(1): 15-28. [26] Claes H, Marques Erthal M, Soete J, et al. Shrub and pore type classification: Petrography of travertine shrubs from the Ball?k-Belevi area (Denizli, SW Turkey)[J]. Quaternary International, 2017, 437: 147-163. [27] 杨俊义. 九寨沟黄龙地区景观钙华的特征与成因探讨[D]. 成都: 成都理工大学, 2004: 1-65. [28] 朱学稳,周绪伦. 岷山岩溶区的灰华沉积[J]. 中国岩溶, 1990,9(3): 56-70. [29] Chafetz H S, Guidry S A. Deposition and diagenesis of Mammoth Hot Springs travertine, Yellowstone National Park, Wyoming, U.S.A.[J]. Canadian Journal of Earth Sciences, 2003, 40(11): 1515-1529. [30] Uysal I T, Feng Y, Zhao J X, et al. U-series dating and geochemical tracing of late Quaternary travertine in co-seismic fissures[J]. Earth and Planetary Science Letters, 2007, 257(3-4): 450-462. [31] 刘再华,袁道先,何师意,等. 四川黄龙沟景区钙华的起源和形成机理研究[J]. 地球化学, 2003,32(1): 1-10. [32] Wang Z J, Meyer M C, Hoffmann D L. Sedimentology, petrography and early diagenesis of a travertine-colluvium succession from Chusang (southern Tibet)[J]. Sedimentary Geology, 2016, 342: 218-236. [33] Wang F, Dong F, Zhao X, et al. The lowest boundary age of travertine in Dawanzhangjia Ravine, Huanglong, China[J]. Acta Geologica Sinica-English Edition, 2018, 92(2): 879-880. [34] El Desouky H, Soete J, Claes H, et al. Novel applications of fluid inclusions and isotope geochemistry in unravelling the genesis of fossil travertine systems[J]. Sedimentology, 2015, 62(1): 27-56. [35] 贺同兴,卢良兆,李树勋,等. 变质岩岩石学[M]. 北京: 地质出版社, 1980: 1-254. [36] 邱家骧. 岩浆岩岩石学[M]. 北京: 地质出版社, 1985: 1-340. [37] 刘宝君. 沉积岩石学[M]. 北京: 地质出版社, 1980: 1-497. [38] Ford D C, Williams P. Karst hydrogeology and geomorphology[M]. Chichester: Wiley, 2007: 1-562. [39] Hill C F P. Cave mineral of the world[M]. The National Spleological Society, USA, 1997: 1-463. [40] Lowe D J, Waltham A. A dictionary of karst and caves[M]. London Pagefast Ltd.: British Cave Research Association, U. K, 2002: 1-40. [41] 桑隆康,马昌前,王国庆,等. 岩石学(第二版)[M]. 北京: 地质出版社, 2012: 1-620. [42] Gandin A, Capezzuoli E, Pedley M. Travertine: Distinctive depositional fabrics of carbonates from thermal spring systems[J]. Sedimentology, 2014, 61(1): 264-290. [43] 朱学稳. 洞穴钟乳石类的分类方案[J]. 中国岩溶, 2005,24(3): 169-174. [44] Gradziński M, Bella P, Holúbek P. Constructional caves in freshwater limestone: A review of their origin, classification, significance and global occurrence[J]. Earth-Science Reviews, 2018, 185: 179-201. [45] Chen J, Zhang D D, Wang S, et al. Factors controlling tufa deposition in natural waters at waterfall sites[J]. Sedimentary Geology, 2004, 166(3-4): 353-366. [46] 刘再华,W. Dreybrodt .方解石沉积速率控制的物理化学机制及其古环境重建意义[J]. 中国岩溶, 2002,21(4): 252-257. [47] Shiraishi F, Morikawa A, Kuroshima K, et al. Genesis and diagenesis of travertine, Futamata hot spring, Japan[J]. Sedimentary Geology, 2020, 405: 105706. [48] Della Porta G, Capezzuoli E, De Bernardo A. Facies character and depositional architecture of hydrothermal travertine slope aprons (Pleistocene, AcquasantaTerme, Central Italy)[J]. Marine and petroleum geology, 2017, 87: 171-187. [49] Jones B. Review of calcium carbonate polymorph precipitation in spring systems[J]. Sedimentary geology, 2017, 353: 64-75. [50] Mohammadi Z, Capezzuoli E, Claes H, et al. Substrate geology controlling different morphology, sedimentology, diagenesis and geochemistry of adjacent travertine bodies: A case study from the Sanandaj-Sirjan zone (western Iran)[J]. Sedimentary Geology, 2019, 389: 127-146. [51] Liu L. Factors Affecting Tufa Degradation in Jiuzhaigou National Nature Reserve, Sichuan, China[J]. Water, 2017, 9(9): 1-15. [52] Dreybrodt W, Buhmann D, Michaelis J, et al. Geochemically controlled calcite precipitation by CO2 outgassing: Field measurements of precipitation rates in comparison to theoretical predictions[J]. Chemical Geology, 1992, 97(3): 285-294. [53] Liu Z, Svensson U, Dreybrodt W, et al. Hydrodynamic control of inorganic calcite precipitation in Huanglong Ravine, China: Field measurements and theoretical prediction of deposition rates[J]. Geochimicaet Cosmochimica Acta, 1995, 59(15): 3087-3097. [54] Dreybrodt W, Buhmann D. A mass transfer model for dissolution and precipitation of calcite from solutions in turbulent motion[J]. Chemical Geology, 1991, 90(1-2): 107-122. [55] Kano A, Matsuoka J, Kojo T, et al. Origin of annual laminations in tufa deposits, southwest Japan[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 191(2): 243-262. [56] Kato H, Amekawa S, Kano A, et al. Seasonal temperature changes obtained from carbonate clumped isotopes of annually laminated tufas from Japan: Discrepancy between natural and synthetic calcites[J]. Geochimicaet Cosmochimica Acta, 2019, 244: 548-564. [57] Koltai G, Sp?tl C, Luetscher M, et al. The nature of annual lamination in carbonate flowstones from non-karstic fractures, Vinschgau (northern Italy)[J]. Chemical geology, 2017, 457: 1-14. [58] Liu Z H, Sun H L, Lu B Y, et al. Wet-dry seasonal variations of hydrochemistry and carbonate precipitation rates in a travertine-depositing canal at Baishuitai, Yunnan, SW China: Implications for the formation of biannual laminae in travertine and for climatic reconstruction[J]. Chemical Geology, 2010, 273(3-4): 258-266. [59] Mohammadi Z, Claes H, Capezzuoli E, et al. Lateral and vertical variations in sedimentology and geochemistry of sub-horizontal laminated travertines (?akmak quarry, Denizli Basin, Turkey)[J]. Quaternary International, 2020, 540: 146-168. [60] Yan H, Liu Z, Sun H. Effect of in-stream physicochemical processes on the seasonal variations in δ13C andδ18O values in laminated travertine deposits in a mountain stream channel[J]. Geochimicaet Cosmochimica Acta, 2017, 202: 179-189. [61] Matsuoka J, Kano A, Oba T, et al. Seasonal variation of stable isotopic compositions recorded in a laminated tufa, SW Japan[J]. Earth and Planetary Science Letters, 2001, 192(1): 31-44. [62] 四川省地矿局成都水文地质工程地质队. 九寨沟核心景区水循环系统研究专题报告[R]. 成都, 2006: 1-158. [63] Du J, Qiao X, Zhang M, et al. Wetlands in the Jiuzhaigou World Natural Heritage site of south-west China: classification and recent changes[J]. Marine and Freshwater Research, 2018, 69(5): 677. [64] Wang F, Dong F, Zhao X, et al. The large dendritic fissures of travertine dam exposed by Jiuzhaigou earthquake, Sichuan, southwestern China[J]. International Journal of Earth Sciences, 2018, 107(8): 2785-2786. [65] Jódar J, González-Ramón A, Martos-Rosillo S, et al. Snowmelt as a determinant factor in the hydrogeological behaviour of high mountain karst aquifers: The Garcés karst system, Central Pyrenees (Spain)[J]. Science of The Total Environment, 2020, 748: 141363. [66] Wang F, Dong F, Enrico C, et al. Is the travertine on the eastern margin of the Qinghai-Xizang (Tibet) Plateau as a surface rock record of the Lower Crustal Channel Flow?[J]. ActaGeologica Sinica(English Edition),2019,93(supp.2):141-142. [67] Sun J, Sobolev Y I, Zhang W, et al. Enhancing crystal growth using polyelectrolyte solutions and shear flow[J]. Nature, 2020, 579: 73-79.
点击查看大图
计量
- 文章访问数: 1637
- HTML浏览量: 582
- PDF下载量: 192
- 被引次数: 0