Role of algae in travertine deposition revealed by microscale observations: A case study of Huanglong, Sichuan, China
-
摘要: 在地表环境下,钙华沉积常常是物理化学和生物沉积过程共同作用的结果。藻类因其在钙华沉积环境中具有较大的生物量及其自身拥有多样的代谢方式,对钙华沉积过程和形态具有重要影响。本研究以四川黄龙钙华为例,通过对典型沉积点的水化学、藻类群落组成和现代钙华微岩相结构进行综合分析,来揭示藻类在钙华沉积中的作用。研究发现,黄龙钙华沉积环境中分布的藻类主要包括蓝藻、绿藻和硅藻等。这些藻类代谢活动会在一定程度上改变沉积水体水化学环境,但在快速流动的水体中,其影响有限。不同藻类群落常常形成几百微米至1~2 mm厚的微生物席或生物膜层,作为碳酸钙沉积发生的重要场所,即钙华沉积活动层。在该活动层内,藻体及其分泌的胞外聚合物(EPS)能够为碳酸钙晶体生长提供大量成核位点和生长模板,从而极大地促进钙华沉积。同时,EPS可以控制或影响碳酸钙结晶形态及钙华微岩相结构。准确认识和量化藻类在钙华沉积中的作用还需要继续开展更多微观尺度方面的研究,以便更好地理解钙华沉积机制,并为准确解译古老钙华岩相结构和地球化学特征奠定基础,同时为预测钙华景观演化和保育提供更多科学依据。Abstract: On the Earth’s surface with an open-water setting,travertine deposits generally result from the interplay of physio‐chemical(abiotic)and biotic processes responsible for carbonate precipitation. Algae is widespread in travertine depositing environments,and the growth of which has an important influence on the process of travertine deposition and travertine macro-and micro-morphology. In this work,we conducted a systematic investigation into hydrochemical compositions of deposition sites,the composition of living algae community and the micro-structure and fabrics of neo-precipitated travertine in the Huanglong area,Sichuan Province. Our objective was to examine the role of algae during the process of travertine deposition. A large number of prokaryotic and eukaryotic algae,such as cyanobacteria,green algae and diatoms,were found to grow in the water environment of Huanglong. The metabolism of them(both photo-synthesis and respiration)could lead to changes in the chemical compositions of water in which travertine forms,but this is only observable in pools with stagnant water. Mostly,algae forms microbial mats or biofilms which are several hundred microns to 1-2 mm in thickness and serve as an important place for carbonate precipitation(i.e. active depositional zones). Within such zones,the algae and secreted extracellular polymer substances(EPS)likely provide many favorable nucleation sites and growth templates for carbonate crystals,thereby greatly promoting travertine precipitation. Meanwhile,the EPS could control or affect the morphology of calcite crystals and travertine fabrics. Better understanding and quantification of the role of algae in travertine deposition require further study at a microscale,so as to gain more insights into the mechanism of travertine deposition,lay a foundations for accurate interpretation of fabrics and geochemical proxies of ancient travertine deposits and provide more evidence for prediction of the evolution and conservation of travertine landscape.
-
[1] Hoffer-French K J, Herman J S. Evaluation of hydrological and biological influences on CO2 fluxes from a karst stream [J]. Journal of Hydrology, 1989, 108:189-212. [2] Liu Z, Svensson U, Dreybrodt W, et al. Hydrodynamic control of inorganic calcite precipitation in Huanglong Ravine, China: field measurements and theoretical prediction of deposition rates [J]. Geochim Cosmochim Acta, 1995, 59(15): 3087-3097. [3] Wang Z, Yin J J, Pu J, et al. Flux and influencing factors of CO2 outgassing in a karst spring-fed creek: implications for carbonate weathering-related carbon sink assessment [J]. Journal of Hydrology, 2020, https://doi.org/10.1016/j.jhydrol.2020.125710. [4] Merz-Prei? M, Riding R. Cyanobacterial tufa calcification in two freshwater streams: ambient environment, chemical thresholds and biological processes [J]. Sedimentary Geology, 1999, 126(1):103-124. [5] Pedley M, Rogerson M, Middleton R. Freshwater calcite precipitates from in vitro mesocosm flume experiments: A case for biomediation of tufas [J]. Sedimentology, 2009, 56(2):511-527. [6] Perri E, Manzo E, Tucker M E. Multi-scale study of the role of the biofilm in the formation of minerals and fabrics in calcareous tufa [J]. Sedimentary Geology, 2012, 263-264:16-29. [7] 汪智军, 殷建军, 蒲俊兵, 等. 钙华生物沉积作用研究进展与展望[J]. 地球科学进展, 2019, 34(6): 606-617. [8] Badger M R, Price G D, The CO2 concentrating mechanism in cyanobacteria and microalgae [J]. Physiologia Plantarum, 1992, 84: 606-615. [9] Dupraz C, Reid R P, Braissant O, et al. Processes of carbonate precipitation in modern microbial mats [J]. Earth-science Reviews, 2009, 96(3):141-162. [10] Decho A W. Overview of biopolymer-induced mineralization: what goes on in biofilms?[J]. Ecological Engineering, 2010, 36(2):137-144. [11] 傅华龙. 四川黄龙钙华景观中的藻类植物[J]. 资源开发与保护, 1989, 5(3): 40-41. [12] Fouke B W. Hot-spring Systems Geobiology: abiotic and biotic influences on travertine formation at Mammoth Hot Springs, Yellowstone National Park, USA [J]. Sedimentology, 2011, 58(1):170-219. [13] 刘再华, 田友萍, 安德军, 等. 世界自然遗产-四川黄龙钙华景观的形成与演化[J]. 地球学报, 2009, 30(6): 841-847. [14] 李永新, 田友萍, 李银. 四川黄龙钙华藻类及其生物岩溶作用[J]. 中国岩溶, 2011, 30(1):86-92. [15] 刘明学, 杨智, 郭玉婷, 等. 黄龙钙华水体藻多样性及分布规律研究[J]. 环境科学与技术, 2013, 36(1):182-186, 191. [16] 张存凯, 李琼芳, 唐淑, 等. 影响黄龙藻类群落结构的环境因子分析[J]. 环境科学研究, 2017, 30(2): 224-231. [17] 刘再华, 袁道先, Dreybrodt W, 等. 四川黄龙钙华的形成[J]. 中国岩溶, 1993,12(3): 4-10. [18] 曹俊, 郭建强, 杨更. 松潘黄龙钙华演化趋势研究[J]. 四川地质学报, 2009, 29(S2): 222-228. [19] 刘再华, 袁道先, 何师意. 不同岩溶动力系统的碳稳定同位素和地球化学特征及其意义:以我国几个典型岩溶地区为例[J]. 地质学报, 1997(3): 281-288. [20] 李前银, 范崇荣. 黄龙景区水循环系统与景观演化研究[J]. 水文地质工程地质, 2009, 36(1):108-112. [21] 郭建强, 彭东, 等. 松潘黄龙水循环及钙化景观成因研究[J]. 四川地质学报, 2002, 22(1): 21-26. [22] 唐淑, 张清明, 台永东, 等. 黄龙景区多年水量动态变化情况调查分析[J]. 环境与可持续发展, 2016, 41(4): 209-210. [23] 代群威, 张清明, 党政, 等. 钙华天然海绵地质体多孔特性及其对水循环调节意义:以四川黄龙为例[J]. 矿物学报, 2019, 39(2): 219-225. [24] Parkhurst D L, Appelo C A J. Description of input and examples for PHREEQC version 3-A computer program for speciation, batch-reaction, transportone-dimensional, and inverse geochemical calculations [R].U.S. Geological Survey Techniques and Methods, 2013. [25] 胡鸿钧, 魏印心. 中国淡水藻类——系统、生态及分类[M]. 北京: 科学出版社, 2006. [26] Wang H, Yan H, Liu Z. Contrasts in variations of the carbon and oxygen isotopic composition of travertines formed in pools and a ramp stream at Huanglong Ravine, China: implications for paleoclimatic interpretations [J]. Geochimica et Cosmochimica Acta, 2014, 125:34-48. [27] Lu G, Zheng C, Donahoea R J, et al. Controlling processes in a CaCO3 precipitating stream in Huanglong Natural Scenic District, Sichuan, China [J]. Journal of Hydrology, 2000, 230: 34-54. [28] 李华举, 廖长君, 姜殿强, 等. 钙华沉积机制的研究现状及展望[J]. 中国岩溶, 2006, 25(1): 57-62. [29] Spiro B, Pentecost A. One day in the life of a stream-a diurnal inorganic carbon mass balance for a travertine-depositing stream (waterfall beck, Yorkshire) [J]. Geomicrobiology Journal, 1991, 9(1):1-11. [30] 王海静, 刘再华, 曾成, 等. 四川黄龙沟源头黄龙泉泉水及其下游溪水的水化学变化研究[J]. 地球化学, 2009, 38(3): 307-314. [31] 曾振宇, 晏浩, 孙海龙, 等. 云南白水台钙华池出入口水化学和δ13CDIC昼夜变化的影响因素及水生光合作用影响比例的计算[J]. 中国岩溶, 2016, 35(6): 605-613. [32] 刘再华, 李强, 孙海龙, 等. 云南白水台钙华水池中水化学日变化及其生物控制的发现[J]. 水文地质工程地质, 2005, 32(6): 10-15. [33] Shiraishi F, Bissett A, De Beer D, et al. Photosynthesis, respiration and exopolymer calcium-binding in biofilm calcification (Westerhfer and Deinschwanger Creek, Germany) [J]. Geomicrobiology Journal, 2008, 25(2): 83-94. [34] Prins H B A, Elzenga J T M. Bicarbonate utilization: function and mechanism [J]. Aquatic Botany, 1989, 34: 59-83. [35] Pentecost A. Travertine [M]. Berlin: Springer, 2005. [36] Sánchez-Navas A, Martín-Algarra A, Rivadeneyra M A, et al. Crystal-growth behavior in Ca-Mg carbonate bacterial spherulites [J]. Crystal Growth & Design, 2009, 9(6): 329-333. [37] Kawaguchi T, Decho A W. A laboratory investigation of cyanobacterial extracellular polymeric secretions (EPS) in influencing CaCO3 polymorphism [J]. Journal of Crystal Growth, 2002, 240: 230-235. [38] Shiraishi F, Hanzawa Y, Okumura T, et al. Cyanobacterial exopolymer properties differentiate microbial carbonate fabrics [J]. Scientific Reports, 2017, 7(1): 11805. [39] 李骐言, 李琼芳, 代群威, 等. 黄龙嗜冷细菌胞外琥珀酸组分对碳酸钙矿化的影响[J]. 岩石矿物学杂志, 2013, 32(6): 773-781. [40] 陈超, 李琼芳, 张清明, 等. 低温环境下两种氨基酸对碳酸钙矿化影响的研究[J]. 高校地质学报, 2017, 23(4): 606-614. [41] Okumura T, Takashima C, Shiraishi F, et al. Processes forming daily lamination in a microbe-rich travertine under low flow condition at the Nagano-yu Hot Spring, Southwestern Japan[J]. Geomicrobiology Journal, 2013, 30(10): 910-927. [42] 张金流, 王海静, 刘再华. 旅游活动对黄龙景区磷酸盐浓度和水藻生长的影响[J]. 地球学报, 2011, 32(4): 463-468.
点击查看大图
计量
- 文章访问数: 1776
- HTML浏览量: 894
- PDF下载量: 232
- 被引次数: 0