Review of research progress and prospect of tufa/travertine karst landscape at home and abroad
-
摘要: 利用计量学软件Citespace处理分析2008-2020年间国内外文献,揭示钙华研究在基于同位素技术的钙华成因、钙华景观特点及地貌演化、钙华生物成因和钙华景观退化等方面取得的重要研究进展,阐明了全球钙华景观的分布、特点、物质组成、成因类型及典型钙华景观退化的现状和原因,推动了钙华自然遗产景观的保护及钙华研究的国际合作。目前,急需加强钙华内生动力与外生动力的复合作用、微生物对钙华沉积的耦合作用、钙华景观退化的微观结构表现等方面的基础研究及钙华景观生态修复保育关键技术的研发。Abstract: A scientometric analysis in Citespace software on the published papers of tufa/ travertine researches at home and abroad from 2008-2020 shows that, some researches of tufa/travertine such as, formation causes of tufa/travertine based on isotope technology, landscape features and geomorphologic evolution of tufa/travertine, biological causes of tufa/travertine and landscape degeneration of tufa/travertine have gotten important progresses. Moreover, the distribution, landscape features, material composition, formation types and situation and causes of typical tufa/travertine in the world have been well clarified, which push forward the conversation and international co-operation of tufa/travertine natural heritage as well as the protection of tufa/travertine natural heritage landscapes . At present, some important basic researches such as mutual processes between earth thermal dynamics and surface dynamics, coupling processes between microorganism and tufa/travertine deposition, as well as micro structures of tufa/travertine degeneration should be strengthened urgently. Meanwhile, the key technology of ecological rehabilitation and conservation of tufa/travertine should be developed.
-
Key words:
- tufa/travertine /
- karst landscape /
- natural heritage /
- research progress /
- prospect
-
[1] 袁道先主编.岩溶学词典[M].北京:地质出版社,1988. [2] Ford T D,Pedley H M. A review of tufa and travertine deposits of the world[J]. Earth-Science Reviews,1996,41(3/4):117-175. [3] 胥良, 姜泽凡, 李前银, 等. 黄龙钙华景观演化特征及保护措施探讨[J]. 地质灾害与环境保护, 2007, 18(4):79-84. [4] 刘再华, 田友萍, 安德军, 等. 世界自然遗产-四川黄龙钙华景观的形成与演化[J]. 地球学报, 2009, 30(6): 841-847 [5] 李强,戴亚南,游省易,等.云南白水台钙华沉积成因及主要沉积类型研究[J].中国岩溶,2002,21(3):178-181. [6] Pentecost A. Travertine[M]. Berlin:Springer Berlin, 2005. [7] 董发勤,李琼芳,代群威,等. 黄龙风景区和黄石公园钙华形成环境对比研究[A]. 《中国矿物岩石地球化学学会第14届学术年会论文摘要专辑》,2013. [8] Pedley H M. Classification and environmental models of cool freshwater tufas[J]. Sedimentary Geology, 1990, 68(1):143-154. [9] Pedley M. Tufas and travertines of the Mediterranean region: a testing ground for freshwater carbonate concepts and developments[J]. Sedimentology, 2009, 56(1):221-246. [10] Capezzuoli E, Gandin A, Pedley M. Decoding tufa and travertine (fresh water carbonates) in the sedimentary record: The state of the art[J]. Sedimentology, 2014, 61(1):1-21. [11] Chen Chaomei, Hu Zhigang, Liu Shengbo, et al. Emerging trends in regenerative medicine:a scientometric analysis in citespace[J].Expert Opinion on Biological Therapy, 2012, 12(5): 593-608. [12] Craig H.The geochemistry of the stable carbon isotopes[J] .Geochimica et Cosmochimica Acta, 1953, 3:53-92. [13] 刘再华,袁道先,何师意,等.地热CO2-水-碳酸盐岩系统的地球化学特征及其CO2来源:以四川黄龙沟、康定和云南中甸下给为例[J].中国科学(D辑:地球科学),2000,30(2):209-214. [14] 刘再华.表生和内生钙华的气候环境指代意义研究进展[J].科学通报,2014,59(23): 2229-2239. [15] 周绪纶.关于四川黄龙钙CO2成因的讨论[J],四川地质学报,2006,26(3):143-146. [16] Ball J W, Mccelskey R B,Nordstrom D K, et al. Water-chemistry data for selected springs, geysers, and streams in Yellowstone National Park, Wyoming, 2003-2005, US [R]. Geological Survey Open-File Report, 2006. [17] 汪智军, 殷建军, 袁道先. 钙华在第四纪研究中的应用:以青藏高原为例[J]. 科学通报, 2018, 63(11): 1012-1023. [18] Brian Jones . Review of aragonite and calcite crystal morphogenesis in thermal spring systems[J]. Sedimentary Geology, 2017, 354:9-23. [19] Okumura T, Takashima C, Shiraishi F, et al. Textural transition in an aragonite travertine formed under various flow conditions at Pancuran Pitu, Central Java, Indonesia[J]. Sedimentary Geology, 2012, 265:195-209. [20] Brogi Andrea, Liotta Domenico, Capezzuoli Enrico,et al. Travertine deposits constraining transfer zone neotectonics in geothermal areas: An example from the inner Northern Apennines (Bagno Vignoni-Val d’Orcia area, Italy)[J].Geothermics,2020, 85. [21] Viles H A, Taylor M P, Nicoll K, et al. Facies evidence of hydroclimatic regime shifts in tufa depositional sequences from the arid Naukluft Mountains, Namibia[J]. Sedimentary Geology, 2007, 195(1):39-53. [22] Andrews J E, Brasier A T. Seasonal records of climatic change in annually laminated tufas: Short review and future prospects[J]. Journal of Quaternary Science, 2005, 20(5):411-421. [23] Marcelle Marques Erthal, Enrico Capezzuoli , Alessandro Mancini , et al. Shrub morpho-types as indicator for the water flow energy-Tivoli travertine case (Central Italy)[J]. Sedimentary Geology, 2017, 347:79-99. [24] Pedley M, Juan Antonio González Martín, Salvador Ordó?ez Delgado, et al. Sedimentology of Quaternary perched springline and paludal tufas: criteria for recognition, with examples from Guadalajara Province, Spain[J]. Sedimentology, 2003, 50(1):23-44. [25] álvaro Rodríguez-Berriguete, Ana María Alonso-Zarza. Controlling factors and implications for travertine and tufa deposition in a volcanic setting[J]. Sedimentary Geology, 2019,381: 13-28. [26] Huerta P , Armenteros I , Merino Tomé , Oscar, et al. 3-D modelling of a fossil tufa outcrop. The example of La Pea del Manto (Soria, Spain)[J]. Sedimentary Geology, 2016, 333:130-146. [27] Marta Vázquez-Urbez , Arenas C, Pardo G. A sedimentary facies model for stepped, fluvial tufa systems in the Iberian Range (Spain): the Quaternary Piedra and Mesa valleys[J]. Sedimentology, 2012, 59(2):502-526. [28] Claes H, Soete J, Van Noten K, et al. Sedimentology, three-dimensional geobody reconstruction and carbon dioxide origin of Pleistocene travertine deposits in the Ballk area (south-west Turkey)[J]. Sedimentology, 2015, 62(5):1408-1445. [29] Boever E D, Foubert A, Lopez B, et al. Comparative study of the Pleistocene Cakmak quarry (Denizli Basin, Turkey) and modern Mammoth Hot Springs deposits (Yellowstone National Park, USA)[J]. Quaternary International, 2017,437:129-146. [30] Han L, Cheng J, An Y, et al. Preliminary Report on the 8 August 2017 Ms 7.0 Jiuzhaigou, Sichuan, China, Earthquake[J]. Seismological Research Letters, 2018,89(2A):557-569. [31] 李志强, 李亦纲, 林均岐. 四川九寨沟7.0级地震灾害特点分析[J]. 中国应急救援, 2017(5): 4-7. [32] Wang W, Chen H, Xu A, et al. Analysis of disaster characteristics and emergency response of the Jiuzhaigou earthquake[J]. Natural Hazards and Earth System Sciences,2018,18(6): 1771-1783. [33] 姜泽凡,刘艳梅,胥良.黄龙钙华景观形成及演化趋势研究[J].水文地质工程地质, 2008,35(1):107-111,116. [34] 张金流,王海静,董立,等.世界遗产-四川黄龙钙华景观退化现象、原因及保护对策分析[J].地球学报,2012,33(1):111-120. [35] Chafetz H S, Folk R L. Travertines: depositional morphology and the bacterially constructed constituents[J]. JOURNAL OF SEDIMENTARY PETROLOGY, 1984,54:289-316. [36] Pedley H M. Freshwater(phytoherm)reefs : The role of biofilms and their bearing on matine reef sedimentation[J]. Sedimentary Geology, 1992, 79(1-4):255-274. [37] Pedley M, Rogerson M, Middleton R. Freshwater calcite precipitates from in vitro mesocosm flume experiments: a case for biomediation of tufas.[J]. Sedimentology, 2010, 56(2):511-527. [38] Perri E, Manzo E, Tucker M E. Multi-scale study of the role of the biofilm in the formation of minerals and fabrics in calcareous tufa[J]. Sedimentary Geology, 2012,263-264:16-29. [39] Berrendero E, Arenas C, Mateo P, et al. Cyanobacterial diversity and related sedimentary facies as a function of water flow conditions: Example from the Monasterio de Piedra Natural Park (Spain)[J]. Sedimentary Geology, 2016, 337:12-28. [40] Arp G, Wedemeyer N, Reitner J. Fluvival tufa formation in a hard-water creek (Deinschwanger Bach, Franconian Alb, Germany)[J]. Facies, 2001, 44(1):1-22. [41] 刘明学,董发勤,孙仕勇,等. 黄龙钙华水体藻多样性及分布规律研究[J]. 环境科学与技术,2013,36(1): 182-186. [42] Bissett A, Beer D D, Schoon R, et al. Microbial mediation of stromatolite formation in karst water creeks[J]. Limnology & Oceanography, 2008, 53(3):1159-1168. [43] 李骐言,李琼芳,代群威,等. 黄龙嗜冷细菌胞外琥珀酸组分对碳酸钙矿化的影响[J]. 岩石矿物学杂志,2013,32(6):773-781. [44] Jin-Wook Kim, Toshihiro Kogure, Sang-tae Kim, et al. The Characterization of CaCO3 in a Geothermal Environment: a SEM/TEM-EELS study[J]. Clays and Clay Minerals, 2012, 60(5): 484-495. [45] Sun S, Dong F, Ehrlich H, et al. Metabolic Influence of Psychrophilic Diatoms on Travertines at the Huanglong Natural Scenic District of China[J]. International journal of environmental research and public health, 2014, 11(12): 13084-13096. [46] Xie J, Strobel G, Xu W F, et al. Fungi as Architects of the Rimstone Dams in Huanglong, NSD, Sichuan, China[J]. Microbial Ecology, 2017,73(1):1-10. [47] 代群威,党政,彭启轩,等. 钙华天然海绵地质体多孔特性及其对水循环调节意义:以四川黄龙为例[J].矿物学报,2019,39(2):219-225. [48] Wang H, Liu Z, Zhang J, et al. Spatial and temporal hydrochemical variations of the spring-fed travertine-depositing stream in the Huanglong Ravine, Sichuan, SW China[J]. Acta Carsologica, 2010, 39(2):247-259. [49] 石岩. 黄龙水环境特征与钙华景观演化趋势研究[D]. 成都: 成都理工大学, 2005. [50] 朱静. 黄龙钙华沉积速率及景观演化研究[D]. 成都: 成都理工大学, 2009. [51] 杨俊义.九寨沟黄龙地区景观钙华的特征与成因探讨[D]. 成都:成都理工大学, 2004. [52] 唐淑, 张清明, 台永东,等. 黄龙景区多年水量动态变化情况调查分析[J]. 环境与可持续发展, 2016, 41(4):209-210. [53] Wang L , Pan Y , Cao Y , et al. Detecting early signs of environmental degradation in protected areas: An example of Jiuzhaigou Nature Reserve, China[J]. Ecological Indicators, 2018, 91:287-298. [54] Liu J. Ecological Degradation in Protected Areas: The Case of Wolong Nature Reserve for Giant Pandas[J]. Science, 2001, 292(5514):98-101. [55] 张金流. 黄龙钙华景观退化的人为和自然影响机理研究[D]. 北京:中国科学院研究生院, 2012. [56] 陈超. 生物有机质对黄龙钙华沉积和退化的影响研究[D].绵阳:西南科技大学, 2018. [57] Zhang J , Wang H , Liu Z , et al. Spatial-temporal variations of travertine deposition rates and their controlling factors in Huanglong Ravine, China-A world’s heritage site[J]. Applied Geochemistry, 2012, 27(1):211-222. [58] 李永新,田友萍,李银. 四川黄龙钙华藻类及其生物岩溶作用[J].中国岩溶,2011, 30(1): 86-92. [59] 张金流,王海静,刘再华.旅游活动对黄龙景区磷酸盐浓度和水藻生长的影响[J]. 地球学报,2011,32(4):463-468. [60] Qiao X , Du J , Kota S H , et al. Wet deposition of sulfur and nitrogen in Jiuzhaigou National Nature Reserve, Sichuan, China during 2015-2016: Possible effects from regional emission reduction and local tourist activities[J]. Environmental Pollution, 2018, 233:67-77. [61] Qiao X , Tang Y , Jaffe D , et al. Surface ozone in Jiuzhaigou National Park, eastern rim of the Qinghai-Tibet Plateau, China[J]. Journal of Mountain Science, 2012, 9(5):687-696. [62] 胥良,姜泽凡.基于钙均衡估算黄龙钙华沉积速率的探讨[J].中国岩溶,2007, 26(2):132-136. [63] 汪智军,殷建军,蒲俊兵,等. 钙华生物沉积作用研究进展与展望[J]. 地球科学进 展,2019,34(6):606-617.
点击查看大图
计量
- 文章访问数: 1849
- HTML浏览量: 981
- PDF下载量: 367
- 被引次数: 0