Prediction of karst surface subsidence risk in the Fankou lead-zinc mine area based on PCA-PSO-SVM
-
摘要: 岩溶地表塌陷是由多个影响因素共同作用导致地面形成塌陷坑(洞)的一种动力地质现象,具有隐蔽性和突发性的特点,常规简单数学模型难以对地表塌陷危险性准确预测。文章先通过主成分分析法(PCA)对选取的地下水位、地下水位波动幅度、给水度等11个影响因素提取5个主成分,对导致地表塌陷危险性的主成分进行全新的解释,同时引入粒子群算法(PSO)优化的支持向量机(SVM)方法,建立PCA-PSO-SVM岩溶地表塌陷危险性预测模型,并结合凡口铅锌矿地区工程实例,将预测结果与单一的SVM模型预测结果进行对比,表明PCA-PSO-SVM危险性预测模型精度更高,可以更好地为岩溶地表塌陷防治工作提供依据。Abstract: Karst surface subsidence is a dynamic geological phenomenon with the characteristics of concealment and suddenness, which results from the joint effect many factors. Thus, it is difficult to accurately predict the risk of surface subsidence by the conventional simple mathematical model. In this paper, the Principal Component Analysis (PCA) is used to extract five principal components from 11 influencing factors, including groundwater level, fluctuation range of groundwater level and water supply, so as to make a new interpretation of the principal components leading to the risk of surface subsidence. Additionally, the Support Vector Machine (SVM) method optimized by Particle Swarm Optimization (PSO) is introduced to establish a PCA-PSO-SVM model for prediction of risk of karst surface subsidence. Finally, combined with the engineering example of the Fankou lead-zinc mine, the prediction results by the above proposed model are compared with those obtained by the single SVM model. The results show that the PCA-PSO-SVM risk prediction model has higher accuracy, which can provide a basis for prevention and control of karst surface subsidence.
-
[1] 蒙彦,雷明堂.岩溶塌陷研究现状及趋势分析[J].中国岩溶,2019,38(3):411-417. [2] 秦佳玉,梅钢,徐能雄.面向采空塌陷离散元模拟的地表沉降确定方法[J].矿业研究与开发,2019,39(9):46-50. [3] Liu Z, Cui B, Liang Y, et al. Study on Foundation Deformation of Buildings in Mining Subsidence Area and Surface Subsidence Prediction [J]. Geotechnical and Geological Engineering, 2019, 37(3): 1755-1764. [4] 罗周全,徐海,杨彪,王益伟.矿区岩溶地表塌陷神经网络预测研究[J].中国地质灾害与防治学报,2011,22(3):39-44. [5] 周泽.岩溶矿区采动裂隙发育及其地表塌陷规律研究[D].湘潭:湖南科技大学,2017. [6] He K, Jia Y, Chen W, et al. Evaluation of Karst Collapse Risks Induced By Over-pumping and Karst Groundwater Resource Protection in Zaozhuang Region, China[J]. Environmental Earth Sciences, 2014, 71(8): 3443-3454. [7] Gan L, Zuo J, Wang Y, et al. Comprehensive Health Condition Assessment on Partial Sewers in a Southern Chinese City Based on Fuzzy Mathematic Methods [J]. Frontiers of Environmental Science & Engineering, 2014, 8(1): 144-150. [8] Gao C, Li S, Wang J, et al. The Risk Assessment of Tunnels Based on Grey Correlation and Entropy Weight Method [J]. Geotechnical and Geological Engineering, 2018, 36(3): 1621-1631. [9] Du J, He R, Sugumaran V. Clustering and Ontology-based Information Integration Framework for Surface Subsidence Risk Mitigation in Underground Tunnels[J]. Cluster Computing, 2016, 19(4): 2001-2014. [10] Sahu SP, Yadav M, Das AJ, et al. Multivariate Statistical Approach for Assessment of Subsidence in Jharia Coalfields, India[J]. Arabian Journal of Geosciences, 2017, 10(8): 191-201. [11] Han D, Li X. The Surface Subsidence Prediction of Shield Construction Based on the Fuzzy Neural Network[C]. Springer Singapore, 2018: 190-197. [12] 管佳林,罗周全,杨彪,等.矿区岩溶地表塌陷神经网络预测模型研究[J].中国安全科学学报,2011,21(9):28-33. [13] Salehi T, Shokrian M, Modirrousta A, et al. Estimation of the Collapse Potential of Loess Soils in Golestan Province Using Neural Networks and Neuro-fuzzy Systems[J]. Arabian Journal of Geosciences, 2015, 8(11): 9557-9567. [14] 杨斌,杨永军,张亚,等.基于主成分分析与神经网络复合模型的汽轮机排汽焓计算[J].中国电力,2018,51(1):126-132. [15] Mondal I, Bandyopadhyay J, Dhara S. Detecting Shoreline Changing Trends Using Principle Component Analysis in Sagar Island, West Bengal, India[J]. Spatial Information Research, 2017, 25(1): 67-73. [16] 郭天颂,张菊清,韩煜,等.基于粒子群优化支持向量机的延长县滑坡易发性评价[J].地质科技情报,2019,38(3):236-243. [17] Yu H. Encyclopedia of Database Systems [M]. Springer New York, 2018: 3854-3857. [18] 杨彪.矿山地下水害防治工程可视化及地表塌陷预测研究[D].长沙:中南大学,2011. [19] 韩冉冉.建筑工程施工班组安全氛围测度研究[D].南京:东南大学,2015. [20] Mulas M , Bonacini F , Petitta M , et al. Landslide Zoning Using the Principal Component Analysis on Monitoring Data: The Sauna Earth Slide-Earth Flow (Parma, Italy)[C]. Workshop on World Landslide Forum. Springer, Cham, 2017. [21] 薛云,戴塔根,杨自安,等.基于光谱和纹理的SVM矿化蚀变信息提取研究[J].地质找矿论丛,2008, 23(3):254-259. [22] Jiang X, Lu W, Zhao H, et al. Quantitative Evaluation of Mining Geo-environmental Quality in Northeast China: Comprehensive Index Method and Support Vector Machine Models[J]. Environmental Earth Sciences, 2015, 73(12): 7945-7955. [23] 周爱红, 倪莹莹, 尹超,等.一种盾构施工引起的地面沉降预测方法[J]. 测绘科学, 2018, 43(3):167-172. [24] De gregorio L, Callegari M, Mazzoli P, et al. Operational River Discharge Forecasting with Support Vector Regression Technique Applied to Alpine Catchments: Results, Advantages, Limits and Lesson Learned[J]. Water Resources Management, 2018, 32(1): 229-242.
点击查看大图
计量
- 文章访问数: 1558
- HTML浏览量: 659
- PDF下载量: 122
- 被引次数: 0