• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于PCA-PSO-SVM的凡口铅锌矿地区岩溶地表塌陷危险性预测

周爱红 牛鹏飞 袁颖 黄虎城

周爱红, 牛鹏飞, 袁颖, 黄虎城. 基于PCA-PSO-SVM的凡口铅锌矿地区岩溶地表塌陷危险性预测[J]. 中国岩溶, 2020, 39(4): 622-628. doi: 10.11932/karst2020y30
引用本文: 周爱红, 牛鹏飞, 袁颖, 黄虎城. 基于PCA-PSO-SVM的凡口铅锌矿地区岩溶地表塌陷危险性预测[J]. 中国岩溶, 2020, 39(4): 622-628. doi: 10.11932/karst2020y30
ZHOU Aihong, NIU Pengfei, YUAN Ying, HUANG Hucheng. Prediction of karst surface subsidence risk in the Fankou lead-zinc mine area based on PCA-PSO-SVM[J]. CARSOLOGICA SINICA, 2020, 39(4): 622-628. doi: 10.11932/karst2020y30
Citation: ZHOU Aihong, NIU Pengfei, YUAN Ying, HUANG Hucheng. Prediction of karst surface subsidence risk in the Fankou lead-zinc mine area based on PCA-PSO-SVM[J]. CARSOLOGICA SINICA, 2020, 39(4): 622-628. doi: 10.11932/karst2020y30

基于PCA-PSO-SVM的凡口铅锌矿地区岩溶地表塌陷危险性预测

doi: 10.11932/karst2020y30
基金项目: 国家自然科学基金资助项目(41807231);河北省自然科学基金项目(D201903182);河北省教育厅青年基金项目(QN2019196);河北省教育厅在读研究生创新能力培养资助项目(CXZZSS2019115);山西省国土资源厅省级地质勘查项目(SXZDF20170820)

Prediction of karst surface subsidence risk in the Fankou lead-zinc mine area based on PCA-PSO-SVM

  • 摘要: 岩溶地表塌陷是由多个影响因素共同作用导致地面形成塌陷坑(洞)的一种动力地质现象,具有隐蔽性和突发性的特点,常规简单数学模型难以对地表塌陷危险性准确预测。文章先通过主成分分析法(PCA)对选取的地下水位、地下水位波动幅度、给水度等11个影响因素提取5个主成分,对导致地表塌陷危险性的主成分进行全新的解释,同时引入粒子群算法(PSO)优化的支持向量机(SVM)方法,建立PCA-PSO-SVM岩溶地表塌陷危险性预测模型,并结合凡口铅锌矿地区工程实例,将预测结果与单一的SVM模型预测结果进行对比,表明PCA-PSO-SVM危险性预测模型精度更高,可以更好地为岩溶地表塌陷防治工作提供依据。

     

  • [1] 蒙彦,雷明堂.岩溶塌陷研究现状及趋势分析[J].中国岩溶,2019,38(3):411-417.
    [2] 秦佳玉,梅钢,徐能雄.面向采空塌陷离散元模拟的地表沉降确定方法[J].矿业研究与开发,2019,39(9):46-50.
    [3] Liu Z, Cui B, Liang Y, et al. Study on Foundation Deformation of Buildings in Mining Subsidence Area and Surface Subsidence Prediction [J]. Geotechnical and Geological Engineering, 2019, 37(3): 1755-1764.
    [4] 罗周全,徐海,杨彪,王益伟.矿区岩溶地表塌陷神经网络预测研究[J].中国地质灾害与防治学报,2011,22(3):39-44.
    [5] 周泽.岩溶矿区采动裂隙发育及其地表塌陷规律研究[D].湘潭:湖南科技大学,2017.
    [6] He K, Jia Y, Chen W, et al. Evaluation of Karst Collapse Risks Induced By Over-pumping and Karst Groundwater Resource Protection in Zaozhuang Region, China[J]. Environmental Earth Sciences, 2014, 71(8): 3443-3454.
    [7] Gan L, Zuo J, Wang Y, et al. Comprehensive Health Condition Assessment on Partial Sewers in a Southern Chinese City Based on Fuzzy Mathematic Methods [J]. Frontiers of Environmental Science & Engineering, 2014, 8(1): 144-150.
    [8] Gao C, Li S, Wang J, et al. The Risk Assessment of Tunnels Based on Grey Correlation and Entropy Weight Method [J]. Geotechnical and Geological Engineering, 2018, 36(3): 1621-1631.
    [9] Du J, He R, Sugumaran V. Clustering and Ontology-based Information Integration Framework for Surface Subsidence Risk Mitigation in Underground Tunnels[J]. Cluster Computing, 2016, 19(4): 2001-2014.
    [10] Sahu SP, Yadav M, Das AJ, et al. Multivariate Statistical Approach for Assessment of Subsidence in Jharia Coalfields, India[J]. Arabian Journal of Geosciences, 2017, 10(8): 191-201.
    [11] Han D, Li X. The Surface Subsidence Prediction of Shield Construction Based on the Fuzzy Neural Network[C]. Springer Singapore, 2018: 190-197.
    [12] 管佳林,罗周全,杨彪,等.矿区岩溶地表塌陷神经网络预测模型研究[J].中国安全科学学报,2011,21(9):28-33.
    [13] Salehi T, Shokrian M, Modirrousta A, et al. Estimation of the Collapse Potential of Loess Soils in Golestan Province Using Neural Networks and Neuro-fuzzy Systems[J]. Arabian Journal of Geosciences, 2015, 8(11): 9557-9567.
    [14] 杨斌,杨永军,张亚,等.基于主成分分析与神经网络复合模型的汽轮机排汽焓计算[J].中国电力,2018,51(1):126-132.
    [15] Mondal I, Bandyopadhyay J, Dhara S. Detecting Shoreline Changing Trends Using Principle Component Analysis in Sagar Island, West Bengal, India[J]. Spatial Information Research, 2017, 25(1): 67-73.
    [16] 郭天颂,张菊清,韩煜,等.基于粒子群优化支持向量机的延长县滑坡易发性评价[J].地质科技情报,2019,38(3):236-243.
    [17] Yu H. Encyclopedia of Database Systems [M]. Springer New York, 2018: 3854-3857.
    [18] 杨彪.矿山地下水害防治工程可视化及地表塌陷预测研究[D].长沙:中南大学,2011.
    [19] 韩冉冉.建筑工程施工班组安全氛围测度研究[D].南京:东南大学,2015.
    [20] Mulas M , Bonacini F , Petitta M , et al. Landslide Zoning Using the Principal Component Analysis on Monitoring Data: The Sauna Earth Slide-Earth Flow (Parma, Italy)[C]. Workshop on World Landslide Forum. Springer, Cham, 2017.
    [21] 薛云,戴塔根,杨自安,等.基于光谱和纹理的SVM矿化蚀变信息提取研究[J].地质找矿论丛,2008, 23(3):254-259.
    [22] Jiang X, Lu W, Zhao H, et al. Quantitative Evaluation of Mining Geo-environmental Quality in Northeast China: Comprehensive Index Method and Support Vector Machine Models[J]. Environmental Earth Sciences, 2015, 73(12): 7945-7955.
    [23] 周爱红, 倪莹莹, 尹超,等.一种盾构施工引起的地面沉降预测方法[J]. 测绘科学, 2018, 43(3):167-172.
    [24] De gregorio L, Callegari M, Mazzoli P, et al. Operational River Discharge Forecasting with Support Vector Regression Technique Applied to Alpine Catchments: Results, Advantages, Limits and Lesson Learned[J]. Water Resources Management, 2018, 32(1): 229-242.
  • 加载中
计量
  • 文章访问数:  1558
  • HTML浏览量:  659
  • PDF下载量:  122
  • 被引次数: 0
出版历程
  • 发布日期:  2020-08-25

目录

    /

    返回文章
    返回