Flow recession analysis of karst underground river basins in different karst geomorphic units in the upper reaches of the south source of the Wujiang river, Guizhou Province
-
摘要: 选取云南高原向贵州高原过渡地带上的乌江南源——贵州省三岔河上游流域作为研究对象,分别提取其流域内的花渔洞地下河流域与三塘地下河流域的地形指标,分析两者的流量衰减现状,并探讨了岩溶地表形态和岩溶含水介质结构之间的关系。结果显示:(1)花渔洞地下河流域的平均起伏度为73.2 m,可分为高起伏度的Ⅰ区(均值122 m)和低起伏度的Ⅱ区(均值64 m)两个区,其分别占整个流域面积的14.9%和85.1%;三塘地下河流域的平均起伏度为87.6 m,可分为高起伏度的Ⅰ区(均值106 m)、中起伏度的Ⅱ区(均值81 m)和低起伏度的Ⅲ区(均值48 m)三个区,其分别占流域面积的40.2%,49.7%和10.1%;(2)花渔洞地下河流域各阶段的衰减系数为0.000 3,0.000 1,0.000 06(0.5 h)-1,总蓄水量达2 199.356×104 m3,各亚动态蓄水量分别占总蓄水量的0.1%,9.9%、90.0%;三塘地下河流域各阶段的衰减系数为0.001、0.000 3、0.000 1(0.5 h)-1,总蓄水量为2 310.902×104 m3,各亚动态蓄水量分别占总蓄水量的9.4%、30.8%、59.8%。这表明地面起伏度和衰减动态之间可能存在着关联性,即高起伏度对应岩溶发育强烈的管道流,低起伏度对应导水通道较小的裂隙、溶隙等含水层。Abstract: The Sanchahe river basin is located in the transition zone from the Yunnan plateau to the Guizhou Plateau, which is the south tributary of the Wujiang river. The total area of the basin is 7,264 km2, where elevation drops from 2,000 m to 1,100 m. This basin hosts many multi-phase karst and diverse landforms. Within this basin, the Huayudong sub-underground river basin and the Santang sub-underground river basin are located in the karst peak-cluster region of Panxian-Weining and the karst peak forest region of central-southwest Guizhou, respectively, possessing different karst development characteristics. To investigate the relationship between karst surface morphology and structure of karst water-bearing medium, this work uses the topographic indexes (elevation and relief) of the two basins to compare and analyze their geomorphologic development features, and determine structural characteristics of the water bearing medium in the two basins by the flow recession analysis based on interval exponential function. Results show that, (1) The Huayudong underground river basin has an average elevation of 2,306 m and an average relief of 73.2 m. It can be divided into two areas: high relief area I (mean 122 m) and low relief area II (mean 64 m), which account for 14.9% and 85.1% of the whole basin area, respectively. The Santang underground river basin has an average elevation of 1,880 m and an average relief of 87.6 m. It can be divided into three areas: high relief area I (mean 106 m), medium relief area II (mean 81 m)and low relief area III(mean 48 m),which account for 40.2%, 49.7% and 10.1% of the whole basin area, respectively. (2)The recession coefficients of each stage of the Huayudong underground river basin are 0.000,3, 0.000,1, 0.000,06 (1/0.5 hour), the total water storage capacity is 2,199.356×104 m3, and the water storage of different hydrological sub-regime accounts for 0.1%, 9.9% and 90.0% of the total water storage, respectively. The recession coefficients of every stage of the Santang underground river basin are 0.001, 0.000,3 and 0.000,1 (1/0.5 hour),the total water storage capacity is 2,310.902×104 m3, and the water storage of different hydrological sub-regime accounts for 9.4%, 30.8% and 59.8%, respectively. These results suggest that there may be some correlation between surface relief and flow recession, that is, high relief corresponds to strong karst pipeline flow (the first flow recession state), and low relief corresponds to aquifers (the second and third flow recession state) with small fissures and karst cracks.
-
Key words:
- karst /
- topographic index /
- relief /
- flow recession /
- Sanchahe tributary
-
[1] 姜光辉,郭芳.我国西南岩溶区表层岩溶带的水文动态分析[J].水文地质工程地质,2009,26(5):89-93. [2] 田娟,董贵明,束龙仓.孔隙-管道型西南岩溶地下河系统参数与流量衰减系数关系的数值试验研究[J].水文地质工程地质,2013,40(2):13-18. [3] Kovács A, Perrochet P, Király L,et al. Aquantitative method for the characterisation of karst aquifers based on spring hydrograph analysis[J].Journal of Hydrology,2005,303(1-4):152-164. [4] Worthington S R H. Characteristics of channel networks in unconfined carbonate aquifers[J].Bulletin,2015,127(5-6): 759-769. [5] K?ss W, Behrens H, Himmelsbach T, et al. Tracing technique in geohydrology[J]. Chemical Geology,1998,175(3):779-780. [6] Goldscheider N,Drew D(Eds.).Methods in Karst Hydrogeology.IAH:International Contributions to Hydrogeology,26[M]. Crc Press, 2007:264-265. [7] Shuster E T, White W B. Seasonal fluctuations in the chemistry of lime-stone springs:A possible means for characterizing carbonate aquifers[J].Journal of hydrology,1971,14(2):93-128. [8] 梁日胜,曾成,闫志为,等.贵州印江朗溪岩溶槽谷龙洞湾泉流量衰减分析[J].中国岩溶,2019,38(1):1-8. [9] 赵良杰,夏日元,易连兴,等.基于流量衰减曲线的岩溶含水层水文地质参数推求方法[J].吉林大学学报(地球科学版), 2015,45(6):1817-1821. [10] 韩行瑞.岩溶水文地质学[M].北京:科学出版社,2015:6-9. [11] Goldscheider N, Drew D.Methods in Karst Hydrogeology[M].AK Leiden,The Netherlands:Taylor & Francis,2007:9-25. [12] 陈宏峰,何愿译.岩溶水文地质学方法[M].北京:科学出版社,2017:10-21. [13] 宋林华.喀斯特地貌演化与喀斯特含水层特性[J].地理研究,1986,5(4):68-77. [14] 周训,胡伏生,何江涛,等.地下水科学概论[M].北京:地质出版社,2009. [15] 贵州省地方志编纂委员会. 贵州省志-地理志[M]. 贵阳:贵州人民出版社,1988: 710-727. [16] 焦树林,罗福家,梁虹,等.乌江源区阳长流域化学侵蚀作用的碳汇效应[J].水土保持学报, 2012, 26(5): 44-47. [17] 李兴中. 晚新生代贵州高原喀斯特地貌演进及其影响因素[J]. 贵州地质, 2001, 18(1): 29-36. [18] 李宗发. 贵州喀斯特地貌分区[J].贵州地质,2011,28(3):177-181. [19] 韩中丰,王朝明,田数耕,等. 1∶20万区域水文地质普查报告(威宁幅)[R].1978:7-20. [20] 金占省,任建国,袁德修,等.1∶20万区域水文地质普查报告(安顺幅)[R].1979:5-27. [21] 黄敬熙. 流量衰减方程及其应用:以洛塔岩溶盆地为例[J]. 中国岩溶, 1982, 1(2): 118-126. [22] 钟玲敏.川东高陡背斜区岩溶空间分异特征及评价系统构建研究[D].成都:成都理工大学,2018:61-70. [23] 沈丹.贵州省三岔河流域地貌研究[D].贵阳:贵州师范大学,2019:17-24. [24] 李钜章.中国地貌基本形态划分的探讨[J].地理研究,1987,6(2):32-39. [25] 孙兰,周德全.基于GIS的喀斯特小区域地貌分区:以贵州省贵阳市为例[J].贵阳学院学报(自然科学版),2018,13(3): 54-61. [26] 铁道部第二勘测设计院.岩溶工程地质[M].北京:中国铁道出版社,1984:82-93. [27] 李玉辉,丁智强,吴晓月.基于Strahler面积—高程分析的云南石林县域喀斯特地貌演化的量化研究[J].地理学报,2018,73(5):973-985. [28] 郎玲玲,程维明,朱启疆, 等. 多尺度DEM提取地势起伏度的对比分析:以福建低山丘陵区为例[J]. 地球信息科学学报, 2007, 9(6):1-6. [29] 杨艳林,邰长生.长江中游地形起伏度分析研究[J].人民长江, 2018,49(2):51-55.
点击查看大图
计量
- 文章访问数: 1660
- HTML浏览量: 599
- PDF下载量: 214
- 被引次数: 0