• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同二氧化碳浓度岩溶洞穴可培养细菌群落特征——以重庆雪玉洞和水鸣洞为例

陈济宇 陆祖军 贺秋芳 李强

陈济宇, 陆祖军, 贺秋芳, 李强. 不同二氧化碳浓度岩溶洞穴可培养细菌群落特征——以重庆雪玉洞和水鸣洞为例[J]. 中国岩溶, 2020, 39(2): 264-274. doi: 10.11932/karst2020y20
引用本文: 陈济宇, 陆祖军, 贺秋芳, 李强. 不同二氧化碳浓度岩溶洞穴可培养细菌群落特征——以重庆雪玉洞和水鸣洞为例[J]. 中国岩溶, 2020, 39(2): 264-274. doi: 10.11932/karst2020y20
CHEN Jiyu, LU Zujun, HE Qiufang, LI Qiang. Characteristics of culturable bacterial communities in karst caves with different CO2 concentrations: An example of the Xueyu cave and Shuiming cave in Chongqing[J]. CARSOLOGICA SINICA, 2020, 39(2): 264-274. doi: 10.11932/karst2020y20
Citation: CHEN Jiyu, LU Zujun, HE Qiufang, LI Qiang. Characteristics of culturable bacterial communities in karst caves with different CO2 concentrations: An example of the Xueyu cave and Shuiming cave in Chongqing[J]. CARSOLOGICA SINICA, 2020, 39(2): 264-274. doi: 10.11932/karst2020y20

不同二氧化碳浓度岩溶洞穴可培养细菌群落特征——以重庆雪玉洞和水鸣洞为例

doi: 10.11932/karst2020y20
基金项目: 国家重点研发计划项目(2016YFC0502501);广西自然科学基金 (2015GXNSFGA139010)

Characteristics of culturable bacterial communities in karst caves with different CO2 concentrations: An example of the Xueyu cave and Shuiming cave in Chongqing

  • 摘要: 以重庆雪玉洞和水鸣洞为例,在测试地球化学参数的基础上,在不同CO2浓度条件下利用4种分离培养基,富集培养不同类型(洞穴沉积物及洞壁)样品可培养细菌并进行系统进化分析。结果表明:(1)水鸣洞可培养细菌丰度明显高于雪玉洞;(2)分离纯化得到的244株细菌基于16S rRNA基因序列比对分析发现,细菌主要由变形菌门(Proteobacteria)、放线菌门(Actinobacteria)、厚壁菌门(Firmicutes)、拟杆菌门(Bacteroidetes)与异常球菌-栖热菌门(Deinococcus-Thermus)构成。Bacteroidetes只存在于高CO2浓度的雪玉洞,推测Bacteroidetes能耐受高CO2浓度;(3)CO2浓度是影响岩溶洞穴细菌丰度、群落与活动的重要因素之一,推测雪玉洞和水鸣洞的δ13C-CO2值偏负可能是微生物与水文地球化学作用共同影响的结果。

     

  • [1] 曹建华,蒋忠诚,袁道先,等. 岩溶动力系统与全球变化研究进展[J]. 中国地质, 2017,44(5):874-900.
    [2] Zhao H, Xu B, Yao T, et al. Deuterium excess record in a southern Tibetan ice core and its potential climatic implications[J].Climate Dynamics, 2012,38(9):1791-1803.
    [3] Wong C I, Breecker D O. Advancements in the use of speleothems as climate archives[J]. Quaternary Science Reviews, 2015,127(1):1-18.
    [4] Chen F, Jia J, Chen J, et al. A persistent Holocene wetting trend in arid central Asia, with wettest conditions in the late Holocene, revealed by multi-proxy analyses of loess-paleosol sequences in Xinjiang, China[J]. Quaternary Science Reviews, 2016,146(1):134-146.
    [5] Deininger M, Lippold J, Abele F, et al. Comparison of a spatio-temporal speleothem-based reconstruction of late Holocene climate variability to the timing of cultural developments[A]. EGU General Assembly Conference Abstracts[C].2016.
    [6] Pedersen K. Exploration of deep intraterrestrial microbial life: current perspectives[J]. FEMS microbiology letters, 2000,185(1):9-16.
    [7] Shen C C, Xiong J B, Zhang H Y, et al. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain[J]. Soil Biology and Biochemistry, 2013,57(1):204-211.
    [8] Baker K L, Langenheder S, Nicol G W, et al. Environmental and spatial characterisation of bacterial community composition in soil to inform sampling strategies[J]. Soil Biology & Biochemistry, 2009,41(11):2292-2298.
    [9] Fierer N, Jackson R B. The diversity and biogeography of soil bacterial communities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006,103(3):626-631.
    [10] Jones R T, Robeson M S, Lauber C L, et al. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses[J]. The ISME Journal, 2009,3(4):442-453.
    [11] Liu J J, Sui Y Y, Yu Z H, et al. High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of northeast China[J]. Soil Biology and Biochemistry, 2014,70(1):113-122.
    [12] Rousk J, B Th E , Brookes P C, et al. Soil bacterial and fungal communities across a pH gradient in an arable soil[J]. The ISME journal, 2010,4(10): 1340-1351.
    [13] Bartram A K, Jiang X P, Lynch M D J , et al. Exploring links between pH and bacterial community composition in soils from the Craibstone Experimental Farm[J]. Fems Microbiology Ecology, 2014,87(2): 403-415.
    [14] 云媛. 喀斯特洞穴系统微生物群落对环境变化的响应[D]. 武汉:中国地质大学, 2018.
    [15] Yun Y, Xing X, Wang H M, et al. Five-Year Monitoring of Bacterial Communities in Dripping Water from Heshang Cave in Central China: Implication for Paleoclimate Reconstruction and Ecological Functions[J].Geomicrobiology Journal, 2016,33(7):553-563.
    [16] Yun Y,Wang H M,Man B Y,et al. The Relationship between pH and Bacterial Community in a Single Karst Ecosystem and Its Implication of Soil Acidification[J].Frontiers in Microbiology, 2016,7(1):1955.
    [17] Laiz L , Groth I , Gonzalez I , et al. Microbiological study of the dripping waters in Altamira cave (Santillana del Mar, Spain)[J]. Journal of Microbiological Methods, 1999,36(1-2):129-138.
    [18] 王翱宇,蒲俊兵,沈立成,等. 重庆雪玉洞CO2浓度变化的自然与人为因素探讨[J]. 热带地理, 2010,30(3):272-277.
    [19] 吕现福,贺秋芳,王凤康,等. 旅游活动对岩溶洞穴地下水中细菌群落的影响:以重庆丰都两个洞穴为例[J]. 环境科学, 2018,39(5):2389-2399.
    [20] 吕现福. 岩溶洞穴微生物群落特征及微生物在碳酸钙沉积中的作用[D].重庆:西南大学,2018.
    [21] 任坤,沈立成,袁道先,等. 2012—2013年重庆雪玉洞洞穴系统碳循环特征[J]. 地球科学, 2016,41(8):1424-1434.
    [22] 王凤康. 岩溶地下河水微生物分布特征研究:以重庆雪玉洞地下河为例[D]. 重庆:西南大学, 2015.
    [23] 蒲俊兵,沈立成,王翱宇. 重庆丰都雪玉洞水文地球化学指标的时空变化研究[J]. 中国岩溶, 2009,28(1):49-54.
    [24] 朱学稳,张远海,韩道山,等. 重庆丰都雪玉洞群的洞穴特征和洞穴沉积物[J]. 中国岩溶, 2004,23(2):1-6.
    [25] 朱荣旺. 土壤全氮含量的测定[J].现代农业科技, 2015,227(10):225.
    [26] 梁宇雁. 酸-氢氟酸-双氧水体系消解土壤中的重金属[J]. 广东化工, 2017,44(8):58-59,16.
    [27] 程娟,周恩民,尹以瑞,等. 云南喀斯特洞穴环境中的可培养放线菌多样性研究[A]. 第四届全国微生物资源学术暨国家微生物资源平台运行服务研讨会论文集[C]. 2012.
    [28] 费嫦,桂芳,李争鸣,等. 医学微生物实验室四种菌种保存方法的比较[J].医学理论与实践, 2017,30(12):1827-1829.
    [29] 韩明贤. 贵州典型喀斯特洞穴可培养放线菌多样性及其抗菌活性的研究[D]. 昆明:昆明理工大学, 2017.
    [30] Kim O S,Cho Y J,Lee K,et al.Introducing: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species[J]. International Journal of Systematic and Evolutionary Microbiology, 2012,62(3):716-721.
    [31] Thompson J D, Gibson T J, Plewniak F. The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools[J]. Nucleic Acids Research, 1997,25(24):4876-4882.
    [32] Tamura K, Peterson D, Peterson N, et al. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Molecular Biology and Evolution, 2011,28(10):2731-2739.
    [33] 王博强,李晨阳,卢伟,等.CO2-咸水-砂岩相互作用过程中微生物群落结构动态变化特征[J].环境科学,2017,38(7):2978-2987.
    [34] Zhang F J, Song Y P, Li C Y, et al. The impact of indigenous microorganisms on the mineral corrosion and mineral trapping in the SO2 Co-injected CO2-Saline-Sandstone interaction[J]. Geomicrobiology Journal, 2019,36(2):110-122.
    [35] Alagesan S, Minton N P, Malys N. 13C-assisted metabolic flux analysis to investigate heterotrophic and mixotrophic metabolism in Cupriavidus necator H16[J]. Metabolomics, 2018,14(1):9.
    [36] Wan R, Chen Y G, Zheng X, et al. Effect of CO2 on NADH production of denitrifying microbes via inhibiting carbon source transport and its metabolism[J]. Science of The Total Environment, 2018,627(1):896-904.
    [37] Takanori Y, Nobuyuki Y, Fujio Y, et al. The glyoxylate shunt is essential for CO2-requiring oligotrophic growth of Rhodococcus erythropolis N9T-4[J]. Applied Microbiology and Biotechnology, 2015,99(13):5627-5637.
    [38] 张帆,李春荣,邓红章,等. 高浓度CO2入侵包气带对土壤微生物的影响[J]. 应用化工, 2015,44(10):1779-1783.
    [39] 张旺园. CO2-EOR二氧化碳泄漏对土壤细菌群落的影响[D].北京:中国矿业大学, 2018.
    [40] 张慧慧. 地质储存CO2泄漏对土壤微生态环境影响的模拟试验研究[D]. 西安:长安大学, 2017.
    [41] 陈浮,杨宝丹,马静.等. 高浓度CO2地下泄漏对土壤微生物群落结构的影响[J]. 土壤学报, 2017,54(1):180-190.
    [42] Postma J, Stevens L H, Wiegers G L, et al. Biological control of Pythium aphanidermatum in cucumber with a combined application of Lysobacter enzymogenes strain 3.1T8 and chitosan[J]. Biological Control, 2009, 48(3):301-309.
    [43] 王娜,武坤毅,崔浪军,等. 溶杆菌属细菌鉴定及生防机制概况[J]. 西北农林科技大学学报, 2015,43(5):174-182,191.
    [44] Hayward A C, Fegan N, Fegan M, et al. Stenotrophomonas and Lysobacter: Ubiquitous plant-associated gamma-proteobacteria of developing significance in applied microbiology[J]. Journal of Applied Microbiology, 2009,108(3):756-770.
    [45] 吴月红,许学伟. 赤杆菌科微生物分类研究进展[J]. 微生物学通报, 2016,43(5):1082-1094.
    [46] 胡杰,何晓红,李大平,等.鞘氨醇单胞菌研究进展[J]. 应用与环境生物学报, 2007,1(3):431-437.
    [47] Fegatella F, Cavicchioli R. Physiological responses to starvation in the marine oligotrophic ultramicrobacterium Sphingomonas sp. strain RB2256[J]. Applied Environmental Microbiology, 2000,66(5): 2037-2044.
    [48] 周健平.和尚洞风化岩壁细菌、真菌群落组成特征及解磷微生物研究[D]. 武汉:中国地质大学, 2018.
    [49] 李丽,蒲俊兵,李建鸿,等. 亚热带典型岩溶溪流水气界面CO2交换通量变化过程及其环境影响[J]. 环境科学, 2016,37(7):2487-2495.
  • 加载中
计量
  • 文章访问数:  1520
  • HTML浏览量:  664
  • PDF下载量:  216
  • 被引次数: 0
出版历程
  • 发布日期:  2020-04-25

目录

    /

    返回文章
    返回