Characteristics of culturable bacterial communities in karst caves with different CO2 concentrations: An example of the Xueyu cave and Shuiming cave in Chongqing
-
摘要: 以重庆雪玉洞和水鸣洞为例,在测试地球化学参数的基础上,在不同CO2浓度条件下利用4种分离培养基,富集培养不同类型(洞穴沉积物及洞壁)样品可培养细菌并进行系统进化分析。结果表明:(1)水鸣洞可培养细菌丰度明显高于雪玉洞;(2)分离纯化得到的244株细菌基于16S rRNA基因序列比对分析发现,细菌主要由变形菌门(Proteobacteria)、放线菌门(Actinobacteria)、厚壁菌门(Firmicutes)、拟杆菌门(Bacteroidetes)与异常球菌-栖热菌门(Deinococcus-Thermus)构成。Bacteroidetes只存在于高CO2浓度的雪玉洞,推测Bacteroidetes能耐受高CO2浓度;(3)CO2浓度是影响岩溶洞穴细菌丰度、群落与活动的重要因素之一,推测雪玉洞和水鸣洞的δ13C-CO2值偏负可能是微生物与水文地球化学作用共同影响的结果。Abstract: Despite many reports on the excavation of bacterial resources in caves. There is still no detailed report on how the culturable bacteria in caves respond to different concentrations of environmental factors (especially CO2 concentration).The purpose of this work was to examine the community characteristics of culturable bacteria in karst caves with different CO2 concentrations and reveal the response of culturable bacteria to relevant geochemical indicators.In 2018,sediment and rock wall samples of karst caves were collected from the Xueyu cave and Shuiming cave with different CO2 concentrations in Chongqing.The gas collection bag was used to collect gas in the caves to measure CO2 concentration. Water samples from the surface of the sediments in the two holes were collected and packed in polyethylene plastic bottles for the determination of HCO〖_3^-〗.The rock wall and sediments of the two caves and water bodies were collected and packed in sterile bags for culture and geochemical index determination.Four kinds of isolation media were used to enrich and culture different types of bacteria,and phylogenetic analysis was carried out.The 16S rRNA gene sequence was amplified by PCR using 27F/1492r as the forward and reverse primers (27F:AGAGTTTGATCCTGGCT;1492r:GGTTACCTTGTTACGACTT).The amplification conditions were pre denaturation at 95 ℃ for 5 min, denaturation at 94 ℃ for 30 s, annealing at 52 ℃ for 30 s, extension at 72 ℃ for 1.5 min,35 cycles,extension at 72 ℃ for 10 min,and preservation at 12 ℃,respectively.Cluster x software was used for multiple sequence alignment, and the phylogenetic tree was constructed by MEGA5.0, and SPSS 25 software and Pearson correlation coefficient method were used to analyze the correlation between geochemical parameters and dominant OTUs.The results are as follows,(1) The abundance of culturable bacteria in the Shuiming cave is significantly higher than that in Xueyu cave.(2) Based on 16S rRNA gene sequence analysis, 244 strains of bacteria are isolated and purified, which belong to 87 different OTUs. Culturable bacteria are mainly composed of Proteobacteria, Actinobacteria, Firmicutes, Bacteroidetes and Deinococcus-Thermus. Bacteroidetes only exist in the Xueyu cave with high CO2 concentration, then it is speculated that Bacteroidetes can tolerate high CO2 concentration.(3) CO2 concentration is one of the important factors that affect the bacterial abundance, community and activity in karst caves. It is speculated that the negative δ13C-CO2 values of the Xueyu cave and Shuiming cave may be the result of the interaction between microorganisms and hydrogeochemistry. These results suggest that high CO2 concentration inhibit most microbial abundance and diversity. The high concentration of CO2 may be attributed to reduction of the pH inside and outside the cells affecting the metabolic activity of bacteria and the bacterial enzyme system. However, some special cases exist, for example, the relative abundance of Bacteroides increases from 3.09% to 21.20% with the increase of CO2 leakage. The respiration and hydrogeochemistry of overlying soil can lead to the negative value of δ13C-CO2 in caves.
-
Key words:
- karst cave /
- CO2 concentration /
- culturable bacteria /
- diversity /
- abundance
-
[1] 曹建华,蒋忠诚,袁道先,等. 岩溶动力系统与全球变化研究进展[J]. 中国地质, 2017,44(5):874-900. [2] Zhao H, Xu B, Yao T, et al. Deuterium excess record in a southern Tibetan ice core and its potential climatic implications[J].Climate Dynamics, 2012,38(9):1791-1803. [3] Wong C I, Breecker D O. Advancements in the use of speleothems as climate archives[J]. Quaternary Science Reviews, 2015,127(1):1-18. [4] Chen F, Jia J, Chen J, et al. A persistent Holocene wetting trend in arid central Asia, with wettest conditions in the late Holocene, revealed by multi-proxy analyses of loess-paleosol sequences in Xinjiang, China[J]. Quaternary Science Reviews, 2016,146(1):134-146. [5] Deininger M, Lippold J, Abele F, et al. Comparison of a spatio-temporal speleothem-based reconstruction of late Holocene climate variability to the timing of cultural developments[A]. EGU General Assembly Conference Abstracts[C].2016. [6] Pedersen K. Exploration of deep intraterrestrial microbial life: current perspectives[J]. FEMS microbiology letters, 2000,185(1):9-16. [7] Shen C C, Xiong J B, Zhang H Y, et al. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain[J]. Soil Biology and Biochemistry, 2013,57(1):204-211. [8] Baker K L, Langenheder S, Nicol G W, et al. Environmental and spatial characterisation of bacterial community composition in soil to inform sampling strategies[J]. Soil Biology & Biochemistry, 2009,41(11):2292-2298. [9] Fierer N, Jackson R B. The diversity and biogeography of soil bacterial communities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006,103(3):626-631. [10] Jones R T, Robeson M S, Lauber C L, et al. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses[J]. The ISME Journal, 2009,3(4):442-453. [11] Liu J J, Sui Y Y, Yu Z H, et al. High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of northeast China[J]. Soil Biology and Biochemistry, 2014,70(1):113-122. [12] Rousk J, B Th E , Brookes P C, et al. Soil bacterial and fungal communities across a pH gradient in an arable soil[J]. The ISME journal, 2010,4(10): 1340-1351. [13] Bartram A K, Jiang X P, Lynch M D J , et al. Exploring links between pH and bacterial community composition in soils from the Craibstone Experimental Farm[J]. Fems Microbiology Ecology, 2014,87(2): 403-415. [14] 云媛. 喀斯特洞穴系统微生物群落对环境变化的响应[D]. 武汉:中国地质大学, 2018. [15] Yun Y, Xing X, Wang H M, et al. Five-Year Monitoring of Bacterial Communities in Dripping Water from Heshang Cave in Central China: Implication for Paleoclimate Reconstruction and Ecological Functions[J].Geomicrobiology Journal, 2016,33(7):553-563. [16] Yun Y,Wang H M,Man B Y,et al. The Relationship between pH and Bacterial Community in a Single Karst Ecosystem and Its Implication of Soil Acidification[J].Frontiers in Microbiology, 2016,7(1):1955. [17] Laiz L , Groth I , Gonzalez I , et al. Microbiological study of the dripping waters in Altamira cave (Santillana del Mar, Spain)[J]. Journal of Microbiological Methods, 1999,36(1-2):129-138. [18] 王翱宇,蒲俊兵,沈立成,等. 重庆雪玉洞CO2浓度变化的自然与人为因素探讨[J]. 热带地理, 2010,30(3):272-277. [19] 吕现福,贺秋芳,王凤康,等. 旅游活动对岩溶洞穴地下水中细菌群落的影响:以重庆丰都两个洞穴为例[J]. 环境科学, 2018,39(5):2389-2399. [20] 吕现福. 岩溶洞穴微生物群落特征及微生物在碳酸钙沉积中的作用[D].重庆:西南大学,2018. [21] 任坤,沈立成,袁道先,等. 2012—2013年重庆雪玉洞洞穴系统碳循环特征[J]. 地球科学, 2016,41(8):1424-1434. [22] 王凤康. 岩溶地下河水微生物分布特征研究:以重庆雪玉洞地下河为例[D]. 重庆:西南大学, 2015. [23] 蒲俊兵,沈立成,王翱宇. 重庆丰都雪玉洞水文地球化学指标的时空变化研究[J]. 中国岩溶, 2009,28(1):49-54. [24] 朱学稳,张远海,韩道山,等. 重庆丰都雪玉洞群的洞穴特征和洞穴沉积物[J]. 中国岩溶, 2004,23(2):1-6. [25] 朱荣旺. 土壤全氮含量的测定[J].现代农业科技, 2015,227(10):225. [26] 梁宇雁. 酸-氢氟酸-双氧水体系消解土壤中的重金属[J]. 广东化工, 2017,44(8):58-59,16. [27] 程娟,周恩民,尹以瑞,等. 云南喀斯特洞穴环境中的可培养放线菌多样性研究[A]. 第四届全国微生物资源学术暨国家微生物资源平台运行服务研讨会论文集[C]. 2012. [28] 费嫦,桂芳,李争鸣,等. 医学微生物实验室四种菌种保存方法的比较[J].医学理论与实践, 2017,30(12):1827-1829. [29] 韩明贤. 贵州典型喀斯特洞穴可培养放线菌多样性及其抗菌活性的研究[D]. 昆明:昆明理工大学, 2017. [30] Kim O S,Cho Y J,Lee K,et al.Introducing: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species[J]. International Journal of Systematic and Evolutionary Microbiology, 2012,62(3):716-721. [31] Thompson J D, Gibson T J, Plewniak F. The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools[J]. Nucleic Acids Research, 1997,25(24):4876-4882. [32] Tamura K, Peterson D, Peterson N, et al. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Molecular Biology and Evolution, 2011,28(10):2731-2739. [33] 王博强,李晨阳,卢伟,等.CO2-咸水-砂岩相互作用过程中微生物群落结构动态变化特征[J].环境科学,2017,38(7):2978-2987. [34] Zhang F J, Song Y P, Li C Y, et al. The impact of indigenous microorganisms on the mineral corrosion and mineral trapping in the SO2 Co-injected CO2-Saline-Sandstone interaction[J]. Geomicrobiology Journal, 2019,36(2):110-122. [35] Alagesan S, Minton N P, Malys N. 13C-assisted metabolic flux analysis to investigate heterotrophic and mixotrophic metabolism in Cupriavidus necator H16[J]. Metabolomics, 2018,14(1):9. [36] Wan R, Chen Y G, Zheng X, et al. Effect of CO2 on NADH production of denitrifying microbes via inhibiting carbon source transport and its metabolism[J]. Science of The Total Environment, 2018,627(1):896-904. [37] Takanori Y, Nobuyuki Y, Fujio Y, et al. The glyoxylate shunt is essential for CO2-requiring oligotrophic growth of Rhodococcus erythropolis N9T-4[J]. Applied Microbiology and Biotechnology, 2015,99(13):5627-5637. [38] 张帆,李春荣,邓红章,等. 高浓度CO2入侵包气带对土壤微生物的影响[J]. 应用化工, 2015,44(10):1779-1783. [39] 张旺园. CO2-EOR二氧化碳泄漏对土壤细菌群落的影响[D].北京:中国矿业大学, 2018. [40] 张慧慧. 地质储存CO2泄漏对土壤微生态环境影响的模拟试验研究[D]. 西安:长安大学, 2017. [41] 陈浮,杨宝丹,马静.等. 高浓度CO2地下泄漏对土壤微生物群落结构的影响[J]. 土壤学报, 2017,54(1):180-190. [42] Postma J, Stevens L H, Wiegers G L, et al. Biological control of Pythium aphanidermatum in cucumber with a combined application of Lysobacter enzymogenes strain 3.1T8 and chitosan[J]. Biological Control, 2009, 48(3):301-309. [43] 王娜,武坤毅,崔浪军,等. 溶杆菌属细菌鉴定及生防机制概况[J]. 西北农林科技大学学报, 2015,43(5):174-182,191. [44] Hayward A C, Fegan N, Fegan M, et al. Stenotrophomonas and Lysobacter: Ubiquitous plant-associated gamma-proteobacteria of developing significance in applied microbiology[J]. Journal of Applied Microbiology, 2009,108(3):756-770. [45] 吴月红,许学伟. 赤杆菌科微生物分类研究进展[J]. 微生物学通报, 2016,43(5):1082-1094. [46] 胡杰,何晓红,李大平,等.鞘氨醇单胞菌研究进展[J]. 应用与环境生物学报, 2007,1(3):431-437. [47] Fegatella F, Cavicchioli R. Physiological responses to starvation in the marine oligotrophic ultramicrobacterium Sphingomonas sp. strain RB2256[J]. Applied Environmental Microbiology, 2000,66(5): 2037-2044. [48] 周健平.和尚洞风化岩壁细菌、真菌群落组成特征及解磷微生物研究[D]. 武汉:中国地质大学, 2018. [49] 李丽,蒲俊兵,李建鸿,等. 亚热带典型岩溶溪流水气界面CO2交换通量变化过程及其环境影响[J]. 环境科学, 2016,37(7):2487-2495.
点击查看大图
计量
- 文章访问数: 1487
- HTML浏览量: 661
- PDF下载量: 206
- 被引次数: 0