Spatiotemporal variation of vegetation coverage in plateau mountainous areas based on remote sensing cloud computing platform: A case study of Guizhou Province
-
摘要: 为揭示喀斯特山区植被时空变化规律,选取2000-2018年间1 748景30 m分辨率Landsat-NDVI影像,结合35个气象站点数据,辅以像元二分模型、线性趋势分析及地理探测器等方法,对贵州省19年间年植被覆盖度进行定量估算,分析其植被覆盖度时空变化特征及驱动因素。结果表明:(1)贵州省中、高植被覆盖度以上的区域面积占比约63%,其中高植被覆盖度区域面积占21.16%,主要集中分布于碎屑岩地区。(2)近19年来,贵州省植被覆盖度总体缓慢趋好,年均增长速率为0.4%,严重石漠化样区多年最大植被覆盖度均值始终低于整体植被覆盖度均值。(3)研究期间贵州省植被覆盖度以轻微改善、基本不变两个等级为主,两者面积比重之和约为95.4%,退化区域主要分布在城镇周边,面积比重约为3.8%。(4)气象因素、地理区位各因子间交互作用对植被覆盖度空间格局影响大于单因子作用。综上所述,城镇面积扩展、石漠化治理工程、地理区位及气象因素等是影响植被恢复与生态环境重建的关键要素,研究植被覆盖度多年动态特征力求为相关部门的水土保持、生态环境保护及石漠化治理提供重要的基础数据及科学参考。
-
关键词:
- 喀斯特山区 /
- 植被覆盖度 /
- 时空变化 /
- Landsat-NDVI /
- 地理探测器
Abstract: The purpose of this work is to reveal the spatio-temporal variation of vegetation in karst mountainous areas. We choose the Landsat-NDVI images of 1748 scenes with 30 m resolution during 2000-2018, combined with data from 35 meteorological stations and the pixel dichotomy model, linear trend analysis and geographic detectors to quantitatively estimate the annual vegetation coverage in Guizhou Province in the past 19 years. The spatial and temporal variation and driving forces of vegetation coverage were analyzed. The results show that,(1) the areas of medium-high vegetation coverage account for 63% and the area of high vegetation coverage accounts for 21.16%, which is mainly concentrated in the clastic areas. On the whole, the amount of vegetation coverage is of such an order: clastic rock > dolomite > limestone. (2) In the past 19 years, the vegetation coverage in Guizhou Province has shown slight improvement, with an average annual growth rate of 0.4%. The multi-year average value of maximum vegetation coverage in severe rocky desertification areas is constantly lower than the general vegetation coverage. (3) During the study period, the overall change of vegetation coverage in Guizhou Province was stable, dominated by slight improvement and basically no-change, the sum of which accounts for about 95.4% of the total area. The degraded areas are mainly distributed in periphery of cities and towns, accounting for about 3.8% of the total area. (4) The interaction between meteorological and geographical factors has greater impact on the spatial pattern of vegetation coverage than that of single factor. In summary, the key factors affecting vegetation restoration and ecological environment reconstruction include urban area expansion, rocky desertification control project, geographical location and meteorological factors. The study of multi-year dynamic characteristics of vegetation coverage aims to provide important basic data and scientific reference for water and soil conservation, ecological environment protection decision-making, ecological restoration (rocky desertification control) and sustainable management of relevant departments. -
[1] 沈斌, 房世波, 余卫国. NDVI与气候因子关系在不同时间尺度上的结果差异[J]. 遥感学报, 2016, 20(3): 481-490. [2] 崔林丽, 史军, 杨引明, 等. 中国东部植被NDVI对气温和降水的旬响应特征[J]. 地理学报, 2009, 64(7): 850-860. [3] Gitelson A A, Kaufman Y J, Stark R, et al. Novel algorithms for remote estimation of vegetation fraction[J]. Remote sensing of Environment, 2002, 80(1): 76-87. [4] ZHU W B,JIA S F,LU A F,et al. Analyzing and modeling the coverage of vegetation in the Qaidam Basin of China:The role of spatial autocorrelation[J].Journal of Geographical Sciences,2012,22(2):346-358. [5] 冯筠, 高峰, 孙成权. 遥感技术在全球变化研究中的应用[J].遥感技术与应用,2001(04):237-241. [6] 李苗苗, 吴炳方, 颜长珍, 等. 密云水库上游植被覆盖度的遥感估算[J].资源科学,2004(04):153-159. [7] 穆少杰, 李建龙, 陈奕兆, 等. 2001-2010年内蒙古植被覆盖度时空变化特征[J]. 地理学报, 2012, 67(9): 1255-1268. [8] 宋鹏飞, 季民, 刘泽群, 等. 山东省植被覆盖度变化与气候因子相关性分析[J/OL].测绘科学,2020(3):1-8. [9] 李辉霞, 刘国华, 傅伯杰. 基于NDVI的三江源地区植被生长对气候变化和人类活动的响应研究[J]. 生态学报, 2011, 31(19): 5495-5504. [10] 郑有飞, 刘宏举, 吴荣军, 等. 贵州省NDVI变化及其与主要气候因子的相关性[J]. 生态与农村环境学报, 2009, 25(1): 12-17. [11] Hansen M C, Potapov P V, Moore R, et al. High-resolution global maps of 21st-century forest cover change[J]. science, 2013, 342(6160): 850-853. [12] Donchyts G, Baart F, Winsemius H, et al. Earth's surface water change over the past 30 years[J]. Nature Climate Change, 2016, 6(9): 810. [13] 张滔, 唐宏. 基于Google Earth Engine的京津冀2001~2015年植被覆盖变化与城镇扩张研究[J].遥感技术与应用,2018,33(4):593-599. [14] 陈黔, 李晓松, 修晓敏, 等. 基于Google Earth Engine与机器学习的大尺度30m分辨率沙地灌木覆盖度估算[J].生态学报,2019,39(11):4056-4069. [15] 刘凯, 彭力恒, 李想, 等. 基于Google Earth Engine的红树林年际变化监测研究[J].地球信息科学学报,2019,21(5):731-739. [16] 王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1): 116-134. [17] Shrestha A, Luo W. Analysis of Groundwater Nitrate Contamination in the Central Valley: Comparison of the Geodetector Method, Principal Component Analysis and Geographically Weighted Regression[J]. ISPRS International Journal of Geo-Information, 2017, 6(10):297. [18] 廖颖, 王心源, 周俊明. 基于地理探测器的大熊猫生境适宜度评价模型及验证[J].地球信息科学学报,2016,18(6):767-778. [19] 文琦, 施琳娜, 马彩虹, 等. 黄土高原村域多维贫困空间异质性研究:以宁夏彭阳县为例[J].地理学报,2018,73(10):1850-1864. [20] 王欢, 高江波, 侯文娟. 基于地理探测器的喀斯特不同地貌形态类型区土壤侵蚀定量归因[J].地理学报,2018,73(9):1674-1686. [21] 叶妍君, 齐清文, 姜莉莉, 等. 基于地理探测器的黑龙江垦区农场粮食产量影响因素分析[J].地理研究,2018,37(1):171-182. [22] 裴志林, 杨勤科, 王春梅, 等. 黄河上游植被覆盖度空间分布特征及其影响因素[J].干旱区研究,2019,36(3):546-555. [23] Du Z, Xu X, Zhang H, et al. Geographical detector-based identification of the impact of major determinants on aeolian desertification risk[J]. PloS one, 2016, 11(3): e0151331. [24] 蓝安军. 喀斯特石漠化过程、漠化特征与人地矛盾分析[J]. 贵州师范大学学报(自然科学版), 2002(1): 40-45. [25] 陈文媛. 黄土高塬沟壑区植被类型对土壤团聚体及入渗特征的影响[D].西北农林科技大学,2017. [26] Gorelick N, Hancher M, Dixon M, et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone[J]. Remote Sensing of Environment, 2017, 202: 18-27. [27] Farr T G, Rosen P A, Caro E, et al. The shuttle radar topography mission[J]. Reviews of geophysics, 2007, 45(2). [28] Liu X, Hu G, Chen Y, et al. High-resolution multi-temporal mapping of global urban land using Landsat images based on the Google Earth Engine Platform[J]. Remote sensing of environment, 2018, 209: 227-239. [29] 李登科, 范建忠, 王娟. 陕西省植被覆盖度变化特征及其成因[J].应用生态学报,2010,21(11):2896-2903. [30] 李钰溦, 贾坤, 魏香琴, 等. 中国北方地区植被覆盖度遥感估算及其变化分析[J]. 国土资源遥感, 2015, 27(2): 112-117. [31] 吴云, 曾源, 赵炎, 等. 基于MODIS数据的海河流域植被覆盖度估算及动态变化分析[J].资源科学,2010,32(7):1417-1424. [32] 杨旭超, 张军, 李杰, 等. 呈贡区近30年植被覆盖度时空变化特征与土地利用驱动[J].水土保持研究,2019,26(4):232-238. [33] 宋怡, 马明国. 基于GIMMS AVHRR NDVI数据的中国寒旱区植被动态及其与气候因子的关系[J].遥感学报,2008(03):499-505. [34] 庞毓雯, 黄雨馨, 俞立鹏, 等. 基于MODIS数据的神农架大九湖泥炭藓沼泽植被指数变化研究[J/OL].生态学报,2019(13):1-10. [35] CAO J H,YUAN D X,TONG L Q et al.An Overview of Karst Ecosystem in Southwest China: Current State and Future Management Journal of Resources and Ecology, 2015,6 (4) : 247-256. [36] 陈圣子, 周忠发 ,闫利会. 基于网格GIS的喀斯特石漠化治理过程中生态系统健康变化诊断:以贵州花江示范区为例[J]. 中国岩溶, 2015, 34(3): 266-273. [37] 杨建平, 丁永建, 陈仁升.长江黄河源区高寒植被变化的NDVI记录[J].地理学报,2005(03):467-478. [38] 弘扬“板贵精神”再创石漠化治理佳绩[J].贵州省人民政府公报,2011(07):2. [39] 徐艳芳, 王克林, 祁向坤, 等. 基于TM影像的白云岩与石灰岩上喀斯特植被时空变化差异研究[J]. 生态学报, 2016, 36(1): 180-189. [40] 裴杰, 牛铮, 王力, 等. 基于Google Earth Engine云平台的植被覆盖度变化长时间序列遥感监测[J]. 中国岩溶, 2018, 37(4): 608-616.
点击查看大图
计量
- 文章访问数: 1671
- HTML浏览量: 665
- PDF下载量: 208
- 被引次数: 0