Self-purification ability of tourist caves on a short-term scale: An example of the Dafeng cave in Suiyang county
-
摘要: 在2017年9月30日-10月9日对贵州绥阳大风洞洞内的温度、湿度、CO2浓度和洞外的温度、湿度、降雨量等指标进行为期10天的连续自动监测,并结合监测期内游客量和当地降雨情况,利用数理统计方法进行分析,结果发现:洞穴空气环境的自净能力主要取决于洞内气流交换的强弱程度,尤其是在极端天气(主要指夏秋季降雨)下,洞外温度降低,促使通风模式发生转变,进而增强了洞内外气流的交换,提高了洞穴环境的自净能力。但洞穴空气环境的自净能力是有限度的,除温度、湿度外,当游客产生的CO2浓度超过洞穴空气环境的自净能力阈值时,洞内CO2会出现累积效应;反之,洞内CO2浓度又回归至洞穴环境背景值。同时,洞穴空气环境的自净能力反应时间也会因洞腔体积、洞道结构等的不同而有所差异,大风洞1#、2#、3#监测点的自净能力反应时间分别为15 h、18 h、20 h。Abstract: The Shuanghedong cave system lies in Shuyang county, Zunyi City, northern Guizhou Province, which is the primary source of the Furong river that is the first-order tributary of the Wujiang river. This cave system is 257.4 km long, ranked as first in Asia and fifth in the world now. Around the cave, strata trend is mainly NNE with highly variable dip angles. The exposed rocks include dolomites of the Cambrian middle-upper Loushanguan formation (∈2-3l) and the Ordovician lower Tongzi formation (O1t),of which the gray dolomite and porphyrite and muddy dolomite are dominant. Overall this area belongs to a mid-subtropical monsoon climate. The Dafeng cave is a branch of the Shuanghedong cave system. Its tunnel is complex, where there are many beautiful secondary calcium carbonate sedimentary landscapes. The purpose of this work was to explore the self-purification ability of the air environment in the Dafeng cave and its response mechanism. Temperature, humidity, CO2 and concentration at three sites, 1# (Shiguangsuidao), 2# (Yemingzhu), 3# (Shenquanyulu),in the cave and temperature, humidity, rainfall and other indicators outside the cave weare monitored continuously and automatically for 10 days from September 30th to October 9th, 2017. Combined with the amount of tourists and local rainfall during the monitoring period, a mathematical statistics was made to the measurement data above. The results show that the self-purification ability of the cave air environment mainly depends on the intensity of the air exchange in the cave, especially in the extreme weather (rainy days in summer and autumn). The temperature outside the cave makes the ventilation mode change, thus strengthening air exchange between the inside and outside of the cave. Airflow exchange improves the self-purification ability of the cave environment. Nevertheless such ability remains limited. Besides the temperature and humidity, when the CO2 concentration generated by the tourists exceeds the threshold value of self-purification capacity of the cave air environment, the cumulative effect of CO2 in the cave occurs. Otherwise, the CO2 concentration in the cave returns to the background value of the cave environment. At the same time, the self-purification ability reaction time of the cave air environment will also differ due to varied cavity volume and tunnel structure, for instance such reaction time at monitoring sites 1#, 2#, and 3# of the cave is 15, 18, and 20 hours, respectively.
-
Key words:
- karst cave /
- short-term scale /
- self-purification ability /
- cave air environment /
- tourist activity
-
[1] 宋林华, 韦小宁, 梁福原.河北临城白云洞洞穴旅游对洞穴CO2浓度及温度的影响[J]. 中国岩溶, 2003, 22(3):230-235. [2] 朱德浩. 岩溶洞穴成因研究和实验研究综述 [J].中国岩溶, 1993 , 12 (3):285-291. [3] 张美良, 朱晓燕, 吴夏. 旅游活动对巴马水晶宫洞穴环境及碳酸钙沉积物景观的影响[J]. 中国岩溶,2017,36(1):119-130. [4] 王晓青, 周长春, 孙小银,等. 山东沂源九天洞洞穴环境变化监测分析[J]. 中国岩溶, 2008, 27(1):91-96. [5] Atkins L. Indoor concentrations of ammonia and the potential contribution of humans to atmospheric budgets [J].Atmospheric Environment, 1993, 27 (A ): 1-7. [6] Bunting B. The physical impacts of recreational users in caves: methods currently in use for assessing recreational impacts in two New Zealand caves. Cave and Karst Management in Australasia 12.Proceedings of the 12th Australasian Conference on Cave and Karst Management[C]. Carlton South, Victoria: Waitomo Caves, New Zealand, Australasian Cave and Karst Management Association, 1998, 29(58): 47-54. [7] Aley T. Tourist caves: algae and lampenflora[M]//Gunn J. Encyclopaedia of Cave and Karst Science. New York: Fitzroy Dearborn, 2004: 733-734. [8] Gillieson D. Caves: Processes, Development, Management[M]. Oxford: Blackwell, 1996. [9] Halbert E J M. Evaluation of carbon dioxide and oxygen data in atmosphere using the Gibbs Triangle and Cave Air Index [J].Helictite,1982, 20 (2):60-68. [10] 袁道先, 蔡桂鸿. 岩溶环境学[M]. 重庆: 重庆出版社, 1988: 33. [11] 周长春, 王晓青, 孙小银, 等. 旅游洞穴环境变化监测分析及其影响因素研究: 以山东沂源九天洞例[J]. 旅游学刊, 2009, 24(2): 81-86. [12] Fernández-Cortés A, Calaforra J M, Jiménez-Espinosa R, et al. Geostatistical spatiotemporal analysis of air temperature as an aid to delineating thermal stability zones in a potential show cave: Implications for environmental management[J]. Journal of Environmental Management, 2006, 81(4): 371-383. [13] 韦跃龙,陈伟海,罗劬侃.洞穴次生化学沉积物与地质背景及洞穴环境的耦合关系:以广西巴马水晶宫为例[J].地理学报,2016,71(9):1528-1543. [14] Russell M J, MacLean V L. Management issues in a Tasmanian tourist cave: Potential microclimatic impacts of cave modifications[J]. Journal of Environmental Management, 2008, 87(3): 474-483. [15] Novas N, Gázquez J A, Maclennan J, et al. A real-time underground environment monitoring system sustain tourism of caves[J]. Journal of Cleaner Production, 2016, 142(4):2707-2721. [16] 张萍, 杨琰, 孙喆, 等. 河南鸡冠洞CO2季节和昼夜变化特征及影响因子比较[J]. 环境科学, 2017, 38(1): 60-69. [17] 郑志惠,王庆,周厚云,等. 山东半岛九天洞洞穴环境变化特征与影响因素[J].中国岩溶,2019,38(3):370-377. [18] 朱蓉,张存杰,梅梅.大气自净能力指数的气候特征与应用研究[J].中国环境科学,2018,38(10):3601-3610. [19] 徐尚全, 殷建军, 杨平恒, 等. 旅游活动对洞穴环境的影响及洞穴的自净能力研究: 以重庆雪玉洞为例[J]. 热带地理, 2012, 32(3): 286-292. [20] 张结, 周忠发, 汪炎林, 等. 短时间高强度旅游活动下洞穴CO2的变化特征及对滴水水文地球化学的响应[J]. 地理学报, 2018, 73(9): 1687-1701. [21] 李坡, 贺卫, 钱治, 等. 双河洞地质公园研究[M]. 贵阳: 贵州人民出版社, 2008: 58-101. [22] Sánchez-Ca?ete E P, Serrano-Ortiz P, Domingo F, et al. Cave ventilation is influenced by variations in the CO2 -dependent virtual temperature[J]. International Journal of Speleology, 2013, 42(1): 1-8. [23] Pu J B,Wang A Y, Yin J J, et al. PCO2 variations of cave air and cave water in a subtropical cave, SW China[J]. Carbonates & Evaporites, 2018,33(3): 477-487. [24] 潘艳喜, 周忠发, 李坡, 等. 旅游洞穴空气环境时空变化特征及其影响因素: 以贵州省绥阳大风洞为例[J]. 中国岩溶, 2016, 35(4): 425-431. [25] 薛冰清,张结,汪炎林,等.贵州双河洞空气环境主要因子化特征及影响因素分析[J].环境科学与技术,2019,42(2):81-88. [26] A Bogli . Karst hydrology and physical speleology[M].Berlin: Springer, 1978: 32-43. [27] 罗时琴, 易武英, 李坡. 织金洞洞穴环境监测及其影响因素分析[J]. 贵州科学, 2014, 32(6): 92-96. [28] 何璐瑶, 胡超涌, 曹振华,等. 湖北清江和尚洞洞穴温度对气候变化的响应[J]. 中国岩溶, 2008, 27(3):273-277. [29] Breitenbach S F M, Lechleitner F A, Meyer H, et al. Cave ventilation and rainfall signals in dripwater in a monsoonal setting: Amonitoring study from NE India[J]. Chemical Geology, 2015, 402(33): 111-124. [30] Ridley H E, Prufer K M, Walczak I W, et al. High-resolution monitoring of Yok Balum Cave, Belize: An investigation of seasonal ventilation regimes and the atmospheric and drip-flow response to a local earthquake[J]. Journal of Cave and Karst Studies, 2015, 77(3): 183-199. [31] Cowan B D, Osborne M C, Banner J L, et al. Temporal variability of cave-air CO2 in central Texas[J]. Journal of Cave and Karst Studies, 2013, 75(1): 38-50. [32] Mattey D P, Atkinson T C, Barker J A, et al. Carbon dioxide, ground air and carbon cycling in Gibraltar karst[J]. Geochimica et Cosmochimica Acta, 2016, 184(28): 88-113. [33] Baldini J U L, Baldini L M, Mc Dermott F, et al. Carbon dioxide sources, sinks, and spatial variability in shallow temperate zone caves: Evidence from Bally namintra Cave, Ireland[J]. Journal of Cave and Karst Studies, 2006, 68(1): 4-11. [34] Vieten R, Winter A, Warken S F, et al. Seasonal temperature variations controlling cave ventilation processes in Cueva Larga, Puerto Rico[J]. International Journal of Speleology, 2016, 45(3): 259-273. [35] Pracny P, Faimon J, Kabelka L, et al. Variations of carbon dioxide in the air and dripwaters of Punkva Caves (Moravian Karst, Czech Republic) [J]. Carbonates Evaporites, 2016, 31(4): 375-386. [36] 张英骏.贵州旅游洞穴环境保护刍议[M]//贵州省环境科学协会.贵州喀斯特环境研究.贵阳:贵州人民出版社, 1988:9-14. [37] Lang M, Faimon J, Pracny P, et al. A show cave management: Anthropogenic CO2 in atmosphere of Vypustek Cave (Moravian Karst, Czech Republic[J].Journal for Nature Conservation,2017,35 :40-52. [38] Bartlett, Albert A . Death in a hot tub: The physics of heat stroke[J]. American Journal of Physics, 1983, 51(2):127. [39] Nagy Z, Jung A. A case study of the anthropogenic impact on the catchment of Mogyoród-brook, Hungary[J]. Physics & Chemistry of the Earth, 2005, 30(8-10):588-597. [40] 舒弢.极端天气下的地铁应急处置方案研究[J].郑州铁路职业技术学院学报,2019,31(1):5-6.
点击查看大图
计量
- 文章访问数: 1701
- HTML浏览量: 635
- PDF下载量: 190
- 被引次数: 0