Study on soil moisture variation characteristics of different economic forest lands in karst gorge area:A case study of Huajiang demonstration area in Guizhou Province
-
摘要: 选择喀斯特高原峡谷关岭—贞丰花江示范区为研究对象,在2018年5-9月采用土壤水分传感器对0~40 cm土层的土壤含水率进行监测,以分析花椒地、金银花地、火龙果地3种不同经济林地土壤储水量的季节变化特征及土壤含水量的剖面变化特征。结果表明:(1)3种经济林地土壤储水量随着降雨的季节变化明显,与降水随时间的变化趋势一致,但在时间上滞后于降水量。在观测期内不同经济林地0~40 cm土层土壤储水量表现为火龙果地(478.97 mm)>金银花地(372.64 mm)>花椒地(322.15 mm);(2)随着土层的加深,含水率总体呈增加趋势,观测期火龙果地、金银花地、花椒地的土壤含水率分别为35.97%、27.36%、23.55%,整体变异系数分别为9.64%、19.53%、24.27%,火龙果地为弱变异,花椒地和金银花地为中等变异。火龙果地的持水效果最好,金银花地和花椒地次之,因此在贵州省花江喀斯特高原峡谷区的石漠化治理过程中可适量种植火龙果以达到生态恢复效果,并推动当地产业发展。Abstract: The study area is located in the Guanling-Zhenfeng Huajiang demonstration area in the southwestern Guizhou Province. The total area of the study area is 51.62 km2, with the karst area of 45.39 km2, and the altitude is 500-1,200 m. It is a typical karst plateau gorge area in Guizhou with exposed and broken surface and undulating terrain. Hylocereus undulatus Britt, Zanthoxylum bungeanum and Lonicera japonica Thunb are typical economic plants in this area. In this study, this three economic forest lands were selected as the sampling plots to conduct a long-term monitoring on soil moisture and rainfall and to reveal the dynamic characteristics of the soil moisture and the influence of different economic plants on the dynamics of soil moistures along soil profile. This research is also to provide scientific basis for vegetation restoration and sustainable development of the ecological environment in karst rocky desertification area. Three observation points are equidistantly arranged in each plot with three probes installed in an observation point. A soil moisture sensor (EM 50, Meter Corporation, USA) was used to continuously monitor the volumetric soil water content. At each observation point, the probes were installed at the depth of 10 cm, 25 cm and 40 cm to the soil surface, respectively, which monitored the soil water content 24 hours a day and the monitoring was conducted in five month time from May to September, 2018. During the monitoring process, the soil moisture content was recorded at a 10-minute interval. In the meantime, the rainfall data is monitored by a small meteorological observatory (ATMOS, Meter Corporation, USA). Based on the monitoring data, the coefficient of variation of soil water storage and soil water content were calculated.SPSS 20.0 was used for statistical analysis of the data, and Origin 8.5 was used for mapping. The result showed that the variation of soil water storage in the three economic forest lands was consistent with rainfall in both quantity and time. The soil water content reached a maximum value in August and its fluctuation slightly lagged behind the precipitation. During the observation period, the soil water contents in the 40 cm deep soil layer showed a difference in the three types of land, which were Hylocereus undulatus Britt field (478.97 mm)> Lonicera japonica Thunb field (372.64 mm)> Zanthoxylum bungeanum field (322.15 mm) , respectively, with the water contents of 35.97%, 27.36%, and 23.55%. In a conclusion, the Hylocereus undulatus Britt field has the best water holding effect, followed by Lonicera japonica Thunb field, and Zanthoxylum bungeanum field, which plays an important role in improving the water and soil conservation function of the area. Therefore, in the process of rocky desertification control in Huajiang karst plateau gorge of Guizhou Province, Hylocereus undulatus Britt will be helpful to be planted in an appropriate amount to achieve the effect of ecological restoration and promote the development of local industries.
-
[1] 朱炜歆, 牛俊杰, 刘庚,等. 植被类型对生长季黄土区土壤含水量的影响[J]. 干旱区资源与环境, 2016, 30(1): 152-156. [2] 张北赢, 徐学选,白晓华. 黄土丘陵区不同土地利用方式下土壤水分分析[J]. 干旱地区农业研究,2006, 24(2):96-99. [3] Xiaofeng Liu,Xiaoming Feng,Bojie Fu. Changes in global terrestrial ecosystem water use efficiency are closely related to soil moisture[J]. Science of The Total Environment, 2020,698: 134165. [4] 熊康宁,池永宽. 中国南方喀斯特生态系统面临的问题及对策[J]. 生态经济, 2015, 31(1): 23-30. [5] 蒋忠诚, 曹建华, 杨德生,等. 西南岩溶石漠化区水土流失现状与综合防治对策[J]. 中国水土保持科学, 2008,6(1): 37-42. [6] 邓艳, 曹建华, 蒋忠诚,等. 西南岩溶石漠化综合治理水-土-植被关键技术进展与建议[J]. 中国岩溶, 2016, 35(5): 476-485. [7] Sharp J M,Simmons C T . The Compleat Darcy: New lessons learned from the first english translation of Les Fontaines Publiques de la Ville de Dijon[J]. Groundwater, 2010, 43(3):457-460. [8] 刘士余,左长清,朱金兆.地被物对土壤水分动态和水量平衡的影响研究[J].自然资源学报,2007,22(3):424-433. [9] 缪凌,董建国,汪有科,等.黄土丘陵区不同土地利用类型下的深层土壤水分变化特征[J].水土保持研究,2016,23(2):13-18. [10] 郑洪兵,刘武仁,罗洋,等.耕作方式对农田土壤水分变化特征及水分利用效率的影响[J].水土保持学报,2018,32(3):264-270. [11] 艾宁,宗巧鱼,刘广全,等.陕北黄土区浅沟土壤水分空间分布特征[J].水土保持学报,2019,33(5):85-90. [12] 杜好田,焦峰,姚静,等.黄土丘陵区降水变化对退耕草地土壤水分特征的影响[J].水土保持研究,2019,26(5):81-88. [13] 陈洪松,王克林.西南喀斯特山区土壤水分研究[J].农业现代化研究,2008,29(6):734-738. [14] 李安定,卢永飞,韦小丽,等.花江喀斯特峡谷地区不同小生境土壤水分的动态研究[J].中国岩溶,2008,27(1):56-62. [15] 何贝贝,沈有信,朱习爱,等.滇石林石漠化与次生林的土壤含水率时空变化比较研究[J].中国岩溶,2018,37(4):555-561. [16] 李春茂,陈洪松,徐勤学,等.典型岩溶峰丛洼地坡面土壤水分空间变异性[J].中国岩溶,2018,37(2):159-167. [17] 颜蒙蒙,周洲,王济,等.喀斯特地区土壤水分随降雨的动态变化研究:以贵阳市花溪区为例[J].中国岩溶,2016,35(4):446-452. [18] 赵志猛,沈有信,朱习爱. 西南岩溶地区土壤水分研究进展[J].湖北农业科学,2017,56(19):3603-3609. [19] 喻阳华, 王璐, 钟欣平, 等. 贵州喀斯特山区不同海拔花椒人工林土壤质量评价[J]. 生态学报, 2018, 38(21): 7850-7858. [20] 李苇洁,汪廷梅,王桂萍,等.花江喀斯特峡谷区顶坛花椒林生态系统服务功能价值评估[J].中国岩溶,2010,29(2):152-154,161. [21] 鲍乾. 几种生态经济型植物经营模式的土壤生态功能效应研究[D].贵阳:贵州大学,2017. [22] 程立平,刘文兆,李志.黄土塬区不同土地利用方式下深层土壤水分变化特征[J].生态学报,2014,34(8):1975-1983. [23] 马月存,秦红灵,高旺盛,等.农牧交错带不同耕作方式土壤水分动态变化特征[J].生态学报,2007,27(6):2523-2530. [24] 王景才,夏自强,彭兆然,等.淮北平原汉王实验站土壤水资源特征试验研究[J].排灌机械工程学报,2012,30(3):362-367. [25] 刘艳. 喀斯特峰丛洼地不同土地利用方式下表层土壤水分的时空规律研究[D].南宁:广西大学,2016. [26] 袁吉有. 桂西北典型峰丛洼地不同利用方式下的土壤水分动态研究[D].长沙:湖南农业大学,2005. [27] 李卓. 土壤机械组成及容重对水分特征参数影响模拟试验研究[D].杨凌:西北农林科技大学,2009. [28] Fu T,Chen H,Zhang W,et al. Spatial variability of surface soil saturated hydraulic conductivity in a small karst catchment of southwest China[J]. Environmental Earth Sciences, 2015,74(3):2381-2391. [29] Dian-jie Wang,You-xin Shen,Jin Huang, et al. Rock outcrops redistribute water to nearby soil patches in karst landscapes[J]. Environmental Science & Pollution Research, 2016, 23(9):8610-8616. [30] 马婧怡,贾宁凤,程曼.黄土丘陵区不同土地利用方式下土壤水分变化特征[J].生态学报,2018,38(10):3471-3481. [31] 邵臻,张富,陈瑾,等.陇中黄土丘陵沟壑区不同土地利用下土壤水分变化分析[J].干旱区资源与环境,2017,31(12):129-135. [32] 张川,陈洪松,聂云鹏,等.喀斯特地区洼地剖面土壤含水率的动态变化规律[J].中国生态农业学报,2013,21(10):1225-1232. [33] 张川,陈洪松,张伟,等.喀斯特坡面表层土壤含水量、容重和饱和导水率的空间变异特征[J].应用生态学报,2014,25(6):1585-1591. [34] 侯喜禄,白岗栓,曹清玉.黄土丘陵区湾塌地乔灌林土壤水分动态监测[J].水土保持研究, 1996, 3 (2):57-65. [35] 马生花,谢应忠,胡海英,等.荒漠草原2种典型群落类型下土壤含水量与土壤粒径分布的关系[J].中国水土保持,2019(7):61-65. [36] Western A W,Zhou S L,Grayson R B,et al.Spatial correlation of soil moisture in small catchments and its relation to dominant spatial hydrological processes[J].Journal of Hydrology,2004,286(1):113-134. [37] 吕娜.不同种植模式土壤有机碳和含水量变化特征研究[J].环境科学导刊,2019,38(4):6-10. [38] 夏彬,朱世硕,郝旺林,等.黄土丘陵区土壤有机碳含量对侵蚀坡面表层土壤含水量时空变化的影响[J].水土保持学报,2020,34(3):175-181.
点击查看大图
计量
- 文章访问数: 2138
- HTML浏览量: 613
- PDF下载量: 387
- 被引次数: 0